00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/PickupActionGoal.h"
00018 #include "object_manipulation_msgs/PickupActionResult.h"
00019 #include "object_manipulation_msgs/PickupActionFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupAction_ {
00025 typedef PickupAction_<ContainerAllocator> Type;
00026
00027 PickupAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 PickupAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "09990218855ede96047d48c436f6201d"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 PickupActionGoal action_goal\n\
00069 PickupActionResult action_result\n\
00070 PickupActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: object_manipulation_msgs/PickupActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 PickupGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: object_manipulation_msgs/PickupGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 # An action for picking up an object\n\
00115 \n\
00116 # which arm to be used for grasping\n\
00117 string arm_name\n\
00118 \n\
00119 # the object to be grasped\n\
00120 GraspableObject target\n\
00121 \n\
00122 # a list of grasps to be used\n\
00123 # if empty, the grasp executive will call one of its own planners\n\
00124 Grasp[] desired_grasps\n\
00125 \n\
00126 # how the object should be lifted after the grasp\n\
00127 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00128 # or the gripper_frame specified in your hand description file\n\
00129 GripperTranslation lift\n\
00130 \n\
00131 # the name that the target object has in the collision map\n\
00132 # can be left empty if no name is available\n\
00133 string collision_object_name\n\
00134 \n\
00135 # the name that the support surface (e.g. table) has in the collision map\n\
00136 # can be left empty if no name is available\n\
00137 string collision_support_surface_name\n\
00138 \n\
00139 # whether collisions between the gripper and the support surface should be acceptable\n\
00140 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
00141 # pre-grasp location are still not allowed even if this is set to true.\n\
00142 bool allow_gripper_support_collision\n\
00143 \n\
00144 # whether reactive grasp execution using tactile sensors should be used\n\
00145 bool use_reactive_execution\n\
00146 \n\
00147 # whether reactive object lifting based on tactile sensors should be used\n\
00148 bool use_reactive_lift\n\
00149 \n\
00150 # set this to true if you only want to query the manipulation pipeline as to what \n\
00151 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
00152 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
00153 # movement will be attempted\n\
00154 bool only_perform_feasibility_test\n\
00155 \n\
00156 # set this to true if you want to ignore all collisions throughout the pickup \n\
00157 # and also move directly to the pre-grasp using Cartesian controllers\n\
00158 bool ignore_collisions\n\
00159 \n\
00160 # OPTIONAL (These will not have to be filled out most of the time)\n\
00161 # constraints to be imposed on every point in the motion of the arm\n\
00162 arm_navigation_msgs/Constraints path_constraints\n\
00163 \n\
00164 # OPTIONAL (These will not have to be filled out most of the time)\n\
00165 # additional collision operations to be used for every arm movement performed\n\
00166 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00167 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00168 # with care and only if special behaviors are desired\n\
00169 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00170 \n\
00171 # OPTIONAL (These will not have to be filled out most of the time)\n\
00172 # additional link paddings to be used for every arm movement performed\n\
00173 # during grasping. Note that these will be added on top of (and thus overide) other \n\
00174 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00175 # with care and only if special behaviors are desired\n\
00176 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00177 \n\
00178 # an optional list of obstacles that we have semantic information about\n\
00179 # and that can be moved in the course of grasping\n\
00180 GraspableObject[] movable_obstacles\n\
00181 \n\
00182 # the maximum contact force to use while grasping (<=0 to disable)\n\
00183 float32 max_contact_force\n\
00184 \n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: object_manipulation_msgs/GraspableObject\n\
00188 # an object that the object_manipulator can work on\n\
00189 \n\
00190 # a graspable object can be represented in multiple ways. This message\n\
00191 # can contain all of them. Which one is actually used is up to the receiver\n\
00192 # of this message. When adding new representations, one must be careful that\n\
00193 # they have reasonable lightweight defaults indicating that that particular\n\
00194 # representation is not available.\n\
00195 \n\
00196 # the tf frame to be used as a reference frame when combining information from\n\
00197 # the different representations below\n\
00198 string reference_frame_id\n\
00199 \n\
00200 # potential recognition results from a database of models\n\
00201 # all poses are relative to the object reference pose\n\
00202 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00203 \n\
00204 # the point cloud itself\n\
00205 sensor_msgs/PointCloud cluster\n\
00206 \n\
00207 # a region of a PointCloud2 of interest\n\
00208 object_manipulation_msgs/SceneRegion region\n\
00209 \n\
00210 # the name that this object has in the collision environment\n\
00211 string collision_name\n\
00212 ================================================================================\n\
00213 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00214 # Informs that a specific model from the Model Database has been \n\
00215 # identified at a certain location\n\
00216 \n\
00217 # the database id of the model\n\
00218 int32 model_id\n\
00219 \n\
00220 # the pose that it can be found in\n\
00221 geometry_msgs/PoseStamped pose\n\
00222 \n\
00223 # a measure of the confidence level in this detection result\n\
00224 float32 confidence\n\
00225 \n\
00226 # the name of the object detector that generated this detection result\n\
00227 string detector_name\n\
00228 \n\
00229 ================================================================================\n\
00230 MSG: geometry_msgs/PoseStamped\n\
00231 # A Pose with reference coordinate frame and timestamp\n\
00232 Header header\n\
00233 Pose pose\n\
00234 \n\
00235 ================================================================================\n\
00236 MSG: geometry_msgs/Pose\n\
00237 # A representation of pose in free space, composed of postion and orientation. \n\
00238 Point position\n\
00239 Quaternion orientation\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: geometry_msgs/Point\n\
00243 # This contains the position of a point in free space\n\
00244 float64 x\n\
00245 float64 y\n\
00246 float64 z\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: geometry_msgs/Quaternion\n\
00250 # This represents an orientation in free space in quaternion form.\n\
00251 \n\
00252 float64 x\n\
00253 float64 y\n\
00254 float64 z\n\
00255 float64 w\n\
00256 \n\
00257 ================================================================================\n\
00258 MSG: sensor_msgs/PointCloud\n\
00259 # This message holds a collection of 3d points, plus optional additional\n\
00260 # information about each point.\n\
00261 \n\
00262 # Time of sensor data acquisition, coordinate frame ID.\n\
00263 Header header\n\
00264 \n\
00265 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00266 # in the frame given in the header.\n\
00267 geometry_msgs/Point32[] points\n\
00268 \n\
00269 # Each channel should have the same number of elements as points array,\n\
00270 # and the data in each channel should correspond 1:1 with each point.\n\
00271 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00272 ChannelFloat32[] channels\n\
00273 \n\
00274 ================================================================================\n\
00275 MSG: geometry_msgs/Point32\n\
00276 # This contains the position of a point in free space(with 32 bits of precision).\n\
00277 # It is recommeded to use Point wherever possible instead of Point32. \n\
00278 # \n\
00279 # This recommendation is to promote interoperability. \n\
00280 #\n\
00281 # This message is designed to take up less space when sending\n\
00282 # lots of points at once, as in the case of a PointCloud. \n\
00283 \n\
00284 float32 x\n\
00285 float32 y\n\
00286 float32 z\n\
00287 ================================================================================\n\
00288 MSG: sensor_msgs/ChannelFloat32\n\
00289 # This message is used by the PointCloud message to hold optional data\n\
00290 # associated with each point in the cloud. The length of the values\n\
00291 # array should be the same as the length of the points array in the\n\
00292 # PointCloud, and each value should be associated with the corresponding\n\
00293 # point.\n\
00294 \n\
00295 # Channel names in existing practice include:\n\
00296 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00297 # This is opposite to usual conventions but remains for\n\
00298 # historical reasons. The newer PointCloud2 message has no\n\
00299 # such problem.\n\
00300 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00301 # (R,G,B) values packed into the least significant 24 bits,\n\
00302 # in order.\n\
00303 # \"intensity\" - laser or pixel intensity.\n\
00304 # \"distance\"\n\
00305 \n\
00306 # The channel name should give semantics of the channel (e.g.\n\
00307 # \"intensity\" instead of \"value\").\n\
00308 string name\n\
00309 \n\
00310 # The values array should be 1-1 with the elements of the associated\n\
00311 # PointCloud.\n\
00312 float32[] values\n\
00313 \n\
00314 ================================================================================\n\
00315 MSG: object_manipulation_msgs/SceneRegion\n\
00316 # Point cloud\n\
00317 sensor_msgs/PointCloud2 cloud\n\
00318 \n\
00319 # Indices for the region of interest\n\
00320 int32[] mask\n\
00321 \n\
00322 # One of the corresponding 2D images, if applicable\n\
00323 sensor_msgs/Image image\n\
00324 \n\
00325 # The disparity image, if applicable\n\
00326 sensor_msgs/Image disparity_image\n\
00327 \n\
00328 # Camera info for the camera that took the image\n\
00329 sensor_msgs/CameraInfo cam_info\n\
00330 \n\
00331 # a 3D region of interest for grasp planning\n\
00332 geometry_msgs/PoseStamped roi_box_pose\n\
00333 geometry_msgs/Vector3 roi_box_dims\n\
00334 \n\
00335 ================================================================================\n\
00336 MSG: sensor_msgs/PointCloud2\n\
00337 # This message holds a collection of N-dimensional points, which may\n\
00338 # contain additional information such as normals, intensity, etc. The\n\
00339 # point data is stored as a binary blob, its layout described by the\n\
00340 # contents of the \"fields\" array.\n\
00341 \n\
00342 # The point cloud data may be organized 2d (image-like) or 1d\n\
00343 # (unordered). Point clouds organized as 2d images may be produced by\n\
00344 # camera depth sensors such as stereo or time-of-flight.\n\
00345 \n\
00346 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00347 # points).\n\
00348 Header header\n\
00349 \n\
00350 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00351 # 1 and width is the length of the point cloud.\n\
00352 uint32 height\n\
00353 uint32 width\n\
00354 \n\
00355 # Describes the channels and their layout in the binary data blob.\n\
00356 PointField[] fields\n\
00357 \n\
00358 bool is_bigendian # Is this data bigendian?\n\
00359 uint32 point_step # Length of a point in bytes\n\
00360 uint32 row_step # Length of a row in bytes\n\
00361 uint8[] data # Actual point data, size is (row_step*height)\n\
00362 \n\
00363 bool is_dense # True if there are no invalid points\n\
00364 \n\
00365 ================================================================================\n\
00366 MSG: sensor_msgs/PointField\n\
00367 # This message holds the description of one point entry in the\n\
00368 # PointCloud2 message format.\n\
00369 uint8 INT8 = 1\n\
00370 uint8 UINT8 = 2\n\
00371 uint8 INT16 = 3\n\
00372 uint8 UINT16 = 4\n\
00373 uint8 INT32 = 5\n\
00374 uint8 UINT32 = 6\n\
00375 uint8 FLOAT32 = 7\n\
00376 uint8 FLOAT64 = 8\n\
00377 \n\
00378 string name # Name of field\n\
00379 uint32 offset # Offset from start of point struct\n\
00380 uint8 datatype # Datatype enumeration, see above\n\
00381 uint32 count # How many elements in the field\n\
00382 \n\
00383 ================================================================================\n\
00384 MSG: sensor_msgs/Image\n\
00385 # This message contains an uncompressed image\n\
00386 # (0, 0) is at top-left corner of image\n\
00387 #\n\
00388 \n\
00389 Header header # Header timestamp should be acquisition time of image\n\
00390 # Header frame_id should be optical frame of camera\n\
00391 # origin of frame should be optical center of cameara\n\
00392 # +x should point to the right in the image\n\
00393 # +y should point down in the image\n\
00394 # +z should point into to plane of the image\n\
00395 # If the frame_id here and the frame_id of the CameraInfo\n\
00396 # message associated with the image conflict\n\
00397 # the behavior is undefined\n\
00398 \n\
00399 uint32 height # image height, that is, number of rows\n\
00400 uint32 width # image width, that is, number of columns\n\
00401 \n\
00402 # The legal values for encoding are in file src/image_encodings.cpp\n\
00403 # If you want to standardize a new string format, join\n\
00404 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00405 \n\
00406 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00407 # taken from the list of strings in src/image_encodings.cpp\n\
00408 \n\
00409 uint8 is_bigendian # is this data bigendian?\n\
00410 uint32 step # Full row length in bytes\n\
00411 uint8[] data # actual matrix data, size is (step * rows)\n\
00412 \n\
00413 ================================================================================\n\
00414 MSG: sensor_msgs/CameraInfo\n\
00415 # This message defines meta information for a camera. It should be in a\n\
00416 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00417 # image topics named:\n\
00418 #\n\
00419 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00420 # image - monochrome, distorted\n\
00421 # image_color - color, distorted\n\
00422 # image_rect - monochrome, rectified\n\
00423 # image_rect_color - color, rectified\n\
00424 #\n\
00425 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00426 # for producing the four processed image topics from image_raw and\n\
00427 # camera_info. The meaning of the camera parameters are described in\n\
00428 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00429 #\n\
00430 # The image_geometry package provides a user-friendly interface to\n\
00431 # common operations using this meta information. If you want to, e.g.,\n\
00432 # project a 3d point into image coordinates, we strongly recommend\n\
00433 # using image_geometry.\n\
00434 #\n\
00435 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00436 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00437 # indicates an uncalibrated camera.\n\
00438 \n\
00439 #######################################################################\n\
00440 # Image acquisition info #\n\
00441 #######################################################################\n\
00442 \n\
00443 # Time of image acquisition, camera coordinate frame ID\n\
00444 Header header # Header timestamp should be acquisition time of image\n\
00445 # Header frame_id should be optical frame of camera\n\
00446 # origin of frame should be optical center of camera\n\
00447 # +x should point to the right in the image\n\
00448 # +y should point down in the image\n\
00449 # +z should point into the plane of the image\n\
00450 \n\
00451 \n\
00452 #######################################################################\n\
00453 # Calibration Parameters #\n\
00454 #######################################################################\n\
00455 # These are fixed during camera calibration. Their values will be the #\n\
00456 # same in all messages until the camera is recalibrated. Note that #\n\
00457 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00458 # #\n\
00459 # The internal parameters can be used to warp a raw (distorted) image #\n\
00460 # to: #\n\
00461 # 1. An undistorted image (requires D and K) #\n\
00462 # 2. A rectified image (requires D, K, R) #\n\
00463 # The projection matrix P projects 3D points into the rectified image.#\n\
00464 #######################################################################\n\
00465 \n\
00466 # The image dimensions with which the camera was calibrated. Normally\n\
00467 # this will be the full camera resolution in pixels.\n\
00468 uint32 height\n\
00469 uint32 width\n\
00470 \n\
00471 # The distortion model used. Supported models are listed in\n\
00472 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00473 # simple model of radial and tangential distortion - is sufficent.\n\
00474 string distortion_model\n\
00475 \n\
00476 # The distortion parameters, size depending on the distortion model.\n\
00477 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00478 float64[] D\n\
00479 \n\
00480 # Intrinsic camera matrix for the raw (distorted) images.\n\
00481 # [fx 0 cx]\n\
00482 # K = [ 0 fy cy]\n\
00483 # [ 0 0 1]\n\
00484 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00485 # coordinates using the focal lengths (fx, fy) and principal point\n\
00486 # (cx, cy).\n\
00487 float64[9] K # 3x3 row-major matrix\n\
00488 \n\
00489 # Rectification matrix (stereo cameras only)\n\
00490 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00491 # stereo image plane so that epipolar lines in both stereo images are\n\
00492 # parallel.\n\
00493 float64[9] R # 3x3 row-major matrix\n\
00494 \n\
00495 # Projection/camera matrix\n\
00496 # [fx' 0 cx' Tx]\n\
00497 # P = [ 0 fy' cy' Ty]\n\
00498 # [ 0 0 1 0]\n\
00499 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00500 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00501 # is the normal camera intrinsic matrix for the rectified image.\n\
00502 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00503 # coordinates using the focal lengths (fx', fy') and principal point\n\
00504 # (cx', cy') - these may differ from the values in K.\n\
00505 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00506 # also have R = the identity and P[1:3,1:3] = K.\n\
00507 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00508 # position of the optical center of the second camera in the first\n\
00509 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00510 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00511 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00512 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00513 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00514 # the rectified image is given by:\n\
00515 # [u v w]' = P * [X Y Z 1]'\n\
00516 # x = u / w\n\
00517 # y = v / w\n\
00518 # This holds for both images of a stereo pair.\n\
00519 float64[12] P # 3x4 row-major matrix\n\
00520 \n\
00521 \n\
00522 #######################################################################\n\
00523 # Operational Parameters #\n\
00524 #######################################################################\n\
00525 # These define the image region actually captured by the camera #\n\
00526 # driver. Although they affect the geometry of the output image, they #\n\
00527 # may be changed freely without recalibrating the camera. #\n\
00528 #######################################################################\n\
00529 \n\
00530 # Binning refers here to any camera setting which combines rectangular\n\
00531 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00532 # resolution of the output image to\n\
00533 # (width / binning_x) x (height / binning_y).\n\
00534 # The default values binning_x = binning_y = 0 is considered the same\n\
00535 # as binning_x = binning_y = 1 (no subsampling).\n\
00536 uint32 binning_x\n\
00537 uint32 binning_y\n\
00538 \n\
00539 # Region of interest (subwindow of full camera resolution), given in\n\
00540 # full resolution (unbinned) image coordinates. A particular ROI\n\
00541 # always denotes the same window of pixels on the camera sensor,\n\
00542 # regardless of binning settings.\n\
00543 # The default setting of roi (all values 0) is considered the same as\n\
00544 # full resolution (roi.width = width, roi.height = height).\n\
00545 RegionOfInterest roi\n\
00546 \n\
00547 ================================================================================\n\
00548 MSG: sensor_msgs/RegionOfInterest\n\
00549 # This message is used to specify a region of interest within an image.\n\
00550 #\n\
00551 # When used to specify the ROI setting of the camera when the image was\n\
00552 # taken, the height and width fields should either match the height and\n\
00553 # width fields for the associated image; or height = width = 0\n\
00554 # indicates that the full resolution image was captured.\n\
00555 \n\
00556 uint32 x_offset # Leftmost pixel of the ROI\n\
00557 # (0 if the ROI includes the left edge of the image)\n\
00558 uint32 y_offset # Topmost pixel of the ROI\n\
00559 # (0 if the ROI includes the top edge of the image)\n\
00560 uint32 height # Height of ROI\n\
00561 uint32 width # Width of ROI\n\
00562 \n\
00563 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00564 # ROI in this message. Typically this should be False if the full image\n\
00565 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00566 # used).\n\
00567 bool do_rectify\n\
00568 \n\
00569 ================================================================================\n\
00570 MSG: geometry_msgs/Vector3\n\
00571 # This represents a vector in free space. \n\
00572 \n\
00573 float64 x\n\
00574 float64 y\n\
00575 float64 z\n\
00576 ================================================================================\n\
00577 MSG: object_manipulation_msgs/Grasp\n\
00578 \n\
00579 # The internal posture of the hand for the pre-grasp\n\
00580 # only positions are used\n\
00581 sensor_msgs/JointState pre_grasp_posture\n\
00582 \n\
00583 # The internal posture of the hand for the grasp\n\
00584 # positions and efforts are used\n\
00585 sensor_msgs/JointState grasp_posture\n\
00586 \n\
00587 # The position of the end-effector for the grasp relative to a reference frame \n\
00588 # (that is always specified elsewhere, not in this message)\n\
00589 geometry_msgs/Pose grasp_pose\n\
00590 \n\
00591 # The estimated probability of success for this grasp\n\
00592 float64 success_probability\n\
00593 \n\
00594 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00595 bool cluster_rep\n\
00596 \n\
00597 # how far the pre-grasp should ideally be away from the grasp\n\
00598 float32 desired_approach_distance\n\
00599 \n\
00600 # how much distance between pre-grasp and grasp must actually be feasible \n\
00601 # for the grasp not to be rejected\n\
00602 float32 min_approach_distance\n\
00603 \n\
00604 # an optional list of obstacles that we have semantic information about\n\
00605 # and that we expect might move in the course of executing this grasp\n\
00606 # the grasp planner is expected to make sure they move in an OK way; during\n\
00607 # execution, grasp executors will not check for collisions against these objects\n\
00608 GraspableObject[] moved_obstacles\n\
00609 \n\
00610 ================================================================================\n\
00611 MSG: sensor_msgs/JointState\n\
00612 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00613 #\n\
00614 # The state of each joint (revolute or prismatic) is defined by:\n\
00615 # * the position of the joint (rad or m),\n\
00616 # * the velocity of the joint (rad/s or m/s) and \n\
00617 # * the effort that is applied in the joint (Nm or N).\n\
00618 #\n\
00619 # Each joint is uniquely identified by its name\n\
00620 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00621 # in one message have to be recorded at the same time.\n\
00622 #\n\
00623 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00624 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00625 # effort associated with them, you can leave the effort array empty. \n\
00626 #\n\
00627 # All arrays in this message should have the same size, or be empty.\n\
00628 # This is the only way to uniquely associate the joint name with the correct\n\
00629 # states.\n\
00630 \n\
00631 \n\
00632 Header header\n\
00633 \n\
00634 string[] name\n\
00635 float64[] position\n\
00636 float64[] velocity\n\
00637 float64[] effort\n\
00638 \n\
00639 ================================================================================\n\
00640 MSG: object_manipulation_msgs/GripperTranslation\n\
00641 # defines a translation for the gripper, used in pickup or place tasks\n\
00642 # for example for lifting an object off a table or approaching the table for placing\n\
00643 \n\
00644 # the direction of the translation\n\
00645 geometry_msgs/Vector3Stamped direction\n\
00646 \n\
00647 # the desired translation distance\n\
00648 float32 desired_distance\n\
00649 \n\
00650 # the min distance that must be considered feasible before the\n\
00651 # grasp is even attempted\n\
00652 float32 min_distance\n\
00653 ================================================================================\n\
00654 MSG: geometry_msgs/Vector3Stamped\n\
00655 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00656 Header header\n\
00657 Vector3 vector\n\
00658 \n\
00659 ================================================================================\n\
00660 MSG: arm_navigation_msgs/Constraints\n\
00661 # This message contains a list of motion planning constraints.\n\
00662 \n\
00663 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00664 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00665 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00666 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00667 \n\
00668 ================================================================================\n\
00669 MSG: arm_navigation_msgs/JointConstraint\n\
00670 # Constrain the position of a joint to be within a certain bound\n\
00671 string joint_name\n\
00672 \n\
00673 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00674 float64 position\n\
00675 float64 tolerance_above\n\
00676 float64 tolerance_below\n\
00677 \n\
00678 # A weighting factor for this constraint\n\
00679 float64 weight\n\
00680 ================================================================================\n\
00681 MSG: arm_navigation_msgs/PositionConstraint\n\
00682 # This message contains the definition of a position constraint.\n\
00683 Header header\n\
00684 \n\
00685 # The robot link this constraint refers to\n\
00686 string link_name\n\
00687 \n\
00688 # The offset (in the link frame) for the target point on the link we are planning for\n\
00689 geometry_msgs/Point target_point_offset\n\
00690 \n\
00691 # The nominal/target position for the point we are planning for\n\
00692 geometry_msgs/Point position\n\
00693 \n\
00694 # The shape of the bounded region that constrains the position of the end-effector\n\
00695 # This region is always centered at the position defined above\n\
00696 arm_navigation_msgs/Shape constraint_region_shape\n\
00697 \n\
00698 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00699 # This allows the specification of non-axis aligned constraints\n\
00700 geometry_msgs/Quaternion constraint_region_orientation\n\
00701 \n\
00702 # Constraint weighting factor - a weight for this constraint\n\
00703 float64 weight\n\
00704 \n\
00705 ================================================================================\n\
00706 MSG: arm_navigation_msgs/Shape\n\
00707 byte SPHERE=0\n\
00708 byte BOX=1\n\
00709 byte CYLINDER=2\n\
00710 byte MESH=3\n\
00711 \n\
00712 byte type\n\
00713 \n\
00714 \n\
00715 #### define sphere, box, cylinder ####\n\
00716 # the origin of each shape is considered at the shape's center\n\
00717 \n\
00718 # for sphere\n\
00719 # radius := dimensions[0]\n\
00720 \n\
00721 # for cylinder\n\
00722 # radius := dimensions[0]\n\
00723 # length := dimensions[1]\n\
00724 # the length is along the Z axis\n\
00725 \n\
00726 # for box\n\
00727 # size_x := dimensions[0]\n\
00728 # size_y := dimensions[1]\n\
00729 # size_z := dimensions[2]\n\
00730 float64[] dimensions\n\
00731 \n\
00732 \n\
00733 #### define mesh ####\n\
00734 \n\
00735 # list of triangles; triangle k is defined by tre vertices located\n\
00736 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00737 int32[] triangles\n\
00738 geometry_msgs/Point[] vertices\n\
00739 \n\
00740 ================================================================================\n\
00741 MSG: arm_navigation_msgs/OrientationConstraint\n\
00742 # This message contains the definition of an orientation constraint.\n\
00743 Header header\n\
00744 \n\
00745 # The robot link this constraint refers to\n\
00746 string link_name\n\
00747 \n\
00748 # The type of the constraint\n\
00749 int32 type\n\
00750 int32 LINK_FRAME=0\n\
00751 int32 HEADER_FRAME=1\n\
00752 \n\
00753 # The desired orientation of the robot link specified as a quaternion\n\
00754 geometry_msgs/Quaternion orientation\n\
00755 \n\
00756 # optional RPY error tolerances specified if \n\
00757 float64 absolute_roll_tolerance\n\
00758 float64 absolute_pitch_tolerance\n\
00759 float64 absolute_yaw_tolerance\n\
00760 \n\
00761 # Constraint weighting factor - a weight for this constraint\n\
00762 float64 weight\n\
00763 \n\
00764 ================================================================================\n\
00765 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00766 # This message contains the definition of a visibility constraint.\n\
00767 Header header\n\
00768 \n\
00769 # The point stamped target that needs to be kept within view of the sensor\n\
00770 geometry_msgs/PointStamped target\n\
00771 \n\
00772 # The local pose of the frame in which visibility is to be maintained\n\
00773 # The frame id should represent the robot link to which the sensor is attached\n\
00774 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00775 geometry_msgs/PoseStamped sensor_pose\n\
00776 \n\
00777 # The deviation (in radians) that will be tolerated\n\
00778 # Constraint error will be measured as the solid angle between the \n\
00779 # X axis of the frame defined above and the vector between the origin \n\
00780 # of the frame defined above and the target location\n\
00781 float64 absolute_tolerance\n\
00782 \n\
00783 \n\
00784 ================================================================================\n\
00785 MSG: geometry_msgs/PointStamped\n\
00786 # This represents a Point with reference coordinate frame and timestamp\n\
00787 Header header\n\
00788 Point point\n\
00789 \n\
00790 ================================================================================\n\
00791 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00792 # A set of collision operations that will be performed in the order they are specified\n\
00793 CollisionOperation[] collision_operations\n\
00794 ================================================================================\n\
00795 MSG: arm_navigation_msgs/CollisionOperation\n\
00796 # A definition of a collision operation\n\
00797 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00798 # between the gripper and all objects in the collision space\n\
00799 \n\
00800 string object1\n\
00801 string object2\n\
00802 string COLLISION_SET_ALL=\"all\"\n\
00803 string COLLISION_SET_OBJECTS=\"objects\"\n\
00804 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00805 \n\
00806 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00807 float64 penetration_distance\n\
00808 \n\
00809 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00810 int32 operation\n\
00811 int32 DISABLE=0\n\
00812 int32 ENABLE=1\n\
00813 \n\
00814 ================================================================================\n\
00815 MSG: arm_navigation_msgs/LinkPadding\n\
00816 #name for the link\n\
00817 string link_name\n\
00818 \n\
00819 # padding to apply to the link\n\
00820 float64 padding\n\
00821 \n\
00822 ================================================================================\n\
00823 MSG: object_manipulation_msgs/PickupActionResult\n\
00824 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00825 \n\
00826 Header header\n\
00827 actionlib_msgs/GoalStatus status\n\
00828 PickupResult result\n\
00829 \n\
00830 ================================================================================\n\
00831 MSG: actionlib_msgs/GoalStatus\n\
00832 GoalID goal_id\n\
00833 uint8 status\n\
00834 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00835 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00836 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00837 # and has since completed its execution (Terminal State)\n\
00838 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00839 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00840 # to some failure (Terminal State)\n\
00841 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00842 # because the goal was unattainable or invalid (Terminal State)\n\
00843 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00844 # and has not yet completed execution\n\
00845 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00846 # but the action server has not yet confirmed that the goal is canceled\n\
00847 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00848 # and was successfully cancelled (Terminal State)\n\
00849 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00850 # sent over the wire by an action server\n\
00851 \n\
00852 #Allow for the user to associate a string with GoalStatus for debugging\n\
00853 string text\n\
00854 \n\
00855 \n\
00856 ================================================================================\n\
00857 MSG: object_manipulation_msgs/PickupResult\n\
00858 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00859 \n\
00860 # The overall result of the pickup attempt\n\
00861 ManipulationResult manipulation_result\n\
00862 \n\
00863 # The performed grasp, if attempt was successful\n\
00864 Grasp grasp\n\
00865 \n\
00866 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00867 # the successful one should be the last one in this list\n\
00868 Grasp[] attempted_grasps\n\
00869 \n\
00870 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00871 GraspResult[] attempted_grasp_results\n\
00872 \n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: object_manipulation_msgs/ManipulationResult\n\
00876 # Result codes for manipulation tasks\n\
00877 \n\
00878 # task completed as expected\n\
00879 # generally means you can proceed as planned\n\
00880 int32 SUCCESS = 1\n\
00881 \n\
00882 # task not possible (e.g. out of reach or obstacles in the way)\n\
00883 # generally means that the world was not disturbed, so you can try another task\n\
00884 int32 UNFEASIBLE = -1\n\
00885 \n\
00886 # task was thought possible, but failed due to unexpected events during execution\n\
00887 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00888 # your sensed world model before proceeding to another task\n\
00889 int32 FAILED = -2\n\
00890 \n\
00891 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00892 # generally requires human attention\n\
00893 int32 ERROR = -3\n\
00894 \n\
00895 # means that at some point during execution we ended up in a state that the collision-aware\n\
00896 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00897 # probably need a new collision map to move the arm out of the stuck position\n\
00898 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00899 \n\
00900 # specific to grasp actions\n\
00901 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00902 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00903 int32 LIFT_FAILED = -5\n\
00904 \n\
00905 # specific to place actions\n\
00906 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00907 # it is likely that the collision environment will see collisions between the hand and the object\n\
00908 int32 RETREAT_FAILED = -6\n\
00909 \n\
00910 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00911 int32 CANCELLED = -7\n\
00912 \n\
00913 # the actual value of this error code\n\
00914 int32 value\n\
00915 \n\
00916 ================================================================================\n\
00917 MSG: object_manipulation_msgs/GraspResult\n\
00918 int32 SUCCESS = 1\n\
00919 int32 GRASP_OUT_OF_REACH = 2\n\
00920 int32 GRASP_IN_COLLISION = 3\n\
00921 int32 GRASP_UNFEASIBLE = 4\n\
00922 int32 PREGRASP_OUT_OF_REACH = 5\n\
00923 int32 PREGRASP_IN_COLLISION = 6\n\
00924 int32 PREGRASP_UNFEASIBLE = 7\n\
00925 int32 LIFT_OUT_OF_REACH = 8\n\
00926 int32 LIFT_IN_COLLISION = 9\n\
00927 int32 LIFT_UNFEASIBLE = 10\n\
00928 int32 MOVE_ARM_FAILED = 11\n\
00929 int32 GRASP_FAILED = 12\n\
00930 int32 LIFT_FAILED = 13\n\
00931 int32 RETREAT_FAILED = 14\n\
00932 int32 result_code\n\
00933 \n\
00934 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00935 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00936 # before proceeding\n\
00937 bool continuation_possible\n\
00938 \n\
00939 ================================================================================\n\
00940 MSG: object_manipulation_msgs/PickupActionFeedback\n\
00941 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00942 \n\
00943 Header header\n\
00944 actionlib_msgs/GoalStatus status\n\
00945 PickupFeedback feedback\n\
00946 \n\
00947 ================================================================================\n\
00948 MSG: object_manipulation_msgs/PickupFeedback\n\
00949 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00950 \n\
00951 # The number of the grasp currently being attempted\n\
00952 int32 current_grasp\n\
00953 \n\
00954 # The total number of grasps that will be attempted\n\
00955 int32 total_grasps\n\
00956 \n\
00957 \n\
00958 "; }
00959 public:
00960 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00961
00962 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00963
00964 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00965 {
00966 ros::serialization::OStream stream(write_ptr, 1000000000);
00967 ros::serialization::serialize(stream, action_goal);
00968 ros::serialization::serialize(stream, action_result);
00969 ros::serialization::serialize(stream, action_feedback);
00970 return stream.getData();
00971 }
00972
00973 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00974 {
00975 ros::serialization::IStream stream(read_ptr, 1000000000);
00976 ros::serialization::deserialize(stream, action_goal);
00977 ros::serialization::deserialize(stream, action_result);
00978 ros::serialization::deserialize(stream, action_feedback);
00979 return stream.getData();
00980 }
00981
00982 ROS_DEPRECATED virtual uint32_t serializationLength() const
00983 {
00984 uint32_t size = 0;
00985 size += ros::serialization::serializationLength(action_goal);
00986 size += ros::serialization::serializationLength(action_result);
00987 size += ros::serialization::serializationLength(action_feedback);
00988 return size;
00989 }
00990
00991 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > Ptr;
00992 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> const> ConstPtr;
00993 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00994 };
00995 typedef ::object_manipulation_msgs::PickupAction_<std::allocator<void> > PickupAction;
00996
00997 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction> PickupActionPtr;
00998 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupAction const> PickupActionConstPtr;
00999
01000
01001 template<typename ContainerAllocator>
01002 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v)
01003 {
01004 ros::message_operations::Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >::stream(s, "", v);
01005 return s;}
01006
01007 }
01008
01009 namespace ros
01010 {
01011 namespace message_traits
01012 {
01013 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > : public TrueType {};
01014 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> const> : public TrueType {};
01015 template<class ContainerAllocator>
01016 struct MD5Sum< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
01017 static const char* value()
01018 {
01019 return "09990218855ede96047d48c436f6201d";
01020 }
01021
01022 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
01023 static const uint64_t static_value1 = 0x09990218855ede96ULL;
01024 static const uint64_t static_value2 = 0x047d48c436f6201dULL;
01025 };
01026
01027 template<class ContainerAllocator>
01028 struct DataType< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
01029 static const char* value()
01030 {
01031 return "object_manipulation_msgs/PickupAction";
01032 }
01033
01034 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
01035 };
01036
01037 template<class ContainerAllocator>
01038 struct Definition< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> > {
01039 static const char* value()
01040 {
01041 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01042 \n\
01043 PickupActionGoal action_goal\n\
01044 PickupActionResult action_result\n\
01045 PickupActionFeedback action_feedback\n\
01046 \n\
01047 ================================================================================\n\
01048 MSG: object_manipulation_msgs/PickupActionGoal\n\
01049 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01050 \n\
01051 Header header\n\
01052 actionlib_msgs/GoalID goal_id\n\
01053 PickupGoal goal\n\
01054 \n\
01055 ================================================================================\n\
01056 MSG: std_msgs/Header\n\
01057 # Standard metadata for higher-level stamped data types.\n\
01058 # This is generally used to communicate timestamped data \n\
01059 # in a particular coordinate frame.\n\
01060 # \n\
01061 # sequence ID: consecutively increasing ID \n\
01062 uint32 seq\n\
01063 #Two-integer timestamp that is expressed as:\n\
01064 # * stamp.secs: seconds (stamp_secs) since epoch\n\
01065 # * stamp.nsecs: nanoseconds since stamp_secs\n\
01066 # time-handling sugar is provided by the client library\n\
01067 time stamp\n\
01068 #Frame this data is associated with\n\
01069 # 0: no frame\n\
01070 # 1: global frame\n\
01071 string frame_id\n\
01072 \n\
01073 ================================================================================\n\
01074 MSG: actionlib_msgs/GoalID\n\
01075 # The stamp should store the time at which this goal was requested.\n\
01076 # It is used by an action server when it tries to preempt all\n\
01077 # goals that were requested before a certain time\n\
01078 time stamp\n\
01079 \n\
01080 # The id provides a way to associate feedback and\n\
01081 # result message with specific goal requests. The id\n\
01082 # specified must be unique.\n\
01083 string id\n\
01084 \n\
01085 \n\
01086 ================================================================================\n\
01087 MSG: object_manipulation_msgs/PickupGoal\n\
01088 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01089 # An action for picking up an object\n\
01090 \n\
01091 # which arm to be used for grasping\n\
01092 string arm_name\n\
01093 \n\
01094 # the object to be grasped\n\
01095 GraspableObject target\n\
01096 \n\
01097 # a list of grasps to be used\n\
01098 # if empty, the grasp executive will call one of its own planners\n\
01099 Grasp[] desired_grasps\n\
01100 \n\
01101 # how the object should be lifted after the grasp\n\
01102 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
01103 # or the gripper_frame specified in your hand description file\n\
01104 GripperTranslation lift\n\
01105 \n\
01106 # the name that the target object has in the collision map\n\
01107 # can be left empty if no name is available\n\
01108 string collision_object_name\n\
01109 \n\
01110 # the name that the support surface (e.g. table) has in the collision map\n\
01111 # can be left empty if no name is available\n\
01112 string collision_support_surface_name\n\
01113 \n\
01114 # whether collisions between the gripper and the support surface should be acceptable\n\
01115 # during move from pre-grasp to grasp and during lift. Collisions when moving to the\n\
01116 # pre-grasp location are still not allowed even if this is set to true.\n\
01117 bool allow_gripper_support_collision\n\
01118 \n\
01119 # whether reactive grasp execution using tactile sensors should be used\n\
01120 bool use_reactive_execution\n\
01121 \n\
01122 # whether reactive object lifting based on tactile sensors should be used\n\
01123 bool use_reactive_lift\n\
01124 \n\
01125 # set this to true if you only want to query the manipulation pipeline as to what \n\
01126 # grasps it thinks are feasible, without actually executing them. If this is set to \n\
01127 # true, the atempted_grasp_results field of the result will be populated, but no arm \n\
01128 # movement will be attempted\n\
01129 bool only_perform_feasibility_test\n\
01130 \n\
01131 # set this to true if you want to ignore all collisions throughout the pickup \n\
01132 # and also move directly to the pre-grasp using Cartesian controllers\n\
01133 bool ignore_collisions\n\
01134 \n\
01135 # OPTIONAL (These will not have to be filled out most of the time)\n\
01136 # constraints to be imposed on every point in the motion of the arm\n\
01137 arm_navigation_msgs/Constraints path_constraints\n\
01138 \n\
01139 # OPTIONAL (These will not have to be filled out most of the time)\n\
01140 # additional collision operations to be used for every arm movement performed\n\
01141 # during grasping. Note that these will be added on top of (and thus overide) other \n\
01142 # collision operations that the grasping pipeline deems necessary. Should be used\n\
01143 # with care and only if special behaviors are desired\n\
01144 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
01145 \n\
01146 # OPTIONAL (These will not have to be filled out most of the time)\n\
01147 # additional link paddings to be used for every arm movement performed\n\
01148 # during grasping. Note that these will be added on top of (and thus overide) other \n\
01149 # link paddings that the grasping pipeline deems necessary. Should be used\n\
01150 # with care and only if special behaviors are desired\n\
01151 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
01152 \n\
01153 # an optional list of obstacles that we have semantic information about\n\
01154 # and that can be moved in the course of grasping\n\
01155 GraspableObject[] movable_obstacles\n\
01156 \n\
01157 # the maximum contact force to use while grasping (<=0 to disable)\n\
01158 float32 max_contact_force\n\
01159 \n\
01160 \n\
01161 ================================================================================\n\
01162 MSG: object_manipulation_msgs/GraspableObject\n\
01163 # an object that the object_manipulator can work on\n\
01164 \n\
01165 # a graspable object can be represented in multiple ways. This message\n\
01166 # can contain all of them. Which one is actually used is up to the receiver\n\
01167 # of this message. When adding new representations, one must be careful that\n\
01168 # they have reasonable lightweight defaults indicating that that particular\n\
01169 # representation is not available.\n\
01170 \n\
01171 # the tf frame to be used as a reference frame when combining information from\n\
01172 # the different representations below\n\
01173 string reference_frame_id\n\
01174 \n\
01175 # potential recognition results from a database of models\n\
01176 # all poses are relative to the object reference pose\n\
01177 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
01178 \n\
01179 # the point cloud itself\n\
01180 sensor_msgs/PointCloud cluster\n\
01181 \n\
01182 # a region of a PointCloud2 of interest\n\
01183 object_manipulation_msgs/SceneRegion region\n\
01184 \n\
01185 # the name that this object has in the collision environment\n\
01186 string collision_name\n\
01187 ================================================================================\n\
01188 MSG: household_objects_database_msgs/DatabaseModelPose\n\
01189 # Informs that a specific model from the Model Database has been \n\
01190 # identified at a certain location\n\
01191 \n\
01192 # the database id of the model\n\
01193 int32 model_id\n\
01194 \n\
01195 # the pose that it can be found in\n\
01196 geometry_msgs/PoseStamped pose\n\
01197 \n\
01198 # a measure of the confidence level in this detection result\n\
01199 float32 confidence\n\
01200 \n\
01201 # the name of the object detector that generated this detection result\n\
01202 string detector_name\n\
01203 \n\
01204 ================================================================================\n\
01205 MSG: geometry_msgs/PoseStamped\n\
01206 # A Pose with reference coordinate frame and timestamp\n\
01207 Header header\n\
01208 Pose pose\n\
01209 \n\
01210 ================================================================================\n\
01211 MSG: geometry_msgs/Pose\n\
01212 # A representation of pose in free space, composed of postion and orientation. \n\
01213 Point position\n\
01214 Quaternion orientation\n\
01215 \n\
01216 ================================================================================\n\
01217 MSG: geometry_msgs/Point\n\
01218 # This contains the position of a point in free space\n\
01219 float64 x\n\
01220 float64 y\n\
01221 float64 z\n\
01222 \n\
01223 ================================================================================\n\
01224 MSG: geometry_msgs/Quaternion\n\
01225 # This represents an orientation in free space in quaternion form.\n\
01226 \n\
01227 float64 x\n\
01228 float64 y\n\
01229 float64 z\n\
01230 float64 w\n\
01231 \n\
01232 ================================================================================\n\
01233 MSG: sensor_msgs/PointCloud\n\
01234 # This message holds a collection of 3d points, plus optional additional\n\
01235 # information about each point.\n\
01236 \n\
01237 # Time of sensor data acquisition, coordinate frame ID.\n\
01238 Header header\n\
01239 \n\
01240 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01241 # in the frame given in the header.\n\
01242 geometry_msgs/Point32[] points\n\
01243 \n\
01244 # Each channel should have the same number of elements as points array,\n\
01245 # and the data in each channel should correspond 1:1 with each point.\n\
01246 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01247 ChannelFloat32[] channels\n\
01248 \n\
01249 ================================================================================\n\
01250 MSG: geometry_msgs/Point32\n\
01251 # This contains the position of a point in free space(with 32 bits of precision).\n\
01252 # It is recommeded to use Point wherever possible instead of Point32. \n\
01253 # \n\
01254 # This recommendation is to promote interoperability. \n\
01255 #\n\
01256 # This message is designed to take up less space when sending\n\
01257 # lots of points at once, as in the case of a PointCloud. \n\
01258 \n\
01259 float32 x\n\
01260 float32 y\n\
01261 float32 z\n\
01262 ================================================================================\n\
01263 MSG: sensor_msgs/ChannelFloat32\n\
01264 # This message is used by the PointCloud message to hold optional data\n\
01265 # associated with each point in the cloud. The length of the values\n\
01266 # array should be the same as the length of the points array in the\n\
01267 # PointCloud, and each value should be associated with the corresponding\n\
01268 # point.\n\
01269 \n\
01270 # Channel names in existing practice include:\n\
01271 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01272 # This is opposite to usual conventions but remains for\n\
01273 # historical reasons. The newer PointCloud2 message has no\n\
01274 # such problem.\n\
01275 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01276 # (R,G,B) values packed into the least significant 24 bits,\n\
01277 # in order.\n\
01278 # \"intensity\" - laser or pixel intensity.\n\
01279 # \"distance\"\n\
01280 \n\
01281 # The channel name should give semantics of the channel (e.g.\n\
01282 # \"intensity\" instead of \"value\").\n\
01283 string name\n\
01284 \n\
01285 # The values array should be 1-1 with the elements of the associated\n\
01286 # PointCloud.\n\
01287 float32[] values\n\
01288 \n\
01289 ================================================================================\n\
01290 MSG: object_manipulation_msgs/SceneRegion\n\
01291 # Point cloud\n\
01292 sensor_msgs/PointCloud2 cloud\n\
01293 \n\
01294 # Indices for the region of interest\n\
01295 int32[] mask\n\
01296 \n\
01297 # One of the corresponding 2D images, if applicable\n\
01298 sensor_msgs/Image image\n\
01299 \n\
01300 # The disparity image, if applicable\n\
01301 sensor_msgs/Image disparity_image\n\
01302 \n\
01303 # Camera info for the camera that took the image\n\
01304 sensor_msgs/CameraInfo cam_info\n\
01305 \n\
01306 # a 3D region of interest for grasp planning\n\
01307 geometry_msgs/PoseStamped roi_box_pose\n\
01308 geometry_msgs/Vector3 roi_box_dims\n\
01309 \n\
01310 ================================================================================\n\
01311 MSG: sensor_msgs/PointCloud2\n\
01312 # This message holds a collection of N-dimensional points, which may\n\
01313 # contain additional information such as normals, intensity, etc. The\n\
01314 # point data is stored as a binary blob, its layout described by the\n\
01315 # contents of the \"fields\" array.\n\
01316 \n\
01317 # The point cloud data may be organized 2d (image-like) or 1d\n\
01318 # (unordered). Point clouds organized as 2d images may be produced by\n\
01319 # camera depth sensors such as stereo or time-of-flight.\n\
01320 \n\
01321 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01322 # points).\n\
01323 Header header\n\
01324 \n\
01325 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01326 # 1 and width is the length of the point cloud.\n\
01327 uint32 height\n\
01328 uint32 width\n\
01329 \n\
01330 # Describes the channels and their layout in the binary data blob.\n\
01331 PointField[] fields\n\
01332 \n\
01333 bool is_bigendian # Is this data bigendian?\n\
01334 uint32 point_step # Length of a point in bytes\n\
01335 uint32 row_step # Length of a row in bytes\n\
01336 uint8[] data # Actual point data, size is (row_step*height)\n\
01337 \n\
01338 bool is_dense # True if there are no invalid points\n\
01339 \n\
01340 ================================================================================\n\
01341 MSG: sensor_msgs/PointField\n\
01342 # This message holds the description of one point entry in the\n\
01343 # PointCloud2 message format.\n\
01344 uint8 INT8 = 1\n\
01345 uint8 UINT8 = 2\n\
01346 uint8 INT16 = 3\n\
01347 uint8 UINT16 = 4\n\
01348 uint8 INT32 = 5\n\
01349 uint8 UINT32 = 6\n\
01350 uint8 FLOAT32 = 7\n\
01351 uint8 FLOAT64 = 8\n\
01352 \n\
01353 string name # Name of field\n\
01354 uint32 offset # Offset from start of point struct\n\
01355 uint8 datatype # Datatype enumeration, see above\n\
01356 uint32 count # How many elements in the field\n\
01357 \n\
01358 ================================================================================\n\
01359 MSG: sensor_msgs/Image\n\
01360 # This message contains an uncompressed image\n\
01361 # (0, 0) is at top-left corner of image\n\
01362 #\n\
01363 \n\
01364 Header header # Header timestamp should be acquisition time of image\n\
01365 # Header frame_id should be optical frame of camera\n\
01366 # origin of frame should be optical center of cameara\n\
01367 # +x should point to the right in the image\n\
01368 # +y should point down in the image\n\
01369 # +z should point into to plane of the image\n\
01370 # If the frame_id here and the frame_id of the CameraInfo\n\
01371 # message associated with the image conflict\n\
01372 # the behavior is undefined\n\
01373 \n\
01374 uint32 height # image height, that is, number of rows\n\
01375 uint32 width # image width, that is, number of columns\n\
01376 \n\
01377 # The legal values for encoding are in file src/image_encodings.cpp\n\
01378 # If you want to standardize a new string format, join\n\
01379 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01380 \n\
01381 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01382 # taken from the list of strings in src/image_encodings.cpp\n\
01383 \n\
01384 uint8 is_bigendian # is this data bigendian?\n\
01385 uint32 step # Full row length in bytes\n\
01386 uint8[] data # actual matrix data, size is (step * rows)\n\
01387 \n\
01388 ================================================================================\n\
01389 MSG: sensor_msgs/CameraInfo\n\
01390 # This message defines meta information for a camera. It should be in a\n\
01391 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01392 # image topics named:\n\
01393 #\n\
01394 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01395 # image - monochrome, distorted\n\
01396 # image_color - color, distorted\n\
01397 # image_rect - monochrome, rectified\n\
01398 # image_rect_color - color, rectified\n\
01399 #\n\
01400 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01401 # for producing the four processed image topics from image_raw and\n\
01402 # camera_info. The meaning of the camera parameters are described in\n\
01403 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01404 #\n\
01405 # The image_geometry package provides a user-friendly interface to\n\
01406 # common operations using this meta information. If you want to, e.g.,\n\
01407 # project a 3d point into image coordinates, we strongly recommend\n\
01408 # using image_geometry.\n\
01409 #\n\
01410 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01411 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01412 # indicates an uncalibrated camera.\n\
01413 \n\
01414 #######################################################################\n\
01415 # Image acquisition info #\n\
01416 #######################################################################\n\
01417 \n\
01418 # Time of image acquisition, camera coordinate frame ID\n\
01419 Header header # Header timestamp should be acquisition time of image\n\
01420 # Header frame_id should be optical frame of camera\n\
01421 # origin of frame should be optical center of camera\n\
01422 # +x should point to the right in the image\n\
01423 # +y should point down in the image\n\
01424 # +z should point into the plane of the image\n\
01425 \n\
01426 \n\
01427 #######################################################################\n\
01428 # Calibration Parameters #\n\
01429 #######################################################################\n\
01430 # These are fixed during camera calibration. Their values will be the #\n\
01431 # same in all messages until the camera is recalibrated. Note that #\n\
01432 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01433 # #\n\
01434 # The internal parameters can be used to warp a raw (distorted) image #\n\
01435 # to: #\n\
01436 # 1. An undistorted image (requires D and K) #\n\
01437 # 2. A rectified image (requires D, K, R) #\n\
01438 # The projection matrix P projects 3D points into the rectified image.#\n\
01439 #######################################################################\n\
01440 \n\
01441 # The image dimensions with which the camera was calibrated. Normally\n\
01442 # this will be the full camera resolution in pixels.\n\
01443 uint32 height\n\
01444 uint32 width\n\
01445 \n\
01446 # The distortion model used. Supported models are listed in\n\
01447 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01448 # simple model of radial and tangential distortion - is sufficent.\n\
01449 string distortion_model\n\
01450 \n\
01451 # The distortion parameters, size depending on the distortion model.\n\
01452 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01453 float64[] D\n\
01454 \n\
01455 # Intrinsic camera matrix for the raw (distorted) images.\n\
01456 # [fx 0 cx]\n\
01457 # K = [ 0 fy cy]\n\
01458 # [ 0 0 1]\n\
01459 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01460 # coordinates using the focal lengths (fx, fy) and principal point\n\
01461 # (cx, cy).\n\
01462 float64[9] K # 3x3 row-major matrix\n\
01463 \n\
01464 # Rectification matrix (stereo cameras only)\n\
01465 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01466 # stereo image plane so that epipolar lines in both stereo images are\n\
01467 # parallel.\n\
01468 float64[9] R # 3x3 row-major matrix\n\
01469 \n\
01470 # Projection/camera matrix\n\
01471 # [fx' 0 cx' Tx]\n\
01472 # P = [ 0 fy' cy' Ty]\n\
01473 # [ 0 0 1 0]\n\
01474 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01475 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01476 # is the normal camera intrinsic matrix for the rectified image.\n\
01477 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01478 # coordinates using the focal lengths (fx', fy') and principal point\n\
01479 # (cx', cy') - these may differ from the values in K.\n\
01480 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01481 # also have R = the identity and P[1:3,1:3] = K.\n\
01482 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01483 # position of the optical center of the second camera in the first\n\
01484 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01485 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01486 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01487 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01488 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01489 # the rectified image is given by:\n\
01490 # [u v w]' = P * [X Y Z 1]'\n\
01491 # x = u / w\n\
01492 # y = v / w\n\
01493 # This holds for both images of a stereo pair.\n\
01494 float64[12] P # 3x4 row-major matrix\n\
01495 \n\
01496 \n\
01497 #######################################################################\n\
01498 # Operational Parameters #\n\
01499 #######################################################################\n\
01500 # These define the image region actually captured by the camera #\n\
01501 # driver. Although they affect the geometry of the output image, they #\n\
01502 # may be changed freely without recalibrating the camera. #\n\
01503 #######################################################################\n\
01504 \n\
01505 # Binning refers here to any camera setting which combines rectangular\n\
01506 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01507 # resolution of the output image to\n\
01508 # (width / binning_x) x (height / binning_y).\n\
01509 # The default values binning_x = binning_y = 0 is considered the same\n\
01510 # as binning_x = binning_y = 1 (no subsampling).\n\
01511 uint32 binning_x\n\
01512 uint32 binning_y\n\
01513 \n\
01514 # Region of interest (subwindow of full camera resolution), given in\n\
01515 # full resolution (unbinned) image coordinates. A particular ROI\n\
01516 # always denotes the same window of pixels on the camera sensor,\n\
01517 # regardless of binning settings.\n\
01518 # The default setting of roi (all values 0) is considered the same as\n\
01519 # full resolution (roi.width = width, roi.height = height).\n\
01520 RegionOfInterest roi\n\
01521 \n\
01522 ================================================================================\n\
01523 MSG: sensor_msgs/RegionOfInterest\n\
01524 # This message is used to specify a region of interest within an image.\n\
01525 #\n\
01526 # When used to specify the ROI setting of the camera when the image was\n\
01527 # taken, the height and width fields should either match the height and\n\
01528 # width fields for the associated image; or height = width = 0\n\
01529 # indicates that the full resolution image was captured.\n\
01530 \n\
01531 uint32 x_offset # Leftmost pixel of the ROI\n\
01532 # (0 if the ROI includes the left edge of the image)\n\
01533 uint32 y_offset # Topmost pixel of the ROI\n\
01534 # (0 if the ROI includes the top edge of the image)\n\
01535 uint32 height # Height of ROI\n\
01536 uint32 width # Width of ROI\n\
01537 \n\
01538 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01539 # ROI in this message. Typically this should be False if the full image\n\
01540 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01541 # used).\n\
01542 bool do_rectify\n\
01543 \n\
01544 ================================================================================\n\
01545 MSG: geometry_msgs/Vector3\n\
01546 # This represents a vector in free space. \n\
01547 \n\
01548 float64 x\n\
01549 float64 y\n\
01550 float64 z\n\
01551 ================================================================================\n\
01552 MSG: object_manipulation_msgs/Grasp\n\
01553 \n\
01554 # The internal posture of the hand for the pre-grasp\n\
01555 # only positions are used\n\
01556 sensor_msgs/JointState pre_grasp_posture\n\
01557 \n\
01558 # The internal posture of the hand for the grasp\n\
01559 # positions and efforts are used\n\
01560 sensor_msgs/JointState grasp_posture\n\
01561 \n\
01562 # The position of the end-effector for the grasp relative to a reference frame \n\
01563 # (that is always specified elsewhere, not in this message)\n\
01564 geometry_msgs/Pose grasp_pose\n\
01565 \n\
01566 # The estimated probability of success for this grasp\n\
01567 float64 success_probability\n\
01568 \n\
01569 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01570 bool cluster_rep\n\
01571 \n\
01572 # how far the pre-grasp should ideally be away from the grasp\n\
01573 float32 desired_approach_distance\n\
01574 \n\
01575 # how much distance between pre-grasp and grasp must actually be feasible \n\
01576 # for the grasp not to be rejected\n\
01577 float32 min_approach_distance\n\
01578 \n\
01579 # an optional list of obstacles that we have semantic information about\n\
01580 # and that we expect might move in the course of executing this grasp\n\
01581 # the grasp planner is expected to make sure they move in an OK way; during\n\
01582 # execution, grasp executors will not check for collisions against these objects\n\
01583 GraspableObject[] moved_obstacles\n\
01584 \n\
01585 ================================================================================\n\
01586 MSG: sensor_msgs/JointState\n\
01587 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01588 #\n\
01589 # The state of each joint (revolute or prismatic) is defined by:\n\
01590 # * the position of the joint (rad or m),\n\
01591 # * the velocity of the joint (rad/s or m/s) and \n\
01592 # * the effort that is applied in the joint (Nm or N).\n\
01593 #\n\
01594 # Each joint is uniquely identified by its name\n\
01595 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01596 # in one message have to be recorded at the same time.\n\
01597 #\n\
01598 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01599 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01600 # effort associated with them, you can leave the effort array empty. \n\
01601 #\n\
01602 # All arrays in this message should have the same size, or be empty.\n\
01603 # This is the only way to uniquely associate the joint name with the correct\n\
01604 # states.\n\
01605 \n\
01606 \n\
01607 Header header\n\
01608 \n\
01609 string[] name\n\
01610 float64[] position\n\
01611 float64[] velocity\n\
01612 float64[] effort\n\
01613 \n\
01614 ================================================================================\n\
01615 MSG: object_manipulation_msgs/GripperTranslation\n\
01616 # defines a translation for the gripper, used in pickup or place tasks\n\
01617 # for example for lifting an object off a table or approaching the table for placing\n\
01618 \n\
01619 # the direction of the translation\n\
01620 geometry_msgs/Vector3Stamped direction\n\
01621 \n\
01622 # the desired translation distance\n\
01623 float32 desired_distance\n\
01624 \n\
01625 # the min distance that must be considered feasible before the\n\
01626 # grasp is even attempted\n\
01627 float32 min_distance\n\
01628 ================================================================================\n\
01629 MSG: geometry_msgs/Vector3Stamped\n\
01630 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01631 Header header\n\
01632 Vector3 vector\n\
01633 \n\
01634 ================================================================================\n\
01635 MSG: arm_navigation_msgs/Constraints\n\
01636 # This message contains a list of motion planning constraints.\n\
01637 \n\
01638 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
01639 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
01640 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
01641 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
01642 \n\
01643 ================================================================================\n\
01644 MSG: arm_navigation_msgs/JointConstraint\n\
01645 # Constrain the position of a joint to be within a certain bound\n\
01646 string joint_name\n\
01647 \n\
01648 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
01649 float64 position\n\
01650 float64 tolerance_above\n\
01651 float64 tolerance_below\n\
01652 \n\
01653 # A weighting factor for this constraint\n\
01654 float64 weight\n\
01655 ================================================================================\n\
01656 MSG: arm_navigation_msgs/PositionConstraint\n\
01657 # This message contains the definition of a position constraint.\n\
01658 Header header\n\
01659 \n\
01660 # The robot link this constraint refers to\n\
01661 string link_name\n\
01662 \n\
01663 # The offset (in the link frame) for the target point on the link we are planning for\n\
01664 geometry_msgs/Point target_point_offset\n\
01665 \n\
01666 # The nominal/target position for the point we are planning for\n\
01667 geometry_msgs/Point position\n\
01668 \n\
01669 # The shape of the bounded region that constrains the position of the end-effector\n\
01670 # This region is always centered at the position defined above\n\
01671 arm_navigation_msgs/Shape constraint_region_shape\n\
01672 \n\
01673 # The orientation of the bounded region that constrains the position of the end-effector. \n\
01674 # This allows the specification of non-axis aligned constraints\n\
01675 geometry_msgs/Quaternion constraint_region_orientation\n\
01676 \n\
01677 # Constraint weighting factor - a weight for this constraint\n\
01678 float64 weight\n\
01679 \n\
01680 ================================================================================\n\
01681 MSG: arm_navigation_msgs/Shape\n\
01682 byte SPHERE=0\n\
01683 byte BOX=1\n\
01684 byte CYLINDER=2\n\
01685 byte MESH=3\n\
01686 \n\
01687 byte type\n\
01688 \n\
01689 \n\
01690 #### define sphere, box, cylinder ####\n\
01691 # the origin of each shape is considered at the shape's center\n\
01692 \n\
01693 # for sphere\n\
01694 # radius := dimensions[0]\n\
01695 \n\
01696 # for cylinder\n\
01697 # radius := dimensions[0]\n\
01698 # length := dimensions[1]\n\
01699 # the length is along the Z axis\n\
01700 \n\
01701 # for box\n\
01702 # size_x := dimensions[0]\n\
01703 # size_y := dimensions[1]\n\
01704 # size_z := dimensions[2]\n\
01705 float64[] dimensions\n\
01706 \n\
01707 \n\
01708 #### define mesh ####\n\
01709 \n\
01710 # list of triangles; triangle k is defined by tre vertices located\n\
01711 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
01712 int32[] triangles\n\
01713 geometry_msgs/Point[] vertices\n\
01714 \n\
01715 ================================================================================\n\
01716 MSG: arm_navigation_msgs/OrientationConstraint\n\
01717 # This message contains the definition of an orientation constraint.\n\
01718 Header header\n\
01719 \n\
01720 # The robot link this constraint refers to\n\
01721 string link_name\n\
01722 \n\
01723 # The type of the constraint\n\
01724 int32 type\n\
01725 int32 LINK_FRAME=0\n\
01726 int32 HEADER_FRAME=1\n\
01727 \n\
01728 # The desired orientation of the robot link specified as a quaternion\n\
01729 geometry_msgs/Quaternion orientation\n\
01730 \n\
01731 # optional RPY error tolerances specified if \n\
01732 float64 absolute_roll_tolerance\n\
01733 float64 absolute_pitch_tolerance\n\
01734 float64 absolute_yaw_tolerance\n\
01735 \n\
01736 # Constraint weighting factor - a weight for this constraint\n\
01737 float64 weight\n\
01738 \n\
01739 ================================================================================\n\
01740 MSG: arm_navigation_msgs/VisibilityConstraint\n\
01741 # This message contains the definition of a visibility constraint.\n\
01742 Header header\n\
01743 \n\
01744 # The point stamped target that needs to be kept within view of the sensor\n\
01745 geometry_msgs/PointStamped target\n\
01746 \n\
01747 # The local pose of the frame in which visibility is to be maintained\n\
01748 # The frame id should represent the robot link to which the sensor is attached\n\
01749 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
01750 geometry_msgs/PoseStamped sensor_pose\n\
01751 \n\
01752 # The deviation (in radians) that will be tolerated\n\
01753 # Constraint error will be measured as the solid angle between the \n\
01754 # X axis of the frame defined above and the vector between the origin \n\
01755 # of the frame defined above and the target location\n\
01756 float64 absolute_tolerance\n\
01757 \n\
01758 \n\
01759 ================================================================================\n\
01760 MSG: geometry_msgs/PointStamped\n\
01761 # This represents a Point with reference coordinate frame and timestamp\n\
01762 Header header\n\
01763 Point point\n\
01764 \n\
01765 ================================================================================\n\
01766 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
01767 # A set of collision operations that will be performed in the order they are specified\n\
01768 CollisionOperation[] collision_operations\n\
01769 ================================================================================\n\
01770 MSG: arm_navigation_msgs/CollisionOperation\n\
01771 # A definition of a collision operation\n\
01772 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
01773 # between the gripper and all objects in the collision space\n\
01774 \n\
01775 string object1\n\
01776 string object2\n\
01777 string COLLISION_SET_ALL=\"all\"\n\
01778 string COLLISION_SET_OBJECTS=\"objects\"\n\
01779 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
01780 \n\
01781 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
01782 float64 penetration_distance\n\
01783 \n\
01784 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
01785 int32 operation\n\
01786 int32 DISABLE=0\n\
01787 int32 ENABLE=1\n\
01788 \n\
01789 ================================================================================\n\
01790 MSG: arm_navigation_msgs/LinkPadding\n\
01791 #name for the link\n\
01792 string link_name\n\
01793 \n\
01794 # padding to apply to the link\n\
01795 float64 padding\n\
01796 \n\
01797 ================================================================================\n\
01798 MSG: object_manipulation_msgs/PickupActionResult\n\
01799 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01800 \n\
01801 Header header\n\
01802 actionlib_msgs/GoalStatus status\n\
01803 PickupResult result\n\
01804 \n\
01805 ================================================================================\n\
01806 MSG: actionlib_msgs/GoalStatus\n\
01807 GoalID goal_id\n\
01808 uint8 status\n\
01809 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01810 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01811 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01812 # and has since completed its execution (Terminal State)\n\
01813 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01814 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01815 # to some failure (Terminal State)\n\
01816 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01817 # because the goal was unattainable or invalid (Terminal State)\n\
01818 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01819 # and has not yet completed execution\n\
01820 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01821 # but the action server has not yet confirmed that the goal is canceled\n\
01822 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01823 # and was successfully cancelled (Terminal State)\n\
01824 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01825 # sent over the wire by an action server\n\
01826 \n\
01827 #Allow for the user to associate a string with GoalStatus for debugging\n\
01828 string text\n\
01829 \n\
01830 \n\
01831 ================================================================================\n\
01832 MSG: object_manipulation_msgs/PickupResult\n\
01833 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01834 \n\
01835 # The overall result of the pickup attempt\n\
01836 ManipulationResult manipulation_result\n\
01837 \n\
01838 # The performed grasp, if attempt was successful\n\
01839 Grasp grasp\n\
01840 \n\
01841 # the complete list of attempted grasp, in the order in which they have been attempted\n\
01842 # the successful one should be the last one in this list\n\
01843 Grasp[] attempted_grasps\n\
01844 \n\
01845 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
01846 GraspResult[] attempted_grasp_results\n\
01847 \n\
01848 \n\
01849 ================================================================================\n\
01850 MSG: object_manipulation_msgs/ManipulationResult\n\
01851 # Result codes for manipulation tasks\n\
01852 \n\
01853 # task completed as expected\n\
01854 # generally means you can proceed as planned\n\
01855 int32 SUCCESS = 1\n\
01856 \n\
01857 # task not possible (e.g. out of reach or obstacles in the way)\n\
01858 # generally means that the world was not disturbed, so you can try another task\n\
01859 int32 UNFEASIBLE = -1\n\
01860 \n\
01861 # task was thought possible, but failed due to unexpected events during execution\n\
01862 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01863 # your sensed world model before proceeding to another task\n\
01864 int32 FAILED = -2\n\
01865 \n\
01866 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01867 # generally requires human attention\n\
01868 int32 ERROR = -3\n\
01869 \n\
01870 # means that at some point during execution we ended up in a state that the collision-aware\n\
01871 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01872 # probably need a new collision map to move the arm out of the stuck position\n\
01873 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01874 \n\
01875 # specific to grasp actions\n\
01876 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01877 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01878 int32 LIFT_FAILED = -5\n\
01879 \n\
01880 # specific to place actions\n\
01881 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01882 # it is likely that the collision environment will see collisions between the hand and the object\n\
01883 int32 RETREAT_FAILED = -6\n\
01884 \n\
01885 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01886 int32 CANCELLED = -7\n\
01887 \n\
01888 # the actual value of this error code\n\
01889 int32 value\n\
01890 \n\
01891 ================================================================================\n\
01892 MSG: object_manipulation_msgs/GraspResult\n\
01893 int32 SUCCESS = 1\n\
01894 int32 GRASP_OUT_OF_REACH = 2\n\
01895 int32 GRASP_IN_COLLISION = 3\n\
01896 int32 GRASP_UNFEASIBLE = 4\n\
01897 int32 PREGRASP_OUT_OF_REACH = 5\n\
01898 int32 PREGRASP_IN_COLLISION = 6\n\
01899 int32 PREGRASP_UNFEASIBLE = 7\n\
01900 int32 LIFT_OUT_OF_REACH = 8\n\
01901 int32 LIFT_IN_COLLISION = 9\n\
01902 int32 LIFT_UNFEASIBLE = 10\n\
01903 int32 MOVE_ARM_FAILED = 11\n\
01904 int32 GRASP_FAILED = 12\n\
01905 int32 LIFT_FAILED = 13\n\
01906 int32 RETREAT_FAILED = 14\n\
01907 int32 result_code\n\
01908 \n\
01909 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
01910 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
01911 # before proceeding\n\
01912 bool continuation_possible\n\
01913 \n\
01914 ================================================================================\n\
01915 MSG: object_manipulation_msgs/PickupActionFeedback\n\
01916 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01917 \n\
01918 Header header\n\
01919 actionlib_msgs/GoalStatus status\n\
01920 PickupFeedback feedback\n\
01921 \n\
01922 ================================================================================\n\
01923 MSG: object_manipulation_msgs/PickupFeedback\n\
01924 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01925 \n\
01926 # The number of the grasp currently being attempted\n\
01927 int32 current_grasp\n\
01928 \n\
01929 # The total number of grasps that will be attempted\n\
01930 int32 total_grasps\n\
01931 \n\
01932 \n\
01933 ";
01934 }
01935
01936 static const char* value(const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> &) { return value(); }
01937 };
01938
01939 }
01940 }
01941
01942 namespace ros
01943 {
01944 namespace serialization
01945 {
01946
01947 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01948 {
01949 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01950 {
01951 stream.next(m.action_goal);
01952 stream.next(m.action_result);
01953 stream.next(m.action_feedback);
01954 }
01955
01956 ROS_DECLARE_ALLINONE_SERIALIZER;
01957 };
01958 }
01959 }
01960
01961 namespace ros
01962 {
01963 namespace message_operations
01964 {
01965
01966 template<class ContainerAllocator>
01967 struct Printer< ::object_manipulation_msgs::PickupAction_<ContainerAllocator> >
01968 {
01969 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupAction_<ContainerAllocator> & v)
01970 {
01971 s << indent << "action_goal: ";
01972 s << std::endl;
01973 Printer< ::object_manipulation_msgs::PickupActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01974 s << indent << "action_result: ";
01975 s << std::endl;
01976 Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01977 s << indent << "action_feedback: ";
01978 s << std::endl;
01979 Printer< ::object_manipulation_msgs::PickupActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01980 }
01981 };
01982
01983
01984 }
01985 }
01986
01987 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTION_H
01988