$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PickupAction.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/PickupActionGoal.h" 00018 #include "object_manipulation_msgs/PickupActionResult.h" 00019 #include "object_manipulation_msgs/PickupActionFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct PickupAction_ { 00025 typedef PickupAction_<ContainerAllocator> Type; 00026 00027 PickupAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 PickupAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "09990218855ede96047d48c436f6201d"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 PickupActionGoal action_goal\n\ 00069 PickupActionResult action_result\n\ 00070 PickupActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_manipulation_msgs/PickupActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 PickupGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_manipulation_msgs/PickupGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 # An action for picking up an object\n\ 00115 \n\ 00116 # which arm to be used for grasping\n\ 00117 string arm_name\n\ 00118 \n\ 00119 # the object to be grasped\n\ 00120 GraspableObject target\n\ 00121 \n\ 00122 # a list of grasps to be used\n\ 00123 # if empty, the grasp executive will call one of its own planners\n\ 00124 Grasp[] desired_grasps\n\ 00125 \n\ 00126 # how the object should be lifted after the grasp\n\ 00127 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 00128 # or the gripper_frame specified in your hand description file\n\ 00129 GripperTranslation lift\n\ 00130 \n\ 00131 # the name that the target object has in the collision map\n\ 00132 # can be left empty if no name is available\n\ 00133 string collision_object_name\n\ 00134 \n\ 00135 # the name that the support surface (e.g. table) has in the collision map\n\ 00136 # can be left empty if no name is available\n\ 00137 string collision_support_surface_name\n\ 00138 \n\ 00139 # whether collisions between the gripper and the support surface should be acceptable\n\ 00140 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\ 00141 # pre-grasp location are still not allowed even if this is set to true.\n\ 00142 bool allow_gripper_support_collision\n\ 00143 \n\ 00144 # whether reactive grasp execution using tactile sensors should be used\n\ 00145 bool use_reactive_execution\n\ 00146 \n\ 00147 # whether reactive object lifting based on tactile sensors should be used\n\ 00148 bool use_reactive_lift\n\ 00149 \n\ 00150 # set this to true if you only want to query the manipulation pipeline as to what \n\ 00151 # grasps it thinks are feasible, without actually executing them. If this is set to \n\ 00152 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\ 00153 # movement will be attempted\n\ 00154 bool only_perform_feasibility_test\n\ 00155 \n\ 00156 # set this to true if you want to ignore all collisions throughout the pickup \n\ 00157 # and also move directly to the pre-grasp using Cartesian controllers\n\ 00158 bool ignore_collisions\n\ 00159 \n\ 00160 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00161 # constraints to be imposed on every point in the motion of the arm\n\ 00162 arm_navigation_msgs/Constraints path_constraints\n\ 00163 \n\ 00164 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00165 # additional collision operations to be used for every arm movement performed\n\ 00166 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 00167 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 00168 # with care and only if special behaviors are desired\n\ 00169 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 00170 \n\ 00171 # OPTIONAL (These will not have to be filled out most of the time)\n\ 00172 # additional link paddings to be used for every arm movement performed\n\ 00173 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 00174 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 00175 # with care and only if special behaviors are desired\n\ 00176 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 00177 \n\ 00178 # an optional list of obstacles that we have semantic information about\n\ 00179 # and that can be moved in the course of grasping\n\ 00180 GraspableObject[] movable_obstacles\n\ 00181 \n\ 00182 # the maximum contact force to use while grasping (<=0 to disable)\n\ 00183 float32 max_contact_force\n\ 00184 \n\ 00185 \n\ 00186 ================================================================================\n\ 00187 MSG: object_manipulation_msgs/GraspableObject\n\ 00188 # an object that the object_manipulator can work on\n\ 00189 \n\ 00190 # a graspable object can be represented in multiple ways. This message\n\ 00191 # can contain all of them. Which one is actually used is up to the receiver\n\ 00192 # of this message. When adding new representations, one must be careful that\n\ 00193 # they have reasonable lightweight defaults indicating that that particular\n\ 00194 # representation is not available.\n\ 00195 \n\ 00196 # the tf frame to be used as a reference frame when combining information from\n\ 00197 # the different representations below\n\ 00198 string reference_frame_id\n\ 00199 \n\ 00200 # potential recognition results from a database of models\n\ 00201 # all poses are relative to the object reference pose\n\ 00202 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00203 \n\ 00204 # the point cloud itself\n\ 00205 sensor_msgs/PointCloud cluster\n\ 00206 \n\ 00207 # a region of a PointCloud2 of interest\n\ 00208 object_manipulation_msgs/SceneRegion region\n\ 00209 \n\ 00210 # the name that this object has in the collision environment\n\ 00211 string collision_name\n\ 00212 ================================================================================\n\ 00213 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00214 # Informs that a specific model from the Model Database has been \n\ 00215 # identified at a certain location\n\ 00216 \n\ 00217 # the database id of the model\n\ 00218 int32 model_id\n\ 00219 \n\ 00220 # the pose that it can be found in\n\ 00221 geometry_msgs/PoseStamped pose\n\ 00222 \n\ 00223 # a measure of the confidence level in this detection result\n\ 00224 float32 confidence\n\ 00225 \n\ 00226 # the name of the object detector that generated this detection result\n\ 00227 string detector_name\n\ 00228 \n\ 00229 ================================================================================\n\ 00230 MSG: geometry_msgs/PoseStamped\n\ 00231 # A Pose with reference coordinate frame and timestamp\n\ 00232 Header header\n\ 00233 Pose pose\n\ 00234 \n\ 00235 ================================================================================\n\ 00236 MSG: geometry_msgs/Pose\n\ 00237 # A representation of pose in free space, composed of postion and orientation. \n\ 00238 Point position\n\ 00239 Quaternion orientation\n\ 00240 \n\ 00241 ================================================================================\n\ 00242 MSG: geometry_msgs/Point\n\ 00243 # This contains the position of a point in free space\n\ 00244 float64 x\n\ 00245 float64 y\n\ 00246 float64 z\n\ 00247 \n\ 00248 ================================================================================\n\ 00249 MSG: geometry_msgs/Quaternion\n\ 00250 # This represents an orientation in free space in quaternion form.\n\ 00251 \n\ 00252 float64 x\n\ 00253 float64 y\n\ 00254 float64 z\n\ 00255 float64 w\n\ 00256 \n\ 00257 ================================================================================\n\ 00258 MSG: sensor_msgs/PointCloud\n\ 00259 # This message holds a collection of 3d points, plus optional additional\n\ 00260 # information about each point.\n\ 00261 \n\ 00262 # Time of sensor data acquisition, coordinate frame ID.\n\ 00263 Header header\n\ 00264 \n\ 00265 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00266 # in the frame given in the header.\n\ 00267 geometry_msgs/Point32[] points\n\ 00268 \n\ 00269 # Each channel should have the same number of elements as points array,\n\ 00270 # and the data in each channel should correspond 1:1 with each point.\n\ 00271 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00272 ChannelFloat32[] channels\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: geometry_msgs/Point32\n\ 00276 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00277 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00278 # \n\ 00279 # This recommendation is to promote interoperability. \n\ 00280 #\n\ 00281 # This message is designed to take up less space when sending\n\ 00282 # lots of points at once, as in the case of a PointCloud. \n\ 00283 \n\ 00284 float32 x\n\ 00285 float32 y\n\ 00286 float32 z\n\ 00287 ================================================================================\n\ 00288 MSG: sensor_msgs/ChannelFloat32\n\ 00289 # This message is used by the PointCloud message to hold optional data\n\ 00290 # associated with each point in the cloud. The length of the values\n\ 00291 # array should be the same as the length of the points array in the\n\ 00292 # PointCloud, and each value should be associated with the corresponding\n\ 00293 # point.\n\ 00294 \n\ 00295 # Channel names in existing practice include:\n\ 00296 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00297 # This is opposite to usual conventions but remains for\n\ 00298 # historical reasons. The newer PointCloud2 message has no\n\ 00299 # such problem.\n\ 00300 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00301 # (R,G,B) values packed into the least significant 24 bits,\n\ 00302 # in order.\n\ 00303 # \"intensity\" - laser or pixel intensity.\n\ 00304 # \"distance\"\n\ 00305 \n\ 00306 # The channel name should give semantics of the channel (e.g.\n\ 00307 # \"intensity\" instead of \"value\").\n\ 00308 string name\n\ 00309 \n\ 00310 # The values array should be 1-1 with the elements of the associated\n\ 00311 # PointCloud.\n\ 00312 float32[] values\n\ 00313 \n\ 00314 ================================================================================\n\ 00315 MSG: object_manipulation_msgs/SceneRegion\n\ 00316 # Point cloud\n\ 00317 sensor_msgs/PointCloud2 cloud\n\ 00318 \n\ 00319 # Indices for the region of interest\n\ 00320 int32[] mask\n\ 00321 \n\ 00322 # One of the corresponding 2D images, if applicable\n\ 00323 sensor_msgs/Image image\n\ 00324 \n\ 00325 # The disparity image, if applicable\n\ 00326 sensor_msgs/Image disparity_image\n\ 00327 \n\ 00328 # Camera info for the camera that took the image\n\ 00329 sensor_msgs/CameraInfo cam_info\n\ 00330 \n\ 00331 # a 3D region of interest for grasp planning\n\ 00332 geometry_msgs/PoseStamped roi_box_pose\n\ 00333 geometry_msgs/Vector3 roi_box_dims\n\ 00334 \n\ 00335 ================================================================================\n\ 00336 MSG: sensor_msgs/PointCloud2\n\ 00337 # This message holds a collection of N-dimensional points, which may\n\ 00338 # contain additional information such as normals, intensity, etc. The\n\ 00339 # point data is stored as a binary blob, its layout described by the\n\ 00340 # contents of the \"fields\" array.\n\ 00341 \n\ 00342 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00343 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00344 # camera depth sensors such as stereo or time-of-flight.\n\ 00345 \n\ 00346 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00347 # points).\n\ 00348 Header header\n\ 00349 \n\ 00350 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00351 # 1 and width is the length of the point cloud.\n\ 00352 uint32 height\n\ 00353 uint32 width\n\ 00354 \n\ 00355 # Describes the channels and their layout in the binary data blob.\n\ 00356 PointField[] fields\n\ 00357 \n\ 00358 bool is_bigendian # Is this data bigendian?\n\ 00359 uint32 point_step # Length of a point in bytes\n\ 00360 uint32 row_step # Length of a row in bytes\n\ 00361 uint8[] data # Actual point data, size is (row_step*height)\n\ 00362 \n\ 00363 bool is_dense # True if there are no invalid points\n\ 00364 \n\ 00365 ================================================================================\n\ 00366 MSG: sensor_msgs/PointField\n\ 00367 # This message holds the description of one point entry in the\n\ 00368 # PointCloud2 message format.\n\ 00369 uint8 INT8 = 1\n\ 00370 uint8 UINT8 = 2\n\ 00371 uint8 INT16 = 3\n\ 00372 uint8 UINT16 = 4\n\ 00373 uint8 INT32 = 5\n\ 00374 uint8 UINT32 = 6\n\ 00375 uint8 FLOAT32 = 7\n\ 00376 uint8 FLOAT64 = 8\n\ 00377 \n\ 00378 string name # Name of field\n\ 00379 uint32 offset # Offset from start of point struct\n\ 00380 uint8 datatype # Datatype enumeration, see above\n\ 00381 uint32 count # How many elements in the field\n\ 00382 \n\ 00383 ================================================================================\n\ 00384 MSG: sensor_msgs/Image\n\ 00385 # This message contains an uncompressed image\n\ 00386 # (0, 0) is at top-left corner of image\n\ 00387 #\n\ 00388 \n\ 00389 Header header # Header timestamp should be acquisition time of image\n\ 00390 # Header frame_id should be optical frame of camera\n\ 00391 # origin of frame should be optical center of cameara\n\ 00392 # +x should point to the right in the image\n\ 00393 # +y should point down in the image\n\ 00394 # +z should point into to plane of the image\n\ 00395 # If the frame_id here and the frame_id of the CameraInfo\n\ 00396 # message associated with the image conflict\n\ 00397 # the behavior is undefined\n\ 00398 \n\ 00399 uint32 height # image height, that is, number of rows\n\ 00400 uint32 width # image width, that is, number of columns\n\ 00401 \n\ 00402 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00403 # If you want to standardize a new string format, join\n\ 00404 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00405 \n\ 00406 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00407 # taken from the list of strings in src/image_encodings.cpp\n\ 00408 \n\ 00409 uint8 is_bigendian # is this data bigendian?\n\ 00410 uint32 step # Full row length in bytes\n\ 00411 uint8[] data # actual matrix data, size is (step * rows)\n\ 00412 \n\ 00413 ================================================================================\n\ 00414 MSG: sensor_msgs/CameraInfo\n\ 00415 # This message defines meta information for a camera. It should be in a\n\ 00416 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00417 # image topics named:\n\ 00418 #\n\ 00419 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00420 # image - monochrome, distorted\n\ 00421 # image_color - color, distorted\n\ 00422 # image_rect - monochrome, rectified\n\ 00423 # image_rect_color - color, rectified\n\ 00424 #\n\ 00425 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00426 # for producing the four processed image topics from image_raw and\n\ 00427 # camera_info. The meaning of the camera parameters are described in\n\ 00428 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00429 #\n\ 00430 # The image_geometry package provides a user-friendly interface to\n\ 00431 # common operations using this meta information. If you want to, e.g.,\n\ 00432 # project a 3d point into image coordinates, we strongly recommend\n\ 00433 # using image_geometry.\n\ 00434 #\n\ 00435 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00436 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00437 # indicates an uncalibrated camera.\n\ 00438 \n\ 00439 #######################################################################\n\ 00440 # Image acquisition info #\n\ 00441 #######################################################################\n\ 00442 \n\ 00443 # Time of image acquisition, camera coordinate frame ID\n\ 00444 Header header # Header timestamp should be acquisition time of image\n\ 00445 # Header frame_id should be optical frame of camera\n\ 00446 # origin of frame should be optical center of camera\n\ 00447 # +x should point to the right in the image\n\ 00448 # +y should point down in the image\n\ 00449 # +z should point into the plane of the image\n\ 00450 \n\ 00451 \n\ 00452 #######################################################################\n\ 00453 # Calibration Parameters #\n\ 00454 #######################################################################\n\ 00455 # These are fixed during camera calibration. Their values will be the #\n\ 00456 # same in all messages until the camera is recalibrated. Note that #\n\ 00457 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00458 # #\n\ 00459 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00460 # to: #\n\ 00461 # 1. An undistorted image (requires D and K) #\n\ 00462 # 2. A rectified image (requires D, K, R) #\n\ 00463 # The projection matrix P projects 3D points into the rectified image.#\n\ 00464 #######################################################################\n\ 00465 \n\ 00466 # The image dimensions with which the camera was calibrated. Normally\n\ 00467 # this will be the full camera resolution in pixels.\n\ 00468 uint32 height\n\ 00469 uint32 width\n\ 00470 \n\ 00471 # The distortion model used. Supported models are listed in\n\ 00472 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00473 # simple model of radial and tangential distortion - is sufficent.\n\ 00474 string distortion_model\n\ 00475 \n\ 00476 # The distortion parameters, size depending on the distortion model.\n\ 00477 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00478 float64[] D\n\ 00479 \n\ 00480 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00481 # [fx 0 cx]\n\ 00482 # K = [ 0 fy cy]\n\ 00483 # [ 0 0 1]\n\ 00484 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00485 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00486 # (cx, cy).\n\ 00487 float64[9] K # 3x3 row-major matrix\n\ 00488 \n\ 00489 # Rectification matrix (stereo cameras only)\n\ 00490 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00491 # stereo image plane so that epipolar lines in both stereo images are\n\ 00492 # parallel.\n\ 00493 float64[9] R # 3x3 row-major matrix\n\ 00494 \n\ 00495 # Projection/camera matrix\n\ 00496 # [fx' 0 cx' Tx]\n\ 00497 # P = [ 0 fy' cy' Ty]\n\ 00498 # [ 0 0 1 0]\n\ 00499 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00500 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00501 # is the normal camera intrinsic matrix for the rectified image.\n\ 00502 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00503 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00504 # (cx', cy') - these may differ from the values in K.\n\ 00505 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00506 # also have R = the identity and P[1:3,1:3] = K.\n\ 00507 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00508 # position of the optical center of the second camera in the first\n\ 00509 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00510 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00511 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00512 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00513 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00514 # the rectified image is given by:\n\ 00515 # [u v w]' = P * [X Y Z 1]'\n\ 00516 # x = u / w\n\ 00517 # y = v / w\n\ 00518 # This holds for both images of a stereo pair.\n\ 00519 float64[12] P # 3x4 row-major matrix\n\ 00520 \n\ 00521 \n\ 00522 #######################################################################\n\ 00523 # Operational Parameters #\n\ 00524 #######################################################################\n\ 00525 # These define the image region actually captured by the camera #\n\ 00526 # driver. Although they affect the geometry of the output image, they #\n\ 00527 # may be changed freely without recalibrating the camera. #\n\ 00528 #######################################################################\n\ 00529 \n\ 00530 # Binning refers here to any camera setting which combines rectangular\n\ 00531 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00532 # resolution of the output image to\n\ 00533 # (width / binning_x) x (height / binning_y).\n\ 00534 # The default values binning_x = binning_y = 0 is considered the same\n\ 00535 # as binning_x = binning_y = 1 (no subsampling).\n\ 00536 uint32 binning_x\n\ 00537 uint32 binning_y\n\ 00538 \n\ 00539 # Region of interest (subwindow of full camera resolution), given in\n\ 00540 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00541 # always denotes the same window of pixels on the camera sensor,\n\ 00542 # regardless of binning settings.\n\ 00543 # The default setting of roi (all values 0) is considered the same as\n\ 00544 # full resolution (roi.width = width, roi.height = height).\n\ 00545 RegionOfInterest roi\n\ 00546 \n\ 00547 ================================================================================\n\ 00548 MSG: sensor_msgs/RegionOfInterest\n\ 00549 # This message is used to specify a region of interest within an image.\n\ 00550 #\n\ 00551 # When used to specify the ROI setting of the camera when the image was\n\ 00552 # taken, the height and width fields should either match the height and\n\ 00553 # width fields for the associated image; or height = width = 0\n\ 00554 # indicates that the full resolution image was captured.\n\ 00555 \n\ 00556 uint32 x_offset # Leftmost pixel of the ROI\n\ 00557 # (0 if the ROI includes the left edge of the image)\n\ 00558 uint32 y_offset # Topmost pixel of the ROI\n\ 00559 # (0 if the ROI includes the top edge of the image)\n\ 00560 uint32 height # Height of ROI\n\ 00561 uint32 width # Width of ROI\n\ 00562 \n\ 00563 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00564 # ROI in this message. Typically this should be False if the full image\n\ 00565 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00566 # used).\n\ 00567 bool do_rectify\n\ 00568 \n\ 00569 ================================================================================\n\ 00570 MSG: geometry_msgs/Vector3\n\ 00571 # This represents a vector in free space. \n\ 00572 \n\ 00573 float64 x\n\ 00574 float64 y\n\ 00575 float64 z\n\ 00576 ================================================================================\n\ 00577 MSG: object_manipulation_msgs/Grasp\n\ 00578 \n\ 00579 # The internal posture of the hand for the pre-grasp\n\ 00580 # only positions are used\n\ 00581 sensor_msgs/JointState pre_grasp_posture\n\ 00582 \n\ 00583 # The internal posture of the hand for the grasp\n\ 00584 # positions and efforts are used\n\ 00585 sensor_msgs/JointState grasp_posture\n\ 00586 \n\ 00587 # The position of the end-effector for the grasp relative to a reference frame \n\ 00588 # (that is always specified elsewhere, not in this message)\n\ 00589 geometry_msgs/Pose grasp_pose\n\ 00590 \n\ 00591 # The estimated probability of success for this grasp\n\ 00592 float64 success_probability\n\ 00593 \n\ 00594 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00595 bool cluster_rep\n\ 00596 \n\ 00597 # how far the pre-grasp should ideally be away from the grasp\n\ 00598 float32 desired_approach_distance\n\ 00599 \n\ 00600 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00601 # for the grasp not to be rejected\n\ 00602 float32 min_approach_distance\n\ 00603 \n\ 00604 # an optional list of obstacles that we have semantic information about\n\ 00605 # and that we expect might move in the course of executing this grasp\n\ 00606 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00607 # execution, grasp executors will not check for collisions against these objects\n\ 00608 GraspableObject[] moved_obstacles\n\ 00609 \n\ 00610 ================================================================================\n\ 00611 MSG: sensor_msgs/JointState\n\ 00612 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00613 #\n\ 00614 # The state of each joint (revolute or prismatic) is defined by:\n\ 00615 # * the position of the joint (rad or m),\n\ 00616 # * the velocity of the joint (rad/s or m/s) and \n\ 00617 # * the effort that is applied in the joint (Nm or N).\n\ 00618 #\n\ 00619 # Each joint is uniquely identified by its name\n\ 00620 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00621 # in one message have to be recorded at the same time.\n\ 00622 #\n\ 00623 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00624 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00625 # effort associated with them, you can leave the effort array empty. \n\ 00626 #\n\ 00627 # All arrays in this message should have the same size, or be empty.\n\ 00628 # This is the only way to uniquely associate the joint name with the correct\n\ 00629 # states.\n\ 00630 \n\ 00631 \n\ 00632 Header header\n\ 00633 \n\ 00634 string[] name\n\ 00635 float64[] position\n\ 00636 float64[] velocity\n\ 00637 float64[] effort\n\ 00638 \n\ 00639 ================================================================================\n\ 00640 MSG: object_manipulation_msgs/GripperTranslation\n\ 00641 # defines a translation for the gripper, used in pickup or place tasks\n\ 00642 # for example for lifting an object off a table or approaching the table for placing\n\ 00643 \n\ 00644 # the direction of the translation\n\ 00645 geometry_msgs/Vector3Stamped direction\n\ 00646 \n\ 00647 # the desired translation distance\n\ 00648 float32 desired_distance\n\ 00649 \n\ 00650 # the min distance that must be considered feasible before the\n\ 00651 # grasp is even attempted\n\ 00652 float32 min_distance\n\ 00653 ================================================================================\n\ 00654 MSG: geometry_msgs/Vector3Stamped\n\ 00655 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00656 Header header\n\ 00657 Vector3 vector\n\ 00658 \n\ 00659 ================================================================================\n\ 00660 MSG: arm_navigation_msgs/Constraints\n\ 00661 # This message contains a list of motion planning constraints.\n\ 00662 \n\ 00663 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 00664 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 00665 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 00666 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 00667 \n\ 00668 ================================================================================\n\ 00669 MSG: arm_navigation_msgs/JointConstraint\n\ 00670 # Constrain the position of a joint to be within a certain bound\n\ 00671 string joint_name\n\ 00672 \n\ 00673 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 00674 float64 position\n\ 00675 float64 tolerance_above\n\ 00676 float64 tolerance_below\n\ 00677 \n\ 00678 # A weighting factor for this constraint\n\ 00679 float64 weight\n\ 00680 ================================================================================\n\ 00681 MSG: arm_navigation_msgs/PositionConstraint\n\ 00682 # This message contains the definition of a position constraint.\n\ 00683 Header header\n\ 00684 \n\ 00685 # The robot link this constraint refers to\n\ 00686 string link_name\n\ 00687 \n\ 00688 # The offset (in the link frame) for the target point on the link we are planning for\n\ 00689 geometry_msgs/Point target_point_offset\n\ 00690 \n\ 00691 # The nominal/target position for the point we are planning for\n\ 00692 geometry_msgs/Point position\n\ 00693 \n\ 00694 # The shape of the bounded region that constrains the position of the end-effector\n\ 00695 # This region is always centered at the position defined above\n\ 00696 arm_navigation_msgs/Shape constraint_region_shape\n\ 00697 \n\ 00698 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 00699 # This allows the specification of non-axis aligned constraints\n\ 00700 geometry_msgs/Quaternion constraint_region_orientation\n\ 00701 \n\ 00702 # Constraint weighting factor - a weight for this constraint\n\ 00703 float64 weight\n\ 00704 \n\ 00705 ================================================================================\n\ 00706 MSG: arm_navigation_msgs/Shape\n\ 00707 byte SPHERE=0\n\ 00708 byte BOX=1\n\ 00709 byte CYLINDER=2\n\ 00710 byte MESH=3\n\ 00711 \n\ 00712 byte type\n\ 00713 \n\ 00714 \n\ 00715 #### define sphere, box, cylinder ####\n\ 00716 # the origin of each shape is considered at the shape's center\n\ 00717 \n\ 00718 # for sphere\n\ 00719 # radius := dimensions[0]\n\ 00720 \n\ 00721 # for cylinder\n\ 00722 # radius := dimensions[0]\n\ 00723 # length := dimensions[1]\n\ 00724 # the length is along the Z axis\n\ 00725 \n\ 00726 # for box\n\ 00727 # size_x := dimensions[0]\n\ 00728 # size_y := dimensions[1]\n\ 00729 # size_z := dimensions[2]\n\ 00730 float64[] dimensions\n\ 00731 \n\ 00732 \n\ 00733 #### define mesh ####\n\ 00734 \n\ 00735 # list of triangles; triangle k is defined by tre vertices located\n\ 00736 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00737 int32[] triangles\n\ 00738 geometry_msgs/Point[] vertices\n\ 00739 \n\ 00740 ================================================================================\n\ 00741 MSG: arm_navigation_msgs/OrientationConstraint\n\ 00742 # This message contains the definition of an orientation constraint.\n\ 00743 Header header\n\ 00744 \n\ 00745 # The robot link this constraint refers to\n\ 00746 string link_name\n\ 00747 \n\ 00748 # The type of the constraint\n\ 00749 int32 type\n\ 00750 int32 LINK_FRAME=0\n\ 00751 int32 HEADER_FRAME=1\n\ 00752 \n\ 00753 # The desired orientation of the robot link specified as a quaternion\n\ 00754 geometry_msgs/Quaternion orientation\n\ 00755 \n\ 00756 # optional RPY error tolerances specified if \n\ 00757 float64 absolute_roll_tolerance\n\ 00758 float64 absolute_pitch_tolerance\n\ 00759 float64 absolute_yaw_tolerance\n\ 00760 \n\ 00761 # Constraint weighting factor - a weight for this constraint\n\ 00762 float64 weight\n\ 00763 \n\ 00764 ================================================================================\n\ 00765 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 00766 # This message contains the definition of a visibility constraint.\n\ 00767 Header header\n\ 00768 \n\ 00769 # The point stamped target that needs to be kept within view of the sensor\n\ 00770 geometry_msgs/PointStamped target\n\ 00771 \n\ 00772 # The local pose of the frame in which visibility is to be maintained\n\ 00773 # The frame id should represent the robot link to which the sensor is attached\n\ 00774 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 00775 geometry_msgs/PoseStamped sensor_pose\n\ 00776 \n\ 00777 # The deviation (in radians) that will be tolerated\n\ 00778 # Constraint error will be measured as the solid angle between the \n\ 00779 # X axis of the frame defined above and the vector between the origin \n\ 00780 # of the frame defined above and the target location\n\ 00781 float64 absolute_tolerance\n\ 00782 \n\ 00783 \n\ 00784 ================================================================================\n\ 00785 MSG: geometry_msgs/PointStamped\n\ 00786 # This represents a Point with reference coordinate frame and timestamp\n\ 00787 Header header\n\ 00788 Point point\n\ 00789 \n\ 00790 ================================================================================\n\ 00791 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 00792 # A set of collision operations that will be performed in the order they are specified\n\ 00793 CollisionOperation[] collision_operations\n\ 00794 ================================================================================\n\ 00795 MSG: arm_navigation_msgs/CollisionOperation\n\ 00796 # A definition of a collision operation\n\ 00797 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 00798 # between the gripper and all objects in the collision space\n\ 00799 \n\ 00800 string object1\n\ 00801 string object2\n\ 00802 string COLLISION_SET_ALL=\"all\"\n\ 00803 string COLLISION_SET_OBJECTS=\"objects\"\n\ 00804 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 00805 \n\ 00806 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 00807 float64 penetration_distance\n\ 00808 \n\ 00809 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 00810 int32 operation\n\ 00811 int32 DISABLE=0\n\ 00812 int32 ENABLE=1\n\ 00813 \n\ 00814 ================================================================================\n\ 00815 MSG: arm_navigation_msgs/LinkPadding\n\ 00816 #name for the link\n\ 00817 string link_name\n\ 00818 \n\ 00819 # padding to apply to the link\n\ 00820 float64 padding\n\ 00821 \n\ 00822 ================================================================================\n\ 00823 MSG: object_manipulation_msgs/PickupActionResult\n\ 00824 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00825 \n\ 00826 Header header\n\ 00827 actionlib_msgs/GoalStatus status\n\ 00828 PickupResult result\n\ 00829 \n\ 00830 ================================================================================\n\ 00831 MSG: actionlib_msgs/GoalStatus\n\ 00832 GoalID goal_id\n\ 00833 uint8 status\n\ 00834 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00835 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00836 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00837 # and has since completed its execution (Terminal State)\n\ 00838 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00839 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00840 # to some failure (Terminal State)\n\ 00841 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00842 # because the goal was unattainable or invalid (Terminal State)\n\ 00843 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00844 # and has not yet completed execution\n\ 00845 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00846 # but the action server has not yet confirmed that the goal is canceled\n\ 00847 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00848 # and was successfully cancelled (Terminal State)\n\ 00849 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00850 # sent over the wire by an action server\n\ 00851 \n\ 00852 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00853 string text\n\ 00854 \n\ 00855 \n\ 00856 ================================================================================\n\ 00857 MSG: object_manipulation_msgs/PickupResult\n\ 00858 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00859 \n\ 00860 # The overall result of the pickup attempt\n\ 00861 ManipulationResult manipulation_result\n\ 00862 \n\ 00863 # The performed grasp, if attempt was successful\n\ 00864 Grasp grasp\n\ 00865 \n\ 00866 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 00867 # the successful one should be the last one in this list\n\ 00868 Grasp[] attempted_grasps\n\ 00869 \n\ 00870 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 00871 GraspResult[] attempted_grasp_results\n\ 00872 \n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: object_manipulation_msgs/ManipulationResult\n\ 00876 # Result codes for manipulation tasks\n\ 00877 \n\ 00878 # task completed as expected\n\ 00879 # generally means you can proceed as planned\n\ 00880 int32 SUCCESS = 1\n\ 00881 \n\ 00882 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00883 # generally means that the world was not disturbed, so you can try another task\n\ 00884 int32 UNFEASIBLE = -1\n\ 00885 \n\ 00886 # task was thought possible, but failed due to unexpected events during execution\n\ 00887 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00888 # your sensed world model before proceeding to another task\n\ 00889 int32 FAILED = -2\n\ 00890 \n\ 00891 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00892 # generally requires human attention\n\ 00893 int32 ERROR = -3\n\ 00894 \n\ 00895 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00896 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00897 # probably need a new collision map to move the arm out of the stuck position\n\ 00898 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00899 \n\ 00900 # specific to grasp actions\n\ 00901 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00902 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00903 int32 LIFT_FAILED = -5\n\ 00904 \n\ 00905 # specific to place actions\n\ 00906 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00907 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00908 int32 RETREAT_FAILED = -6\n\ 00909 \n\ 00910 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00911 int32 CANCELLED = -7\n\ 00912 \n\ 00913 # the actual value of this error code\n\ 00914 int32 value\n\ 00915 \n\ 00916 ================================================================================\n\ 00917 MSG: object_manipulation_msgs/GraspResult\n\ 00918 int32 SUCCESS = 1\n\ 00919 int32 GRASP_OUT_OF_REACH = 2\n\ 00920 int32 GRASP_IN_COLLISION = 3\n\ 00921 int32 GRASP_UNFEASIBLE = 4\n\ 00922 int32 PREGRASP_OUT_OF_REACH = 5\n\ 00923 int32 PREGRASP_IN_COLLISION = 6\n\ 00924 int32 PREGRASP_UNFEASIBLE = 7\n\ 00925 int32 LIFT_OUT_OF_REACH = 8\n\ 00926 int32 LIFT_IN_COLLISION = 9\n\ 00927 int32 LIFT_UNFEASIBLE = 10\n\ 00928 int32 MOVE_ARM_FAILED = 11\n\ 00929 int32 GRASP_FAILED = 12\n\ 00930 int32 LIFT_FAILED = 13\n\ 00931 int32 RETREAT_FAILED = 14\n\ 00932 int32 result_code\n\ 00933 \n\ 00934 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 00935 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 00936 # before proceeding\n\ 00937 bool continuation_possible\n\ 00938 \n\ 00939 ================================================================================\n\ 00940 MSG: object_manipulation_msgs/PickupActionFeedback\n\ 00941 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00942 \n\ 00943 Header header\n\ 00944 actionlib_msgs/GoalStatus status\n\ 00945 PickupFeedback feedback\n\ 00946 \n\ 00947 ================================================================================\n\ 00948 MSG: object_manipulation_msgs/PickupFeedback\n\ 00949 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00950 \n\ 00951 # The number of the grasp currently being attempted\n\ 00952 int32 current_grasp\n\ 00953 \n\ 00954 # The total number of grasps that will be attempted\n\ 00955 int32 total_grasps\n\ 00956 \n\ 00957 \n\ 00958 "; } 00959 public: 00960 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00961 00962 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00963 00964 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00965 { 00966 ros::serialization::OStream stream(write_ptr, 1000000000); 00967 ros::serialization::serialize(stream, action_goal); 00968 ros::serialization::serialize(stream, action_result); 00969 ros::serialization::serialize(stream, action_feedback); 00970 return stream.getData(); 00971 } 00972 00973 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00974 { 00975 ros::serialization::IStream stream(read_ptr, 1000000000); 00976 ros::serialization::deserialize(stream, action_goal); 00977 ros::serialization::deserialize(stream, action_result); 00978 ros::serialization::deserialize(stream, action_feedback); 00979 return stream.getData(); 00980 } 00981 00982 ROS_DEPRECATED virtual uint32_t serializationLength() const 00983 { 00984 uint32_t size = 0; 00985 size += ros::serialization::serializationLength(action_goal); 00986 size += ros::serialization::serializationLength(action_result); 00987 size += ros::serialization::serializationLength(action_feedback); 00988 return size; 00989 } 00990 00991 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > Ptr; 00992 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> const> ConstPtr; 00993 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00994 }; // struct PickupAction 00995 typedef ::object_manipulation_msgs::PickupAction_<std::allocator<void> > PickupAction; 00996 00997 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction> PickupActionPtr; 00998 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction const> PickupActionConstPtr; 00999 01000 01001 template<typename ContainerAllocator> 01002 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v) 01003 { 01004 ros::message_operations::Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >::stream(s, "", v); 01005 return s;} 01006 01007 } // namespace object_manipulation_msgs 01008 01009 namespace ros 01010 { 01011 namespace message_traits 01012 { 01013 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > : public TrueType {}; 01014 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> const> : public TrueType {}; 01015 template<class ContainerAllocator> 01016 struct MD5Sum< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > { 01017 static const char* value() 01018 { 01019 return "09990218855ede96047d48c436f6201d"; 01020 } 01021 01022 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 01023 static const uint64_t static_value1 = 0x09990218855ede96ULL; 01024 static const uint64_t static_value2 = 0x047d48c436f6201dULL; 01025 }; 01026 01027 template<class ContainerAllocator> 01028 struct DataType< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > { 01029 static const char* value() 01030 { 01031 return "object_manipulation_msgs/PickupAction"; 01032 } 01033 01034 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 01035 }; 01036 01037 template<class ContainerAllocator> 01038 struct Definition< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > { 01039 static const char* value() 01040 { 01041 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01042 \n\ 01043 PickupActionGoal action_goal\n\ 01044 PickupActionResult action_result\n\ 01045 PickupActionFeedback action_feedback\n\ 01046 \n\ 01047 ================================================================================\n\ 01048 MSG: object_manipulation_msgs/PickupActionGoal\n\ 01049 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01050 \n\ 01051 Header header\n\ 01052 actionlib_msgs/GoalID goal_id\n\ 01053 PickupGoal goal\n\ 01054 \n\ 01055 ================================================================================\n\ 01056 MSG: std_msgs/Header\n\ 01057 # Standard metadata for higher-level stamped data types.\n\ 01058 # This is generally used to communicate timestamped data \n\ 01059 # in a particular coordinate frame.\n\ 01060 # \n\ 01061 # sequence ID: consecutively increasing ID \n\ 01062 uint32 seq\n\ 01063 #Two-integer timestamp that is expressed as:\n\ 01064 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 01065 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 01066 # time-handling sugar is provided by the client library\n\ 01067 time stamp\n\ 01068 #Frame this data is associated with\n\ 01069 # 0: no frame\n\ 01070 # 1: global frame\n\ 01071 string frame_id\n\ 01072 \n\ 01073 ================================================================================\n\ 01074 MSG: actionlib_msgs/GoalID\n\ 01075 # The stamp should store the time at which this goal was requested.\n\ 01076 # It is used by an action server when it tries to preempt all\n\ 01077 # goals that were requested before a certain time\n\ 01078 time stamp\n\ 01079 \n\ 01080 # The id provides a way to associate feedback and\n\ 01081 # result message with specific goal requests. The id\n\ 01082 # specified must be unique.\n\ 01083 string id\n\ 01084 \n\ 01085 \n\ 01086 ================================================================================\n\ 01087 MSG: object_manipulation_msgs/PickupGoal\n\ 01088 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01089 # An action for picking up an object\n\ 01090 \n\ 01091 # which arm to be used for grasping\n\ 01092 string arm_name\n\ 01093 \n\ 01094 # the object to be grasped\n\ 01095 GraspableObject target\n\ 01096 \n\ 01097 # a list of grasps to be used\n\ 01098 # if empty, the grasp executive will call one of its own planners\n\ 01099 Grasp[] desired_grasps\n\ 01100 \n\ 01101 # how the object should be lifted after the grasp\n\ 01102 # the frame_id that this lift is specified in MUST be either the robot_frame \n\ 01103 # or the gripper_frame specified in your hand description file\n\ 01104 GripperTranslation lift\n\ 01105 \n\ 01106 # the name that the target object has in the collision map\n\ 01107 # can be left empty if no name is available\n\ 01108 string collision_object_name\n\ 01109 \n\ 01110 # the name that the support surface (e.g. table) has in the collision map\n\ 01111 # can be left empty if no name is available\n\ 01112 string collision_support_surface_name\n\ 01113 \n\ 01114 # whether collisions between the gripper and the support surface should be acceptable\n\ 01115 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\ 01116 # pre-grasp location are still not allowed even if this is set to true.\n\ 01117 bool allow_gripper_support_collision\n\ 01118 \n\ 01119 # whether reactive grasp execution using tactile sensors should be used\n\ 01120 bool use_reactive_execution\n\ 01121 \n\ 01122 # whether reactive object lifting based on tactile sensors should be used\n\ 01123 bool use_reactive_lift\n\ 01124 \n\ 01125 # set this to true if you only want to query the manipulation pipeline as to what \n\ 01126 # grasps it thinks are feasible, without actually executing them. If this is set to \n\ 01127 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\ 01128 # movement will be attempted\n\ 01129 bool only_perform_feasibility_test\n\ 01130 \n\ 01131 # set this to true if you want to ignore all collisions throughout the pickup \n\ 01132 # and also move directly to the pre-grasp using Cartesian controllers\n\ 01133 bool ignore_collisions\n\ 01134 \n\ 01135 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01136 # constraints to be imposed on every point in the motion of the arm\n\ 01137 arm_navigation_msgs/Constraints path_constraints\n\ 01138 \n\ 01139 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01140 # additional collision operations to be used for every arm movement performed\n\ 01141 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 01142 # collision operations that the grasping pipeline deems necessary. Should be used\n\ 01143 # with care and only if special behaviors are desired\n\ 01144 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\ 01145 \n\ 01146 # OPTIONAL (These will not have to be filled out most of the time)\n\ 01147 # additional link paddings to be used for every arm movement performed\n\ 01148 # during grasping. Note that these will be added on top of (and thus overide) other \n\ 01149 # link paddings that the grasping pipeline deems necessary. Should be used\n\ 01150 # with care and only if special behaviors are desired\n\ 01151 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\ 01152 \n\ 01153 # an optional list of obstacles that we have semantic information about\n\ 01154 # and that can be moved in the course of grasping\n\ 01155 GraspableObject[] movable_obstacles\n\ 01156 \n\ 01157 # the maximum contact force to use while grasping (<=0 to disable)\n\ 01158 float32 max_contact_force\n\ 01159 \n\ 01160 \n\ 01161 ================================================================================\n\ 01162 MSG: object_manipulation_msgs/GraspableObject\n\ 01163 # an object that the object_manipulator can work on\n\ 01164 \n\ 01165 # a graspable object can be represented in multiple ways. This message\n\ 01166 # can contain all of them. Which one is actually used is up to the receiver\n\ 01167 # of this message. When adding new representations, one must be careful that\n\ 01168 # they have reasonable lightweight defaults indicating that that particular\n\ 01169 # representation is not available.\n\ 01170 \n\ 01171 # the tf frame to be used as a reference frame when combining information from\n\ 01172 # the different representations below\n\ 01173 string reference_frame_id\n\ 01174 \n\ 01175 # potential recognition results from a database of models\n\ 01176 # all poses are relative to the object reference pose\n\ 01177 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 01178 \n\ 01179 # the point cloud itself\n\ 01180 sensor_msgs/PointCloud cluster\n\ 01181 \n\ 01182 # a region of a PointCloud2 of interest\n\ 01183 object_manipulation_msgs/SceneRegion region\n\ 01184 \n\ 01185 # the name that this object has in the collision environment\n\ 01186 string collision_name\n\ 01187 ================================================================================\n\ 01188 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 01189 # Informs that a specific model from the Model Database has been \n\ 01190 # identified at a certain location\n\ 01191 \n\ 01192 # the database id of the model\n\ 01193 int32 model_id\n\ 01194 \n\ 01195 # the pose that it can be found in\n\ 01196 geometry_msgs/PoseStamped pose\n\ 01197 \n\ 01198 # a measure of the confidence level in this detection result\n\ 01199 float32 confidence\n\ 01200 \n\ 01201 # the name of the object detector that generated this detection result\n\ 01202 string detector_name\n\ 01203 \n\ 01204 ================================================================================\n\ 01205 MSG: geometry_msgs/PoseStamped\n\ 01206 # A Pose with reference coordinate frame and timestamp\n\ 01207 Header header\n\ 01208 Pose pose\n\ 01209 \n\ 01210 ================================================================================\n\ 01211 MSG: geometry_msgs/Pose\n\ 01212 # A representation of pose in free space, composed of postion and orientation. \n\ 01213 Point position\n\ 01214 Quaternion orientation\n\ 01215 \n\ 01216 ================================================================================\n\ 01217 MSG: geometry_msgs/Point\n\ 01218 # This contains the position of a point in free space\n\ 01219 float64 x\n\ 01220 float64 y\n\ 01221 float64 z\n\ 01222 \n\ 01223 ================================================================================\n\ 01224 MSG: geometry_msgs/Quaternion\n\ 01225 # This represents an orientation in free space in quaternion form.\n\ 01226 \n\ 01227 float64 x\n\ 01228 float64 y\n\ 01229 float64 z\n\ 01230 float64 w\n\ 01231 \n\ 01232 ================================================================================\n\ 01233 MSG: sensor_msgs/PointCloud\n\ 01234 # This message holds a collection of 3d points, plus optional additional\n\ 01235 # information about each point.\n\ 01236 \n\ 01237 # Time of sensor data acquisition, coordinate frame ID.\n\ 01238 Header header\n\ 01239 \n\ 01240 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01241 # in the frame given in the header.\n\ 01242 geometry_msgs/Point32[] points\n\ 01243 \n\ 01244 # Each channel should have the same number of elements as points array,\n\ 01245 # and the data in each channel should correspond 1:1 with each point.\n\ 01246 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01247 ChannelFloat32[] channels\n\ 01248 \n\ 01249 ================================================================================\n\ 01250 MSG: geometry_msgs/Point32\n\ 01251 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01252 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01253 # \n\ 01254 # This recommendation is to promote interoperability. \n\ 01255 #\n\ 01256 # This message is designed to take up less space when sending\n\ 01257 # lots of points at once, as in the case of a PointCloud. \n\ 01258 \n\ 01259 float32 x\n\ 01260 float32 y\n\ 01261 float32 z\n\ 01262 ================================================================================\n\ 01263 MSG: sensor_msgs/ChannelFloat32\n\ 01264 # This message is used by the PointCloud message to hold optional data\n\ 01265 # associated with each point in the cloud. The length of the values\n\ 01266 # array should be the same as the length of the points array in the\n\ 01267 # PointCloud, and each value should be associated with the corresponding\n\ 01268 # point.\n\ 01269 \n\ 01270 # Channel names in existing practice include:\n\ 01271 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01272 # This is opposite to usual conventions but remains for\n\ 01273 # historical reasons. The newer PointCloud2 message has no\n\ 01274 # such problem.\n\ 01275 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01276 # (R,G,B) values packed into the least significant 24 bits,\n\ 01277 # in order.\n\ 01278 # \"intensity\" - laser or pixel intensity.\n\ 01279 # \"distance\"\n\ 01280 \n\ 01281 # The channel name should give semantics of the channel (e.g.\n\ 01282 # \"intensity\" instead of \"value\").\n\ 01283 string name\n\ 01284 \n\ 01285 # The values array should be 1-1 with the elements of the associated\n\ 01286 # PointCloud.\n\ 01287 float32[] values\n\ 01288 \n\ 01289 ================================================================================\n\ 01290 MSG: object_manipulation_msgs/SceneRegion\n\ 01291 # Point cloud\n\ 01292 sensor_msgs/PointCloud2 cloud\n\ 01293 \n\ 01294 # Indices for the region of interest\n\ 01295 int32[] mask\n\ 01296 \n\ 01297 # One of the corresponding 2D images, if applicable\n\ 01298 sensor_msgs/Image image\n\ 01299 \n\ 01300 # The disparity image, if applicable\n\ 01301 sensor_msgs/Image disparity_image\n\ 01302 \n\ 01303 # Camera info for the camera that took the image\n\ 01304 sensor_msgs/CameraInfo cam_info\n\ 01305 \n\ 01306 # a 3D region of interest for grasp planning\n\ 01307 geometry_msgs/PoseStamped roi_box_pose\n\ 01308 geometry_msgs/Vector3 roi_box_dims\n\ 01309 \n\ 01310 ================================================================================\n\ 01311 MSG: sensor_msgs/PointCloud2\n\ 01312 # This message holds a collection of N-dimensional points, which may\n\ 01313 # contain additional information such as normals, intensity, etc. The\n\ 01314 # point data is stored as a binary blob, its layout described by the\n\ 01315 # contents of the \"fields\" array.\n\ 01316 \n\ 01317 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01318 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01319 # camera depth sensors such as stereo or time-of-flight.\n\ 01320 \n\ 01321 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01322 # points).\n\ 01323 Header header\n\ 01324 \n\ 01325 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01326 # 1 and width is the length of the point cloud.\n\ 01327 uint32 height\n\ 01328 uint32 width\n\ 01329 \n\ 01330 # Describes the channels and their layout in the binary data blob.\n\ 01331 PointField[] fields\n\ 01332 \n\ 01333 bool is_bigendian # Is this data bigendian?\n\ 01334 uint32 point_step # Length of a point in bytes\n\ 01335 uint32 row_step # Length of a row in bytes\n\ 01336 uint8[] data # Actual point data, size is (row_step*height)\n\ 01337 \n\ 01338 bool is_dense # True if there are no invalid points\n\ 01339 \n\ 01340 ================================================================================\n\ 01341 MSG: sensor_msgs/PointField\n\ 01342 # This message holds the description of one point entry in the\n\ 01343 # PointCloud2 message format.\n\ 01344 uint8 INT8 = 1\n\ 01345 uint8 UINT8 = 2\n\ 01346 uint8 INT16 = 3\n\ 01347 uint8 UINT16 = 4\n\ 01348 uint8 INT32 = 5\n\ 01349 uint8 UINT32 = 6\n\ 01350 uint8 FLOAT32 = 7\n\ 01351 uint8 FLOAT64 = 8\n\ 01352 \n\ 01353 string name # Name of field\n\ 01354 uint32 offset # Offset from start of point struct\n\ 01355 uint8 datatype # Datatype enumeration, see above\n\ 01356 uint32 count # How many elements in the field\n\ 01357 \n\ 01358 ================================================================================\n\ 01359 MSG: sensor_msgs/Image\n\ 01360 # This message contains an uncompressed image\n\ 01361 # (0, 0) is at top-left corner of image\n\ 01362 #\n\ 01363 \n\ 01364 Header header # Header timestamp should be acquisition time of image\n\ 01365 # Header frame_id should be optical frame of camera\n\ 01366 # origin of frame should be optical center of cameara\n\ 01367 # +x should point to the right in the image\n\ 01368 # +y should point down in the image\n\ 01369 # +z should point into to plane of the image\n\ 01370 # If the frame_id here and the frame_id of the CameraInfo\n\ 01371 # message associated with the image conflict\n\ 01372 # the behavior is undefined\n\ 01373 \n\ 01374 uint32 height # image height, that is, number of rows\n\ 01375 uint32 width # image width, that is, number of columns\n\ 01376 \n\ 01377 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01378 # If you want to standardize a new string format, join\n\ 01379 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01380 \n\ 01381 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01382 # taken from the list of strings in src/image_encodings.cpp\n\ 01383 \n\ 01384 uint8 is_bigendian # is this data bigendian?\n\ 01385 uint32 step # Full row length in bytes\n\ 01386 uint8[] data # actual matrix data, size is (step * rows)\n\ 01387 \n\ 01388 ================================================================================\n\ 01389 MSG: sensor_msgs/CameraInfo\n\ 01390 # This message defines meta information for a camera. It should be in a\n\ 01391 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01392 # image topics named:\n\ 01393 #\n\ 01394 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01395 # image - monochrome, distorted\n\ 01396 # image_color - color, distorted\n\ 01397 # image_rect - monochrome, rectified\n\ 01398 # image_rect_color - color, rectified\n\ 01399 #\n\ 01400 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01401 # for producing the four processed image topics from image_raw and\n\ 01402 # camera_info. The meaning of the camera parameters are described in\n\ 01403 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01404 #\n\ 01405 # The image_geometry package provides a user-friendly interface to\n\ 01406 # common operations using this meta information. If you want to, e.g.,\n\ 01407 # project a 3d point into image coordinates, we strongly recommend\n\ 01408 # using image_geometry.\n\ 01409 #\n\ 01410 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01411 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01412 # indicates an uncalibrated camera.\n\ 01413 \n\ 01414 #######################################################################\n\ 01415 # Image acquisition info #\n\ 01416 #######################################################################\n\ 01417 \n\ 01418 # Time of image acquisition, camera coordinate frame ID\n\ 01419 Header header # Header timestamp should be acquisition time of image\n\ 01420 # Header frame_id should be optical frame of camera\n\ 01421 # origin of frame should be optical center of camera\n\ 01422 # +x should point to the right in the image\n\ 01423 # +y should point down in the image\n\ 01424 # +z should point into the plane of the image\n\ 01425 \n\ 01426 \n\ 01427 #######################################################################\n\ 01428 # Calibration Parameters #\n\ 01429 #######################################################################\n\ 01430 # These are fixed during camera calibration. Their values will be the #\n\ 01431 # same in all messages until the camera is recalibrated. Note that #\n\ 01432 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01433 # #\n\ 01434 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01435 # to: #\n\ 01436 # 1. An undistorted image (requires D and K) #\n\ 01437 # 2. A rectified image (requires D, K, R) #\n\ 01438 # The projection matrix P projects 3D points into the rectified image.#\n\ 01439 #######################################################################\n\ 01440 \n\ 01441 # The image dimensions with which the camera was calibrated. Normally\n\ 01442 # this will be the full camera resolution in pixels.\n\ 01443 uint32 height\n\ 01444 uint32 width\n\ 01445 \n\ 01446 # The distortion model used. Supported models are listed in\n\ 01447 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01448 # simple model of radial and tangential distortion - is sufficent.\n\ 01449 string distortion_model\n\ 01450 \n\ 01451 # The distortion parameters, size depending on the distortion model.\n\ 01452 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01453 float64[] D\n\ 01454 \n\ 01455 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01456 # [fx 0 cx]\n\ 01457 # K = [ 0 fy cy]\n\ 01458 # [ 0 0 1]\n\ 01459 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01460 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01461 # (cx, cy).\n\ 01462 float64[9] K # 3x3 row-major matrix\n\ 01463 \n\ 01464 # Rectification matrix (stereo cameras only)\n\ 01465 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01466 # stereo image plane so that epipolar lines in both stereo images are\n\ 01467 # parallel.\n\ 01468 float64[9] R # 3x3 row-major matrix\n\ 01469 \n\ 01470 # Projection/camera matrix\n\ 01471 # [fx' 0 cx' Tx]\n\ 01472 # P = [ 0 fy' cy' Ty]\n\ 01473 # [ 0 0 1 0]\n\ 01474 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01475 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01476 # is the normal camera intrinsic matrix for the rectified image.\n\ 01477 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01478 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01479 # (cx', cy') - these may differ from the values in K.\n\ 01480 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01481 # also have R = the identity and P[1:3,1:3] = K.\n\ 01482 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01483 # position of the optical center of the second camera in the first\n\ 01484 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01485 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01486 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01487 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01488 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01489 # the rectified image is given by:\n\ 01490 # [u v w]' = P * [X Y Z 1]'\n\ 01491 # x = u / w\n\ 01492 # y = v / w\n\ 01493 # This holds for both images of a stereo pair.\n\ 01494 float64[12] P # 3x4 row-major matrix\n\ 01495 \n\ 01496 \n\ 01497 #######################################################################\n\ 01498 # Operational Parameters #\n\ 01499 #######################################################################\n\ 01500 # These define the image region actually captured by the camera #\n\ 01501 # driver. Although they affect the geometry of the output image, they #\n\ 01502 # may be changed freely without recalibrating the camera. #\n\ 01503 #######################################################################\n\ 01504 \n\ 01505 # Binning refers here to any camera setting which combines rectangular\n\ 01506 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01507 # resolution of the output image to\n\ 01508 # (width / binning_x) x (height / binning_y).\n\ 01509 # The default values binning_x = binning_y = 0 is considered the same\n\ 01510 # as binning_x = binning_y = 1 (no subsampling).\n\ 01511 uint32 binning_x\n\ 01512 uint32 binning_y\n\ 01513 \n\ 01514 # Region of interest (subwindow of full camera resolution), given in\n\ 01515 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01516 # always denotes the same window of pixels on the camera sensor,\n\ 01517 # regardless of binning settings.\n\ 01518 # The default setting of roi (all values 0) is considered the same as\n\ 01519 # full resolution (roi.width = width, roi.height = height).\n\ 01520 RegionOfInterest roi\n\ 01521 \n\ 01522 ================================================================================\n\ 01523 MSG: sensor_msgs/RegionOfInterest\n\ 01524 # This message is used to specify a region of interest within an image.\n\ 01525 #\n\ 01526 # When used to specify the ROI setting of the camera when the image was\n\ 01527 # taken, the height and width fields should either match the height and\n\ 01528 # width fields for the associated image; or height = width = 0\n\ 01529 # indicates that the full resolution image was captured.\n\ 01530 \n\ 01531 uint32 x_offset # Leftmost pixel of the ROI\n\ 01532 # (0 if the ROI includes the left edge of the image)\n\ 01533 uint32 y_offset # Topmost pixel of the ROI\n\ 01534 # (0 if the ROI includes the top edge of the image)\n\ 01535 uint32 height # Height of ROI\n\ 01536 uint32 width # Width of ROI\n\ 01537 \n\ 01538 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01539 # ROI in this message. Typically this should be False if the full image\n\ 01540 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01541 # used).\n\ 01542 bool do_rectify\n\ 01543 \n\ 01544 ================================================================================\n\ 01545 MSG: geometry_msgs/Vector3\n\ 01546 # This represents a vector in free space. \n\ 01547 \n\ 01548 float64 x\n\ 01549 float64 y\n\ 01550 float64 z\n\ 01551 ================================================================================\n\ 01552 MSG: object_manipulation_msgs/Grasp\n\ 01553 \n\ 01554 # The internal posture of the hand for the pre-grasp\n\ 01555 # only positions are used\n\ 01556 sensor_msgs/JointState pre_grasp_posture\n\ 01557 \n\ 01558 # The internal posture of the hand for the grasp\n\ 01559 # positions and efforts are used\n\ 01560 sensor_msgs/JointState grasp_posture\n\ 01561 \n\ 01562 # The position of the end-effector for the grasp relative to a reference frame \n\ 01563 # (that is always specified elsewhere, not in this message)\n\ 01564 geometry_msgs/Pose grasp_pose\n\ 01565 \n\ 01566 # The estimated probability of success for this grasp\n\ 01567 float64 success_probability\n\ 01568 \n\ 01569 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01570 bool cluster_rep\n\ 01571 \n\ 01572 # how far the pre-grasp should ideally be away from the grasp\n\ 01573 float32 desired_approach_distance\n\ 01574 \n\ 01575 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01576 # for the grasp not to be rejected\n\ 01577 float32 min_approach_distance\n\ 01578 \n\ 01579 # an optional list of obstacles that we have semantic information about\n\ 01580 # and that we expect might move in the course of executing this grasp\n\ 01581 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01582 # execution, grasp executors will not check for collisions against these objects\n\ 01583 GraspableObject[] moved_obstacles\n\ 01584 \n\ 01585 ================================================================================\n\ 01586 MSG: sensor_msgs/JointState\n\ 01587 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01588 #\n\ 01589 # The state of each joint (revolute or prismatic) is defined by:\n\ 01590 # * the position of the joint (rad or m),\n\ 01591 # * the velocity of the joint (rad/s or m/s) and \n\ 01592 # * the effort that is applied in the joint (Nm or N).\n\ 01593 #\n\ 01594 # Each joint is uniquely identified by its name\n\ 01595 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01596 # in one message have to be recorded at the same time.\n\ 01597 #\n\ 01598 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01599 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01600 # effort associated with them, you can leave the effort array empty. \n\ 01601 #\n\ 01602 # All arrays in this message should have the same size, or be empty.\n\ 01603 # This is the only way to uniquely associate the joint name with the correct\n\ 01604 # states.\n\ 01605 \n\ 01606 \n\ 01607 Header header\n\ 01608 \n\ 01609 string[] name\n\ 01610 float64[] position\n\ 01611 float64[] velocity\n\ 01612 float64[] effort\n\ 01613 \n\ 01614 ================================================================================\n\ 01615 MSG: object_manipulation_msgs/GripperTranslation\n\ 01616 # defines a translation for the gripper, used in pickup or place tasks\n\ 01617 # for example for lifting an object off a table or approaching the table for placing\n\ 01618 \n\ 01619 # the direction of the translation\n\ 01620 geometry_msgs/Vector3Stamped direction\n\ 01621 \n\ 01622 # the desired translation distance\n\ 01623 float32 desired_distance\n\ 01624 \n\ 01625 # the min distance that must be considered feasible before the\n\ 01626 # grasp is even attempted\n\ 01627 float32 min_distance\n\ 01628 ================================================================================\n\ 01629 MSG: geometry_msgs/Vector3Stamped\n\ 01630 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01631 Header header\n\ 01632 Vector3 vector\n\ 01633 \n\ 01634 ================================================================================\n\ 01635 MSG: arm_navigation_msgs/Constraints\n\ 01636 # This message contains a list of motion planning constraints.\n\ 01637 \n\ 01638 arm_navigation_msgs/JointConstraint[] joint_constraints\n\ 01639 arm_navigation_msgs/PositionConstraint[] position_constraints\n\ 01640 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\ 01641 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\ 01642 \n\ 01643 ================================================================================\n\ 01644 MSG: arm_navigation_msgs/JointConstraint\n\ 01645 # Constrain the position of a joint to be within a certain bound\n\ 01646 string joint_name\n\ 01647 \n\ 01648 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\ 01649 float64 position\n\ 01650 float64 tolerance_above\n\ 01651 float64 tolerance_below\n\ 01652 \n\ 01653 # A weighting factor for this constraint\n\ 01654 float64 weight\n\ 01655 ================================================================================\n\ 01656 MSG: arm_navigation_msgs/PositionConstraint\n\ 01657 # This message contains the definition of a position constraint.\n\ 01658 Header header\n\ 01659 \n\ 01660 # The robot link this constraint refers to\n\ 01661 string link_name\n\ 01662 \n\ 01663 # The offset (in the link frame) for the target point on the link we are planning for\n\ 01664 geometry_msgs/Point target_point_offset\n\ 01665 \n\ 01666 # The nominal/target position for the point we are planning for\n\ 01667 geometry_msgs/Point position\n\ 01668 \n\ 01669 # The shape of the bounded region that constrains the position of the end-effector\n\ 01670 # This region is always centered at the position defined above\n\ 01671 arm_navigation_msgs/Shape constraint_region_shape\n\ 01672 \n\ 01673 # The orientation of the bounded region that constrains the position of the end-effector. \n\ 01674 # This allows the specification of non-axis aligned constraints\n\ 01675 geometry_msgs/Quaternion constraint_region_orientation\n\ 01676 \n\ 01677 # Constraint weighting factor - a weight for this constraint\n\ 01678 float64 weight\n\ 01679 \n\ 01680 ================================================================================\n\ 01681 MSG: arm_navigation_msgs/Shape\n\ 01682 byte SPHERE=0\n\ 01683 byte BOX=1\n\ 01684 byte CYLINDER=2\n\ 01685 byte MESH=3\n\ 01686 \n\ 01687 byte type\n\ 01688 \n\ 01689 \n\ 01690 #### define sphere, box, cylinder ####\n\ 01691 # the origin of each shape is considered at the shape's center\n\ 01692 \n\ 01693 # for sphere\n\ 01694 # radius := dimensions[0]\n\ 01695 \n\ 01696 # for cylinder\n\ 01697 # radius := dimensions[0]\n\ 01698 # length := dimensions[1]\n\ 01699 # the length is along the Z axis\n\ 01700 \n\ 01701 # for box\n\ 01702 # size_x := dimensions[0]\n\ 01703 # size_y := dimensions[1]\n\ 01704 # size_z := dimensions[2]\n\ 01705 float64[] dimensions\n\ 01706 \n\ 01707 \n\ 01708 #### define mesh ####\n\ 01709 \n\ 01710 # list of triangles; triangle k is defined by tre vertices located\n\ 01711 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01712 int32[] triangles\n\ 01713 geometry_msgs/Point[] vertices\n\ 01714 \n\ 01715 ================================================================================\n\ 01716 MSG: arm_navigation_msgs/OrientationConstraint\n\ 01717 # This message contains the definition of an orientation constraint.\n\ 01718 Header header\n\ 01719 \n\ 01720 # The robot link this constraint refers to\n\ 01721 string link_name\n\ 01722 \n\ 01723 # The type of the constraint\n\ 01724 int32 type\n\ 01725 int32 LINK_FRAME=0\n\ 01726 int32 HEADER_FRAME=1\n\ 01727 \n\ 01728 # The desired orientation of the robot link specified as a quaternion\n\ 01729 geometry_msgs/Quaternion orientation\n\ 01730 \n\ 01731 # optional RPY error tolerances specified if \n\ 01732 float64 absolute_roll_tolerance\n\ 01733 float64 absolute_pitch_tolerance\n\ 01734 float64 absolute_yaw_tolerance\n\ 01735 \n\ 01736 # Constraint weighting factor - a weight for this constraint\n\ 01737 float64 weight\n\ 01738 \n\ 01739 ================================================================================\n\ 01740 MSG: arm_navigation_msgs/VisibilityConstraint\n\ 01741 # This message contains the definition of a visibility constraint.\n\ 01742 Header header\n\ 01743 \n\ 01744 # The point stamped target that needs to be kept within view of the sensor\n\ 01745 geometry_msgs/PointStamped target\n\ 01746 \n\ 01747 # The local pose of the frame in which visibility is to be maintained\n\ 01748 # The frame id should represent the robot link to which the sensor is attached\n\ 01749 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\ 01750 geometry_msgs/PoseStamped sensor_pose\n\ 01751 \n\ 01752 # The deviation (in radians) that will be tolerated\n\ 01753 # Constraint error will be measured as the solid angle between the \n\ 01754 # X axis of the frame defined above and the vector between the origin \n\ 01755 # of the frame defined above and the target location\n\ 01756 float64 absolute_tolerance\n\ 01757 \n\ 01758 \n\ 01759 ================================================================================\n\ 01760 MSG: geometry_msgs/PointStamped\n\ 01761 # This represents a Point with reference coordinate frame and timestamp\n\ 01762 Header header\n\ 01763 Point point\n\ 01764 \n\ 01765 ================================================================================\n\ 01766 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\ 01767 # A set of collision operations that will be performed in the order they are specified\n\ 01768 CollisionOperation[] collision_operations\n\ 01769 ================================================================================\n\ 01770 MSG: arm_navigation_msgs/CollisionOperation\n\ 01771 # A definition of a collision operation\n\ 01772 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\ 01773 # between the gripper and all objects in the collision space\n\ 01774 \n\ 01775 string object1\n\ 01776 string object2\n\ 01777 string COLLISION_SET_ALL=\"all\"\n\ 01778 string COLLISION_SET_OBJECTS=\"objects\"\n\ 01779 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\ 01780 \n\ 01781 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\ 01782 float64 penetration_distance\n\ 01783 \n\ 01784 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\ 01785 int32 operation\n\ 01786 int32 DISABLE=0\n\ 01787 int32 ENABLE=1\n\ 01788 \n\ 01789 ================================================================================\n\ 01790 MSG: arm_navigation_msgs/LinkPadding\n\ 01791 #name for the link\n\ 01792 string link_name\n\ 01793 \n\ 01794 # padding to apply to the link\n\ 01795 float64 padding\n\ 01796 \n\ 01797 ================================================================================\n\ 01798 MSG: object_manipulation_msgs/PickupActionResult\n\ 01799 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01800 \n\ 01801 Header header\n\ 01802 actionlib_msgs/GoalStatus status\n\ 01803 PickupResult result\n\ 01804 \n\ 01805 ================================================================================\n\ 01806 MSG: actionlib_msgs/GoalStatus\n\ 01807 GoalID goal_id\n\ 01808 uint8 status\n\ 01809 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01810 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01811 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01812 # and has since completed its execution (Terminal State)\n\ 01813 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01814 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01815 # to some failure (Terminal State)\n\ 01816 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01817 # because the goal was unattainable or invalid (Terminal State)\n\ 01818 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01819 # and has not yet completed execution\n\ 01820 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01821 # but the action server has not yet confirmed that the goal is canceled\n\ 01822 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01823 # and was successfully cancelled (Terminal State)\n\ 01824 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01825 # sent over the wire by an action server\n\ 01826 \n\ 01827 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01828 string text\n\ 01829 \n\ 01830 \n\ 01831 ================================================================================\n\ 01832 MSG: object_manipulation_msgs/PickupResult\n\ 01833 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01834 \n\ 01835 # The overall result of the pickup attempt\n\ 01836 ManipulationResult manipulation_result\n\ 01837 \n\ 01838 # The performed grasp, if attempt was successful\n\ 01839 Grasp grasp\n\ 01840 \n\ 01841 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 01842 # the successful one should be the last one in this list\n\ 01843 Grasp[] attempted_grasps\n\ 01844 \n\ 01845 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 01846 GraspResult[] attempted_grasp_results\n\ 01847 \n\ 01848 \n\ 01849 ================================================================================\n\ 01850 MSG: object_manipulation_msgs/ManipulationResult\n\ 01851 # Result codes for manipulation tasks\n\ 01852 \n\ 01853 # task completed as expected\n\ 01854 # generally means you can proceed as planned\n\ 01855 int32 SUCCESS = 1\n\ 01856 \n\ 01857 # task not possible (e.g. out of reach or obstacles in the way)\n\ 01858 # generally means that the world was not disturbed, so you can try another task\n\ 01859 int32 UNFEASIBLE = -1\n\ 01860 \n\ 01861 # task was thought possible, but failed due to unexpected events during execution\n\ 01862 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 01863 # your sensed world model before proceeding to another task\n\ 01864 int32 FAILED = -2\n\ 01865 \n\ 01866 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 01867 # generally requires human attention\n\ 01868 int32 ERROR = -3\n\ 01869 \n\ 01870 # means that at some point during execution we ended up in a state that the collision-aware\n\ 01871 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 01872 # probably need a new collision map to move the arm out of the stuck position\n\ 01873 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 01874 \n\ 01875 # specific to grasp actions\n\ 01876 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 01877 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 01878 int32 LIFT_FAILED = -5\n\ 01879 \n\ 01880 # specific to place actions\n\ 01881 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 01882 # it is likely that the collision environment will see collisions between the hand and the object\n\ 01883 int32 RETREAT_FAILED = -6\n\ 01884 \n\ 01885 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 01886 int32 CANCELLED = -7\n\ 01887 \n\ 01888 # the actual value of this error code\n\ 01889 int32 value\n\ 01890 \n\ 01891 ================================================================================\n\ 01892 MSG: object_manipulation_msgs/GraspResult\n\ 01893 int32 SUCCESS = 1\n\ 01894 int32 GRASP_OUT_OF_REACH = 2\n\ 01895 int32 GRASP_IN_COLLISION = 3\n\ 01896 int32 GRASP_UNFEASIBLE = 4\n\ 01897 int32 PREGRASP_OUT_OF_REACH = 5\n\ 01898 int32 PREGRASP_IN_COLLISION = 6\n\ 01899 int32 PREGRASP_UNFEASIBLE = 7\n\ 01900 int32 LIFT_OUT_OF_REACH = 8\n\ 01901 int32 LIFT_IN_COLLISION = 9\n\ 01902 int32 LIFT_UNFEASIBLE = 10\n\ 01903 int32 MOVE_ARM_FAILED = 11\n\ 01904 int32 GRASP_FAILED = 12\n\ 01905 int32 LIFT_FAILED = 13\n\ 01906 int32 RETREAT_FAILED = 14\n\ 01907 int32 result_code\n\ 01908 \n\ 01909 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 01910 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 01911 # before proceeding\n\ 01912 bool continuation_possible\n\ 01913 \n\ 01914 ================================================================================\n\ 01915 MSG: object_manipulation_msgs/PickupActionFeedback\n\ 01916 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01917 \n\ 01918 Header header\n\ 01919 actionlib_msgs/GoalStatus status\n\ 01920 PickupFeedback feedback\n\ 01921 \n\ 01922 ================================================================================\n\ 01923 MSG: object_manipulation_msgs/PickupFeedback\n\ 01924 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01925 \n\ 01926 # The number of the grasp currently being attempted\n\ 01927 int32 current_grasp\n\ 01928 \n\ 01929 # The total number of grasps that will be attempted\n\ 01930 int32 total_grasps\n\ 01931 \n\ 01932 \n\ 01933 "; 01934 } 01935 01936 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); } 01937 }; 01938 01939 } // namespace message_traits 01940 } // namespace ros 01941 01942 namespace ros 01943 { 01944 namespace serialization 01945 { 01946 01947 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > 01948 { 01949 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01950 { 01951 stream.next(m.action_goal); 01952 stream.next(m.action_result); 01953 stream.next(m.action_feedback); 01954 } 01955 01956 ROS_DECLARE_ALLINONE_SERIALIZER; 01957 }; // struct PickupAction_ 01958 } // namespace serialization 01959 } // namespace ros 01960 01961 namespace ros 01962 { 01963 namespace message_operations 01964 { 01965 01966 template<class ContainerAllocator> 01967 struct Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > 01968 { 01969 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v) 01970 { 01971 s << indent << "action_goal: "; 01972 s << std::endl; 01973 Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01974 s << indent << "action_result: "; 01975 s << std::endl; 01976 Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01977 s << indent << "action_feedback: "; 01978 s << std::endl; 01979 Printer< ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01980 } 01981 }; 01982 01983 01984 } // namespace message_operations 01985 } // namespace ros 01986 01987 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H 01988