$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/PickupActionResult.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalStatus.h" 00019 #include "object_manipulation_msgs/PickupResult.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct PickupActionResult_ { 00025 typedef PickupActionResult_<ContainerAllocator> Type; 00026 00027 PickupActionResult_() 00028 : header() 00029 , status() 00030 , result() 00031 { 00032 } 00033 00034 PickupActionResult_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , status(_alloc) 00037 , result(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type; 00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status; 00046 00047 typedef ::object_manipulation_msgs::PickupResult_<ContainerAllocator> _result_type; 00048 ::object_manipulation_msgs::PickupResult_<ContainerAllocator> result; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupActionResult"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "35cc61e4783a89b01b3f4ece0f5f068c"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalStatus status\n\ 00070 PickupResult result\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalStatus\n\ 00092 GoalID goal_id\n\ 00093 uint8 status\n\ 00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00097 # and has since completed its execution (Terminal State)\n\ 00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00100 # to some failure (Terminal State)\n\ 00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00102 # because the goal was unattainable or invalid (Terminal State)\n\ 00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00104 # and has not yet completed execution\n\ 00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00106 # but the action server has not yet confirmed that the goal is canceled\n\ 00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00108 # and was successfully cancelled (Terminal State)\n\ 00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00110 # sent over the wire by an action server\n\ 00111 \n\ 00112 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00113 string text\n\ 00114 \n\ 00115 \n\ 00116 ================================================================================\n\ 00117 MSG: actionlib_msgs/GoalID\n\ 00118 # The stamp should store the time at which this goal was requested.\n\ 00119 # It is used by an action server when it tries to preempt all\n\ 00120 # goals that were requested before a certain time\n\ 00121 time stamp\n\ 00122 \n\ 00123 # The id provides a way to associate feedback and\n\ 00124 # result message with specific goal requests. The id\n\ 00125 # specified must be unique.\n\ 00126 string id\n\ 00127 \n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: object_manipulation_msgs/PickupResult\n\ 00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00132 \n\ 00133 # The overall result of the pickup attempt\n\ 00134 ManipulationResult manipulation_result\n\ 00135 \n\ 00136 # The performed grasp, if attempt was successful\n\ 00137 Grasp grasp\n\ 00138 \n\ 00139 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 00140 # the successful one should be the last one in this list\n\ 00141 Grasp[] attempted_grasps\n\ 00142 \n\ 00143 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 00144 GraspResult[] attempted_grasp_results\n\ 00145 \n\ 00146 \n\ 00147 ================================================================================\n\ 00148 MSG: object_manipulation_msgs/ManipulationResult\n\ 00149 # Result codes for manipulation tasks\n\ 00150 \n\ 00151 # task completed as expected\n\ 00152 # generally means you can proceed as planned\n\ 00153 int32 SUCCESS = 1\n\ 00154 \n\ 00155 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00156 # generally means that the world was not disturbed, so you can try another task\n\ 00157 int32 UNFEASIBLE = -1\n\ 00158 \n\ 00159 # task was thought possible, but failed due to unexpected events during execution\n\ 00160 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00161 # your sensed world model before proceeding to another task\n\ 00162 int32 FAILED = -2\n\ 00163 \n\ 00164 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00165 # generally requires human attention\n\ 00166 int32 ERROR = -3\n\ 00167 \n\ 00168 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00169 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00170 # probably need a new collision map to move the arm out of the stuck position\n\ 00171 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00172 \n\ 00173 # specific to grasp actions\n\ 00174 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00175 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00176 int32 LIFT_FAILED = -5\n\ 00177 \n\ 00178 # specific to place actions\n\ 00179 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00180 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00181 int32 RETREAT_FAILED = -6\n\ 00182 \n\ 00183 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00184 int32 CANCELLED = -7\n\ 00185 \n\ 00186 # the actual value of this error code\n\ 00187 int32 value\n\ 00188 \n\ 00189 ================================================================================\n\ 00190 MSG: object_manipulation_msgs/Grasp\n\ 00191 \n\ 00192 # The internal posture of the hand for the pre-grasp\n\ 00193 # only positions are used\n\ 00194 sensor_msgs/JointState pre_grasp_posture\n\ 00195 \n\ 00196 # The internal posture of the hand for the grasp\n\ 00197 # positions and efforts are used\n\ 00198 sensor_msgs/JointState grasp_posture\n\ 00199 \n\ 00200 # The position of the end-effector for the grasp relative to a reference frame \n\ 00201 # (that is always specified elsewhere, not in this message)\n\ 00202 geometry_msgs/Pose grasp_pose\n\ 00203 \n\ 00204 # The estimated probability of success for this grasp\n\ 00205 float64 success_probability\n\ 00206 \n\ 00207 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00208 bool cluster_rep\n\ 00209 \n\ 00210 # how far the pre-grasp should ideally be away from the grasp\n\ 00211 float32 desired_approach_distance\n\ 00212 \n\ 00213 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00214 # for the grasp not to be rejected\n\ 00215 float32 min_approach_distance\n\ 00216 \n\ 00217 # an optional list of obstacles that we have semantic information about\n\ 00218 # and that we expect might move in the course of executing this grasp\n\ 00219 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00220 # execution, grasp executors will not check for collisions against these objects\n\ 00221 GraspableObject[] moved_obstacles\n\ 00222 \n\ 00223 ================================================================================\n\ 00224 MSG: sensor_msgs/JointState\n\ 00225 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00226 #\n\ 00227 # The state of each joint (revolute or prismatic) is defined by:\n\ 00228 # * the position of the joint (rad or m),\n\ 00229 # * the velocity of the joint (rad/s or m/s) and \n\ 00230 # * the effort that is applied in the joint (Nm or N).\n\ 00231 #\n\ 00232 # Each joint is uniquely identified by its name\n\ 00233 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00234 # in one message have to be recorded at the same time.\n\ 00235 #\n\ 00236 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00237 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00238 # effort associated with them, you can leave the effort array empty. \n\ 00239 #\n\ 00240 # All arrays in this message should have the same size, or be empty.\n\ 00241 # This is the only way to uniquely associate the joint name with the correct\n\ 00242 # states.\n\ 00243 \n\ 00244 \n\ 00245 Header header\n\ 00246 \n\ 00247 string[] name\n\ 00248 float64[] position\n\ 00249 float64[] velocity\n\ 00250 float64[] effort\n\ 00251 \n\ 00252 ================================================================================\n\ 00253 MSG: geometry_msgs/Pose\n\ 00254 # A representation of pose in free space, composed of postion and orientation. \n\ 00255 Point position\n\ 00256 Quaternion orientation\n\ 00257 \n\ 00258 ================================================================================\n\ 00259 MSG: geometry_msgs/Point\n\ 00260 # This contains the position of a point in free space\n\ 00261 float64 x\n\ 00262 float64 y\n\ 00263 float64 z\n\ 00264 \n\ 00265 ================================================================================\n\ 00266 MSG: geometry_msgs/Quaternion\n\ 00267 # This represents an orientation in free space in quaternion form.\n\ 00268 \n\ 00269 float64 x\n\ 00270 float64 y\n\ 00271 float64 z\n\ 00272 float64 w\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: object_manipulation_msgs/GraspableObject\n\ 00276 # an object that the object_manipulator can work on\n\ 00277 \n\ 00278 # a graspable object can be represented in multiple ways. This message\n\ 00279 # can contain all of them. Which one is actually used is up to the receiver\n\ 00280 # of this message. When adding new representations, one must be careful that\n\ 00281 # they have reasonable lightweight defaults indicating that that particular\n\ 00282 # representation is not available.\n\ 00283 \n\ 00284 # the tf frame to be used as a reference frame when combining information from\n\ 00285 # the different representations below\n\ 00286 string reference_frame_id\n\ 00287 \n\ 00288 # potential recognition results from a database of models\n\ 00289 # all poses are relative to the object reference pose\n\ 00290 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00291 \n\ 00292 # the point cloud itself\n\ 00293 sensor_msgs/PointCloud cluster\n\ 00294 \n\ 00295 # a region of a PointCloud2 of interest\n\ 00296 object_manipulation_msgs/SceneRegion region\n\ 00297 \n\ 00298 # the name that this object has in the collision environment\n\ 00299 string collision_name\n\ 00300 ================================================================================\n\ 00301 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00302 # Informs that a specific model from the Model Database has been \n\ 00303 # identified at a certain location\n\ 00304 \n\ 00305 # the database id of the model\n\ 00306 int32 model_id\n\ 00307 \n\ 00308 # the pose that it can be found in\n\ 00309 geometry_msgs/PoseStamped pose\n\ 00310 \n\ 00311 # a measure of the confidence level in this detection result\n\ 00312 float32 confidence\n\ 00313 \n\ 00314 # the name of the object detector that generated this detection result\n\ 00315 string detector_name\n\ 00316 \n\ 00317 ================================================================================\n\ 00318 MSG: geometry_msgs/PoseStamped\n\ 00319 # A Pose with reference coordinate frame and timestamp\n\ 00320 Header header\n\ 00321 Pose pose\n\ 00322 \n\ 00323 ================================================================================\n\ 00324 MSG: sensor_msgs/PointCloud\n\ 00325 # This message holds a collection of 3d points, plus optional additional\n\ 00326 # information about each point.\n\ 00327 \n\ 00328 # Time of sensor data acquisition, coordinate frame ID.\n\ 00329 Header header\n\ 00330 \n\ 00331 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00332 # in the frame given in the header.\n\ 00333 geometry_msgs/Point32[] points\n\ 00334 \n\ 00335 # Each channel should have the same number of elements as points array,\n\ 00336 # and the data in each channel should correspond 1:1 with each point.\n\ 00337 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00338 ChannelFloat32[] channels\n\ 00339 \n\ 00340 ================================================================================\n\ 00341 MSG: geometry_msgs/Point32\n\ 00342 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00343 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00344 # \n\ 00345 # This recommendation is to promote interoperability. \n\ 00346 #\n\ 00347 # This message is designed to take up less space when sending\n\ 00348 # lots of points at once, as in the case of a PointCloud. \n\ 00349 \n\ 00350 float32 x\n\ 00351 float32 y\n\ 00352 float32 z\n\ 00353 ================================================================================\n\ 00354 MSG: sensor_msgs/ChannelFloat32\n\ 00355 # This message is used by the PointCloud message to hold optional data\n\ 00356 # associated with each point in the cloud. The length of the values\n\ 00357 # array should be the same as the length of the points array in the\n\ 00358 # PointCloud, and each value should be associated with the corresponding\n\ 00359 # point.\n\ 00360 \n\ 00361 # Channel names in existing practice include:\n\ 00362 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00363 # This is opposite to usual conventions but remains for\n\ 00364 # historical reasons. The newer PointCloud2 message has no\n\ 00365 # such problem.\n\ 00366 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00367 # (R,G,B) values packed into the least significant 24 bits,\n\ 00368 # in order.\n\ 00369 # \"intensity\" - laser or pixel intensity.\n\ 00370 # \"distance\"\n\ 00371 \n\ 00372 # The channel name should give semantics of the channel (e.g.\n\ 00373 # \"intensity\" instead of \"value\").\n\ 00374 string name\n\ 00375 \n\ 00376 # The values array should be 1-1 with the elements of the associated\n\ 00377 # PointCloud.\n\ 00378 float32[] values\n\ 00379 \n\ 00380 ================================================================================\n\ 00381 MSG: object_manipulation_msgs/SceneRegion\n\ 00382 # Point cloud\n\ 00383 sensor_msgs/PointCloud2 cloud\n\ 00384 \n\ 00385 # Indices for the region of interest\n\ 00386 int32[] mask\n\ 00387 \n\ 00388 # One of the corresponding 2D images, if applicable\n\ 00389 sensor_msgs/Image image\n\ 00390 \n\ 00391 # The disparity image, if applicable\n\ 00392 sensor_msgs/Image disparity_image\n\ 00393 \n\ 00394 # Camera info for the camera that took the image\n\ 00395 sensor_msgs/CameraInfo cam_info\n\ 00396 \n\ 00397 # a 3D region of interest for grasp planning\n\ 00398 geometry_msgs/PoseStamped roi_box_pose\n\ 00399 geometry_msgs/Vector3 roi_box_dims\n\ 00400 \n\ 00401 ================================================================================\n\ 00402 MSG: sensor_msgs/PointCloud2\n\ 00403 # This message holds a collection of N-dimensional points, which may\n\ 00404 # contain additional information such as normals, intensity, etc. The\n\ 00405 # point data is stored as a binary blob, its layout described by the\n\ 00406 # contents of the \"fields\" array.\n\ 00407 \n\ 00408 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00409 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00410 # camera depth sensors such as stereo or time-of-flight.\n\ 00411 \n\ 00412 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00413 # points).\n\ 00414 Header header\n\ 00415 \n\ 00416 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00417 # 1 and width is the length of the point cloud.\n\ 00418 uint32 height\n\ 00419 uint32 width\n\ 00420 \n\ 00421 # Describes the channels and their layout in the binary data blob.\n\ 00422 PointField[] fields\n\ 00423 \n\ 00424 bool is_bigendian # Is this data bigendian?\n\ 00425 uint32 point_step # Length of a point in bytes\n\ 00426 uint32 row_step # Length of a row in bytes\n\ 00427 uint8[] data # Actual point data, size is (row_step*height)\n\ 00428 \n\ 00429 bool is_dense # True if there are no invalid points\n\ 00430 \n\ 00431 ================================================================================\n\ 00432 MSG: sensor_msgs/PointField\n\ 00433 # This message holds the description of one point entry in the\n\ 00434 # PointCloud2 message format.\n\ 00435 uint8 INT8 = 1\n\ 00436 uint8 UINT8 = 2\n\ 00437 uint8 INT16 = 3\n\ 00438 uint8 UINT16 = 4\n\ 00439 uint8 INT32 = 5\n\ 00440 uint8 UINT32 = 6\n\ 00441 uint8 FLOAT32 = 7\n\ 00442 uint8 FLOAT64 = 8\n\ 00443 \n\ 00444 string name # Name of field\n\ 00445 uint32 offset # Offset from start of point struct\n\ 00446 uint8 datatype # Datatype enumeration, see above\n\ 00447 uint32 count # How many elements in the field\n\ 00448 \n\ 00449 ================================================================================\n\ 00450 MSG: sensor_msgs/Image\n\ 00451 # This message contains an uncompressed image\n\ 00452 # (0, 0) is at top-left corner of image\n\ 00453 #\n\ 00454 \n\ 00455 Header header # Header timestamp should be acquisition time of image\n\ 00456 # Header frame_id should be optical frame of camera\n\ 00457 # origin of frame should be optical center of cameara\n\ 00458 # +x should point to the right in the image\n\ 00459 # +y should point down in the image\n\ 00460 # +z should point into to plane of the image\n\ 00461 # If the frame_id here and the frame_id of the CameraInfo\n\ 00462 # message associated with the image conflict\n\ 00463 # the behavior is undefined\n\ 00464 \n\ 00465 uint32 height # image height, that is, number of rows\n\ 00466 uint32 width # image width, that is, number of columns\n\ 00467 \n\ 00468 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00469 # If you want to standardize a new string format, join\n\ 00470 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00471 \n\ 00472 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00473 # taken from the list of strings in src/image_encodings.cpp\n\ 00474 \n\ 00475 uint8 is_bigendian # is this data bigendian?\n\ 00476 uint32 step # Full row length in bytes\n\ 00477 uint8[] data # actual matrix data, size is (step * rows)\n\ 00478 \n\ 00479 ================================================================================\n\ 00480 MSG: sensor_msgs/CameraInfo\n\ 00481 # This message defines meta information for a camera. It should be in a\n\ 00482 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00483 # image topics named:\n\ 00484 #\n\ 00485 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00486 # image - monochrome, distorted\n\ 00487 # image_color - color, distorted\n\ 00488 # image_rect - monochrome, rectified\n\ 00489 # image_rect_color - color, rectified\n\ 00490 #\n\ 00491 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00492 # for producing the four processed image topics from image_raw and\n\ 00493 # camera_info. The meaning of the camera parameters are described in\n\ 00494 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00495 #\n\ 00496 # The image_geometry package provides a user-friendly interface to\n\ 00497 # common operations using this meta information. If you want to, e.g.,\n\ 00498 # project a 3d point into image coordinates, we strongly recommend\n\ 00499 # using image_geometry.\n\ 00500 #\n\ 00501 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00502 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00503 # indicates an uncalibrated camera.\n\ 00504 \n\ 00505 #######################################################################\n\ 00506 # Image acquisition info #\n\ 00507 #######################################################################\n\ 00508 \n\ 00509 # Time of image acquisition, camera coordinate frame ID\n\ 00510 Header header # Header timestamp should be acquisition time of image\n\ 00511 # Header frame_id should be optical frame of camera\n\ 00512 # origin of frame should be optical center of camera\n\ 00513 # +x should point to the right in the image\n\ 00514 # +y should point down in the image\n\ 00515 # +z should point into the plane of the image\n\ 00516 \n\ 00517 \n\ 00518 #######################################################################\n\ 00519 # Calibration Parameters #\n\ 00520 #######################################################################\n\ 00521 # These are fixed during camera calibration. Their values will be the #\n\ 00522 # same in all messages until the camera is recalibrated. Note that #\n\ 00523 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00524 # #\n\ 00525 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00526 # to: #\n\ 00527 # 1. An undistorted image (requires D and K) #\n\ 00528 # 2. A rectified image (requires D, K, R) #\n\ 00529 # The projection matrix P projects 3D points into the rectified image.#\n\ 00530 #######################################################################\n\ 00531 \n\ 00532 # The image dimensions with which the camera was calibrated. Normally\n\ 00533 # this will be the full camera resolution in pixels.\n\ 00534 uint32 height\n\ 00535 uint32 width\n\ 00536 \n\ 00537 # The distortion model used. Supported models are listed in\n\ 00538 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00539 # simple model of radial and tangential distortion - is sufficent.\n\ 00540 string distortion_model\n\ 00541 \n\ 00542 # The distortion parameters, size depending on the distortion model.\n\ 00543 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00544 float64[] D\n\ 00545 \n\ 00546 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00547 # [fx 0 cx]\n\ 00548 # K = [ 0 fy cy]\n\ 00549 # [ 0 0 1]\n\ 00550 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00551 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00552 # (cx, cy).\n\ 00553 float64[9] K # 3x3 row-major matrix\n\ 00554 \n\ 00555 # Rectification matrix (stereo cameras only)\n\ 00556 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00557 # stereo image plane so that epipolar lines in both stereo images are\n\ 00558 # parallel.\n\ 00559 float64[9] R # 3x3 row-major matrix\n\ 00560 \n\ 00561 # Projection/camera matrix\n\ 00562 # [fx' 0 cx' Tx]\n\ 00563 # P = [ 0 fy' cy' Ty]\n\ 00564 # [ 0 0 1 0]\n\ 00565 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00566 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00567 # is the normal camera intrinsic matrix for the rectified image.\n\ 00568 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00569 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00570 # (cx', cy') - these may differ from the values in K.\n\ 00571 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00572 # also have R = the identity and P[1:3,1:3] = K.\n\ 00573 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00574 # position of the optical center of the second camera in the first\n\ 00575 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00576 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00577 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00578 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00579 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00580 # the rectified image is given by:\n\ 00581 # [u v w]' = P * [X Y Z 1]'\n\ 00582 # x = u / w\n\ 00583 # y = v / w\n\ 00584 # This holds for both images of a stereo pair.\n\ 00585 float64[12] P # 3x4 row-major matrix\n\ 00586 \n\ 00587 \n\ 00588 #######################################################################\n\ 00589 # Operational Parameters #\n\ 00590 #######################################################################\n\ 00591 # These define the image region actually captured by the camera #\n\ 00592 # driver. Although they affect the geometry of the output image, they #\n\ 00593 # may be changed freely without recalibrating the camera. #\n\ 00594 #######################################################################\n\ 00595 \n\ 00596 # Binning refers here to any camera setting which combines rectangular\n\ 00597 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00598 # resolution of the output image to\n\ 00599 # (width / binning_x) x (height / binning_y).\n\ 00600 # The default values binning_x = binning_y = 0 is considered the same\n\ 00601 # as binning_x = binning_y = 1 (no subsampling).\n\ 00602 uint32 binning_x\n\ 00603 uint32 binning_y\n\ 00604 \n\ 00605 # Region of interest (subwindow of full camera resolution), given in\n\ 00606 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00607 # always denotes the same window of pixels on the camera sensor,\n\ 00608 # regardless of binning settings.\n\ 00609 # The default setting of roi (all values 0) is considered the same as\n\ 00610 # full resolution (roi.width = width, roi.height = height).\n\ 00611 RegionOfInterest roi\n\ 00612 \n\ 00613 ================================================================================\n\ 00614 MSG: sensor_msgs/RegionOfInterest\n\ 00615 # This message is used to specify a region of interest within an image.\n\ 00616 #\n\ 00617 # When used to specify the ROI setting of the camera when the image was\n\ 00618 # taken, the height and width fields should either match the height and\n\ 00619 # width fields for the associated image; or height = width = 0\n\ 00620 # indicates that the full resolution image was captured.\n\ 00621 \n\ 00622 uint32 x_offset # Leftmost pixel of the ROI\n\ 00623 # (0 if the ROI includes the left edge of the image)\n\ 00624 uint32 y_offset # Topmost pixel of the ROI\n\ 00625 # (0 if the ROI includes the top edge of the image)\n\ 00626 uint32 height # Height of ROI\n\ 00627 uint32 width # Width of ROI\n\ 00628 \n\ 00629 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00630 # ROI in this message. Typically this should be False if the full image\n\ 00631 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00632 # used).\n\ 00633 bool do_rectify\n\ 00634 \n\ 00635 ================================================================================\n\ 00636 MSG: geometry_msgs/Vector3\n\ 00637 # This represents a vector in free space. \n\ 00638 \n\ 00639 float64 x\n\ 00640 float64 y\n\ 00641 float64 z\n\ 00642 ================================================================================\n\ 00643 MSG: object_manipulation_msgs/GraspResult\n\ 00644 int32 SUCCESS = 1\n\ 00645 int32 GRASP_OUT_OF_REACH = 2\n\ 00646 int32 GRASP_IN_COLLISION = 3\n\ 00647 int32 GRASP_UNFEASIBLE = 4\n\ 00648 int32 PREGRASP_OUT_OF_REACH = 5\n\ 00649 int32 PREGRASP_IN_COLLISION = 6\n\ 00650 int32 PREGRASP_UNFEASIBLE = 7\n\ 00651 int32 LIFT_OUT_OF_REACH = 8\n\ 00652 int32 LIFT_IN_COLLISION = 9\n\ 00653 int32 LIFT_UNFEASIBLE = 10\n\ 00654 int32 MOVE_ARM_FAILED = 11\n\ 00655 int32 GRASP_FAILED = 12\n\ 00656 int32 LIFT_FAILED = 13\n\ 00657 int32 RETREAT_FAILED = 14\n\ 00658 int32 result_code\n\ 00659 \n\ 00660 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 00661 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 00662 # before proceeding\n\ 00663 bool continuation_possible\n\ 00664 \n\ 00665 "; } 00666 public: 00667 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00668 00669 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00670 00671 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00672 { 00673 ros::serialization::OStream stream(write_ptr, 1000000000); 00674 ros::serialization::serialize(stream, header); 00675 ros::serialization::serialize(stream, status); 00676 ros::serialization::serialize(stream, result); 00677 return stream.getData(); 00678 } 00679 00680 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00681 { 00682 ros::serialization::IStream stream(read_ptr, 1000000000); 00683 ros::serialization::deserialize(stream, header); 00684 ros::serialization::deserialize(stream, status); 00685 ros::serialization::deserialize(stream, result); 00686 return stream.getData(); 00687 } 00688 00689 ROS_DEPRECATED virtual uint32_t serializationLength() const 00690 { 00691 uint32_t size = 0; 00692 size += ros::serialization::serializationLength(header); 00693 size += ros::serialization::serializationLength(status); 00694 size += ros::serialization::serializationLength(result); 00695 return size; 00696 } 00697 00698 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > Ptr; 00699 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> const> ConstPtr; 00700 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00701 }; // struct PickupActionResult 00702 typedef ::object_manipulation_msgs::PickupActionResult_<std::allocator<void> > PickupActionResult; 00703 00704 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult> PickupActionResultPtr; 00705 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult const> PickupActionResultConstPtr; 00706 00707 00708 template<typename ContainerAllocator> 00709 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v) 00710 { 00711 ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, "", v); 00712 return s;} 00713 00714 } // namespace object_manipulation_msgs 00715 00716 namespace ros 00717 { 00718 namespace message_traits 00719 { 00720 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {}; 00721 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> const> : public TrueType {}; 00722 template<class ContainerAllocator> 00723 struct MD5Sum< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > { 00724 static const char* value() 00725 { 00726 return "35cc61e4783a89b01b3f4ece0f5f068c"; 00727 } 00728 00729 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 00730 static const uint64_t static_value1 = 0x35cc61e4783a89b0ULL; 00731 static const uint64_t static_value2 = 0x1b3f4ece0f5f068cULL; 00732 }; 00733 00734 template<class ContainerAllocator> 00735 struct DataType< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > { 00736 static const char* value() 00737 { 00738 return "object_manipulation_msgs/PickupActionResult"; 00739 } 00740 00741 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 00742 }; 00743 00744 template<class ContainerAllocator> 00745 struct Definition< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > { 00746 static const char* value() 00747 { 00748 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00749 \n\ 00750 Header header\n\ 00751 actionlib_msgs/GoalStatus status\n\ 00752 PickupResult result\n\ 00753 \n\ 00754 ================================================================================\n\ 00755 MSG: std_msgs/Header\n\ 00756 # Standard metadata for higher-level stamped data types.\n\ 00757 # This is generally used to communicate timestamped data \n\ 00758 # in a particular coordinate frame.\n\ 00759 # \n\ 00760 # sequence ID: consecutively increasing ID \n\ 00761 uint32 seq\n\ 00762 #Two-integer timestamp that is expressed as:\n\ 00763 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00764 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00765 # time-handling sugar is provided by the client library\n\ 00766 time stamp\n\ 00767 #Frame this data is associated with\n\ 00768 # 0: no frame\n\ 00769 # 1: global frame\n\ 00770 string frame_id\n\ 00771 \n\ 00772 ================================================================================\n\ 00773 MSG: actionlib_msgs/GoalStatus\n\ 00774 GoalID goal_id\n\ 00775 uint8 status\n\ 00776 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00777 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00778 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00779 # and has since completed its execution (Terminal State)\n\ 00780 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00781 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00782 # to some failure (Terminal State)\n\ 00783 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00784 # because the goal was unattainable or invalid (Terminal State)\n\ 00785 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00786 # and has not yet completed execution\n\ 00787 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00788 # but the action server has not yet confirmed that the goal is canceled\n\ 00789 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00790 # and was successfully cancelled (Terminal State)\n\ 00791 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00792 # sent over the wire by an action server\n\ 00793 \n\ 00794 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00795 string text\n\ 00796 \n\ 00797 \n\ 00798 ================================================================================\n\ 00799 MSG: actionlib_msgs/GoalID\n\ 00800 # The stamp should store the time at which this goal was requested.\n\ 00801 # It is used by an action server when it tries to preempt all\n\ 00802 # goals that were requested before a certain time\n\ 00803 time stamp\n\ 00804 \n\ 00805 # The id provides a way to associate feedback and\n\ 00806 # result message with specific goal requests. The id\n\ 00807 # specified must be unique.\n\ 00808 string id\n\ 00809 \n\ 00810 \n\ 00811 ================================================================================\n\ 00812 MSG: object_manipulation_msgs/PickupResult\n\ 00813 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00814 \n\ 00815 # The overall result of the pickup attempt\n\ 00816 ManipulationResult manipulation_result\n\ 00817 \n\ 00818 # The performed grasp, if attempt was successful\n\ 00819 Grasp grasp\n\ 00820 \n\ 00821 # the complete list of attempted grasp, in the order in which they have been attempted\n\ 00822 # the successful one should be the last one in this list\n\ 00823 Grasp[] attempted_grasps\n\ 00824 \n\ 00825 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\ 00826 GraspResult[] attempted_grasp_results\n\ 00827 \n\ 00828 \n\ 00829 ================================================================================\n\ 00830 MSG: object_manipulation_msgs/ManipulationResult\n\ 00831 # Result codes for manipulation tasks\n\ 00832 \n\ 00833 # task completed as expected\n\ 00834 # generally means you can proceed as planned\n\ 00835 int32 SUCCESS = 1\n\ 00836 \n\ 00837 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00838 # generally means that the world was not disturbed, so you can try another task\n\ 00839 int32 UNFEASIBLE = -1\n\ 00840 \n\ 00841 # task was thought possible, but failed due to unexpected events during execution\n\ 00842 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00843 # your sensed world model before proceeding to another task\n\ 00844 int32 FAILED = -2\n\ 00845 \n\ 00846 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00847 # generally requires human attention\n\ 00848 int32 ERROR = -3\n\ 00849 \n\ 00850 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00851 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00852 # probably need a new collision map to move the arm out of the stuck position\n\ 00853 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00854 \n\ 00855 # specific to grasp actions\n\ 00856 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00857 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00858 int32 LIFT_FAILED = -5\n\ 00859 \n\ 00860 # specific to place actions\n\ 00861 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00862 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00863 int32 RETREAT_FAILED = -6\n\ 00864 \n\ 00865 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00866 int32 CANCELLED = -7\n\ 00867 \n\ 00868 # the actual value of this error code\n\ 00869 int32 value\n\ 00870 \n\ 00871 ================================================================================\n\ 00872 MSG: object_manipulation_msgs/Grasp\n\ 00873 \n\ 00874 # The internal posture of the hand for the pre-grasp\n\ 00875 # only positions are used\n\ 00876 sensor_msgs/JointState pre_grasp_posture\n\ 00877 \n\ 00878 # The internal posture of the hand for the grasp\n\ 00879 # positions and efforts are used\n\ 00880 sensor_msgs/JointState grasp_posture\n\ 00881 \n\ 00882 # The position of the end-effector for the grasp relative to a reference frame \n\ 00883 # (that is always specified elsewhere, not in this message)\n\ 00884 geometry_msgs/Pose grasp_pose\n\ 00885 \n\ 00886 # The estimated probability of success for this grasp\n\ 00887 float64 success_probability\n\ 00888 \n\ 00889 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00890 bool cluster_rep\n\ 00891 \n\ 00892 # how far the pre-grasp should ideally be away from the grasp\n\ 00893 float32 desired_approach_distance\n\ 00894 \n\ 00895 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00896 # for the grasp not to be rejected\n\ 00897 float32 min_approach_distance\n\ 00898 \n\ 00899 # an optional list of obstacles that we have semantic information about\n\ 00900 # and that we expect might move in the course of executing this grasp\n\ 00901 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00902 # execution, grasp executors will not check for collisions against these objects\n\ 00903 GraspableObject[] moved_obstacles\n\ 00904 \n\ 00905 ================================================================================\n\ 00906 MSG: sensor_msgs/JointState\n\ 00907 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00908 #\n\ 00909 # The state of each joint (revolute or prismatic) is defined by:\n\ 00910 # * the position of the joint (rad or m),\n\ 00911 # * the velocity of the joint (rad/s or m/s) and \n\ 00912 # * the effort that is applied in the joint (Nm or N).\n\ 00913 #\n\ 00914 # Each joint is uniquely identified by its name\n\ 00915 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00916 # in one message have to be recorded at the same time.\n\ 00917 #\n\ 00918 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00919 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00920 # effort associated with them, you can leave the effort array empty. \n\ 00921 #\n\ 00922 # All arrays in this message should have the same size, or be empty.\n\ 00923 # This is the only way to uniquely associate the joint name with the correct\n\ 00924 # states.\n\ 00925 \n\ 00926 \n\ 00927 Header header\n\ 00928 \n\ 00929 string[] name\n\ 00930 float64[] position\n\ 00931 float64[] velocity\n\ 00932 float64[] effort\n\ 00933 \n\ 00934 ================================================================================\n\ 00935 MSG: geometry_msgs/Pose\n\ 00936 # A representation of pose in free space, composed of postion and orientation. \n\ 00937 Point position\n\ 00938 Quaternion orientation\n\ 00939 \n\ 00940 ================================================================================\n\ 00941 MSG: geometry_msgs/Point\n\ 00942 # This contains the position of a point in free space\n\ 00943 float64 x\n\ 00944 float64 y\n\ 00945 float64 z\n\ 00946 \n\ 00947 ================================================================================\n\ 00948 MSG: geometry_msgs/Quaternion\n\ 00949 # This represents an orientation in free space in quaternion form.\n\ 00950 \n\ 00951 float64 x\n\ 00952 float64 y\n\ 00953 float64 z\n\ 00954 float64 w\n\ 00955 \n\ 00956 ================================================================================\n\ 00957 MSG: object_manipulation_msgs/GraspableObject\n\ 00958 # an object that the object_manipulator can work on\n\ 00959 \n\ 00960 # a graspable object can be represented in multiple ways. This message\n\ 00961 # can contain all of them. Which one is actually used is up to the receiver\n\ 00962 # of this message. When adding new representations, one must be careful that\n\ 00963 # they have reasonable lightweight defaults indicating that that particular\n\ 00964 # representation is not available.\n\ 00965 \n\ 00966 # the tf frame to be used as a reference frame when combining information from\n\ 00967 # the different representations below\n\ 00968 string reference_frame_id\n\ 00969 \n\ 00970 # potential recognition results from a database of models\n\ 00971 # all poses are relative to the object reference pose\n\ 00972 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00973 \n\ 00974 # the point cloud itself\n\ 00975 sensor_msgs/PointCloud cluster\n\ 00976 \n\ 00977 # a region of a PointCloud2 of interest\n\ 00978 object_manipulation_msgs/SceneRegion region\n\ 00979 \n\ 00980 # the name that this object has in the collision environment\n\ 00981 string collision_name\n\ 00982 ================================================================================\n\ 00983 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00984 # Informs that a specific model from the Model Database has been \n\ 00985 # identified at a certain location\n\ 00986 \n\ 00987 # the database id of the model\n\ 00988 int32 model_id\n\ 00989 \n\ 00990 # the pose that it can be found in\n\ 00991 geometry_msgs/PoseStamped pose\n\ 00992 \n\ 00993 # a measure of the confidence level in this detection result\n\ 00994 float32 confidence\n\ 00995 \n\ 00996 # the name of the object detector that generated this detection result\n\ 00997 string detector_name\n\ 00998 \n\ 00999 ================================================================================\n\ 01000 MSG: geometry_msgs/PoseStamped\n\ 01001 # A Pose with reference coordinate frame and timestamp\n\ 01002 Header header\n\ 01003 Pose pose\n\ 01004 \n\ 01005 ================================================================================\n\ 01006 MSG: sensor_msgs/PointCloud\n\ 01007 # This message holds a collection of 3d points, plus optional additional\n\ 01008 # information about each point.\n\ 01009 \n\ 01010 # Time of sensor data acquisition, coordinate frame ID.\n\ 01011 Header header\n\ 01012 \n\ 01013 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01014 # in the frame given in the header.\n\ 01015 geometry_msgs/Point32[] points\n\ 01016 \n\ 01017 # Each channel should have the same number of elements as points array,\n\ 01018 # and the data in each channel should correspond 1:1 with each point.\n\ 01019 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01020 ChannelFloat32[] channels\n\ 01021 \n\ 01022 ================================================================================\n\ 01023 MSG: geometry_msgs/Point32\n\ 01024 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01025 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01026 # \n\ 01027 # This recommendation is to promote interoperability. \n\ 01028 #\n\ 01029 # This message is designed to take up less space when sending\n\ 01030 # lots of points at once, as in the case of a PointCloud. \n\ 01031 \n\ 01032 float32 x\n\ 01033 float32 y\n\ 01034 float32 z\n\ 01035 ================================================================================\n\ 01036 MSG: sensor_msgs/ChannelFloat32\n\ 01037 # This message is used by the PointCloud message to hold optional data\n\ 01038 # associated with each point in the cloud. The length of the values\n\ 01039 # array should be the same as the length of the points array in the\n\ 01040 # PointCloud, and each value should be associated with the corresponding\n\ 01041 # point.\n\ 01042 \n\ 01043 # Channel names in existing practice include:\n\ 01044 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01045 # This is opposite to usual conventions but remains for\n\ 01046 # historical reasons. The newer PointCloud2 message has no\n\ 01047 # such problem.\n\ 01048 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01049 # (R,G,B) values packed into the least significant 24 bits,\n\ 01050 # in order.\n\ 01051 # \"intensity\" - laser or pixel intensity.\n\ 01052 # \"distance\"\n\ 01053 \n\ 01054 # The channel name should give semantics of the channel (e.g.\n\ 01055 # \"intensity\" instead of \"value\").\n\ 01056 string name\n\ 01057 \n\ 01058 # The values array should be 1-1 with the elements of the associated\n\ 01059 # PointCloud.\n\ 01060 float32[] values\n\ 01061 \n\ 01062 ================================================================================\n\ 01063 MSG: object_manipulation_msgs/SceneRegion\n\ 01064 # Point cloud\n\ 01065 sensor_msgs/PointCloud2 cloud\n\ 01066 \n\ 01067 # Indices for the region of interest\n\ 01068 int32[] mask\n\ 01069 \n\ 01070 # One of the corresponding 2D images, if applicable\n\ 01071 sensor_msgs/Image image\n\ 01072 \n\ 01073 # The disparity image, if applicable\n\ 01074 sensor_msgs/Image disparity_image\n\ 01075 \n\ 01076 # Camera info for the camera that took the image\n\ 01077 sensor_msgs/CameraInfo cam_info\n\ 01078 \n\ 01079 # a 3D region of interest for grasp planning\n\ 01080 geometry_msgs/PoseStamped roi_box_pose\n\ 01081 geometry_msgs/Vector3 roi_box_dims\n\ 01082 \n\ 01083 ================================================================================\n\ 01084 MSG: sensor_msgs/PointCloud2\n\ 01085 # This message holds a collection of N-dimensional points, which may\n\ 01086 # contain additional information such as normals, intensity, etc. The\n\ 01087 # point data is stored as a binary blob, its layout described by the\n\ 01088 # contents of the \"fields\" array.\n\ 01089 \n\ 01090 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01091 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01092 # camera depth sensors such as stereo or time-of-flight.\n\ 01093 \n\ 01094 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01095 # points).\n\ 01096 Header header\n\ 01097 \n\ 01098 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01099 # 1 and width is the length of the point cloud.\n\ 01100 uint32 height\n\ 01101 uint32 width\n\ 01102 \n\ 01103 # Describes the channels and their layout in the binary data blob.\n\ 01104 PointField[] fields\n\ 01105 \n\ 01106 bool is_bigendian # Is this data bigendian?\n\ 01107 uint32 point_step # Length of a point in bytes\n\ 01108 uint32 row_step # Length of a row in bytes\n\ 01109 uint8[] data # Actual point data, size is (row_step*height)\n\ 01110 \n\ 01111 bool is_dense # True if there are no invalid points\n\ 01112 \n\ 01113 ================================================================================\n\ 01114 MSG: sensor_msgs/PointField\n\ 01115 # This message holds the description of one point entry in the\n\ 01116 # PointCloud2 message format.\n\ 01117 uint8 INT8 = 1\n\ 01118 uint8 UINT8 = 2\n\ 01119 uint8 INT16 = 3\n\ 01120 uint8 UINT16 = 4\n\ 01121 uint8 INT32 = 5\n\ 01122 uint8 UINT32 = 6\n\ 01123 uint8 FLOAT32 = 7\n\ 01124 uint8 FLOAT64 = 8\n\ 01125 \n\ 01126 string name # Name of field\n\ 01127 uint32 offset # Offset from start of point struct\n\ 01128 uint8 datatype # Datatype enumeration, see above\n\ 01129 uint32 count # How many elements in the field\n\ 01130 \n\ 01131 ================================================================================\n\ 01132 MSG: sensor_msgs/Image\n\ 01133 # This message contains an uncompressed image\n\ 01134 # (0, 0) is at top-left corner of image\n\ 01135 #\n\ 01136 \n\ 01137 Header header # Header timestamp should be acquisition time of image\n\ 01138 # Header frame_id should be optical frame of camera\n\ 01139 # origin of frame should be optical center of cameara\n\ 01140 # +x should point to the right in the image\n\ 01141 # +y should point down in the image\n\ 01142 # +z should point into to plane of the image\n\ 01143 # If the frame_id here and the frame_id of the CameraInfo\n\ 01144 # message associated with the image conflict\n\ 01145 # the behavior is undefined\n\ 01146 \n\ 01147 uint32 height # image height, that is, number of rows\n\ 01148 uint32 width # image width, that is, number of columns\n\ 01149 \n\ 01150 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01151 # If you want to standardize a new string format, join\n\ 01152 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01153 \n\ 01154 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01155 # taken from the list of strings in src/image_encodings.cpp\n\ 01156 \n\ 01157 uint8 is_bigendian # is this data bigendian?\n\ 01158 uint32 step # Full row length in bytes\n\ 01159 uint8[] data # actual matrix data, size is (step * rows)\n\ 01160 \n\ 01161 ================================================================================\n\ 01162 MSG: sensor_msgs/CameraInfo\n\ 01163 # This message defines meta information for a camera. It should be in a\n\ 01164 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01165 # image topics named:\n\ 01166 #\n\ 01167 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01168 # image - monochrome, distorted\n\ 01169 # image_color - color, distorted\n\ 01170 # image_rect - monochrome, rectified\n\ 01171 # image_rect_color - color, rectified\n\ 01172 #\n\ 01173 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01174 # for producing the four processed image topics from image_raw and\n\ 01175 # camera_info. The meaning of the camera parameters are described in\n\ 01176 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01177 #\n\ 01178 # The image_geometry package provides a user-friendly interface to\n\ 01179 # common operations using this meta information. If you want to, e.g.,\n\ 01180 # project a 3d point into image coordinates, we strongly recommend\n\ 01181 # using image_geometry.\n\ 01182 #\n\ 01183 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01184 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01185 # indicates an uncalibrated camera.\n\ 01186 \n\ 01187 #######################################################################\n\ 01188 # Image acquisition info #\n\ 01189 #######################################################################\n\ 01190 \n\ 01191 # Time of image acquisition, camera coordinate frame ID\n\ 01192 Header header # Header timestamp should be acquisition time of image\n\ 01193 # Header frame_id should be optical frame of camera\n\ 01194 # origin of frame should be optical center of camera\n\ 01195 # +x should point to the right in the image\n\ 01196 # +y should point down in the image\n\ 01197 # +z should point into the plane of the image\n\ 01198 \n\ 01199 \n\ 01200 #######################################################################\n\ 01201 # Calibration Parameters #\n\ 01202 #######################################################################\n\ 01203 # These are fixed during camera calibration. Their values will be the #\n\ 01204 # same in all messages until the camera is recalibrated. Note that #\n\ 01205 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01206 # #\n\ 01207 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01208 # to: #\n\ 01209 # 1. An undistorted image (requires D and K) #\n\ 01210 # 2. A rectified image (requires D, K, R) #\n\ 01211 # The projection matrix P projects 3D points into the rectified image.#\n\ 01212 #######################################################################\n\ 01213 \n\ 01214 # The image dimensions with which the camera was calibrated. Normally\n\ 01215 # this will be the full camera resolution in pixels.\n\ 01216 uint32 height\n\ 01217 uint32 width\n\ 01218 \n\ 01219 # The distortion model used. Supported models are listed in\n\ 01220 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01221 # simple model of radial and tangential distortion - is sufficent.\n\ 01222 string distortion_model\n\ 01223 \n\ 01224 # The distortion parameters, size depending on the distortion model.\n\ 01225 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01226 float64[] D\n\ 01227 \n\ 01228 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01229 # [fx 0 cx]\n\ 01230 # K = [ 0 fy cy]\n\ 01231 # [ 0 0 1]\n\ 01232 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01233 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01234 # (cx, cy).\n\ 01235 float64[9] K # 3x3 row-major matrix\n\ 01236 \n\ 01237 # Rectification matrix (stereo cameras only)\n\ 01238 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01239 # stereo image plane so that epipolar lines in both stereo images are\n\ 01240 # parallel.\n\ 01241 float64[9] R # 3x3 row-major matrix\n\ 01242 \n\ 01243 # Projection/camera matrix\n\ 01244 # [fx' 0 cx' Tx]\n\ 01245 # P = [ 0 fy' cy' Ty]\n\ 01246 # [ 0 0 1 0]\n\ 01247 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01248 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01249 # is the normal camera intrinsic matrix for the rectified image.\n\ 01250 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01251 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01252 # (cx', cy') - these may differ from the values in K.\n\ 01253 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01254 # also have R = the identity and P[1:3,1:3] = K.\n\ 01255 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01256 # position of the optical center of the second camera in the first\n\ 01257 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01258 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01259 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01260 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01261 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01262 # the rectified image is given by:\n\ 01263 # [u v w]' = P * [X Y Z 1]'\n\ 01264 # x = u / w\n\ 01265 # y = v / w\n\ 01266 # This holds for both images of a stereo pair.\n\ 01267 float64[12] P # 3x4 row-major matrix\n\ 01268 \n\ 01269 \n\ 01270 #######################################################################\n\ 01271 # Operational Parameters #\n\ 01272 #######################################################################\n\ 01273 # These define the image region actually captured by the camera #\n\ 01274 # driver. Although they affect the geometry of the output image, they #\n\ 01275 # may be changed freely without recalibrating the camera. #\n\ 01276 #######################################################################\n\ 01277 \n\ 01278 # Binning refers here to any camera setting which combines rectangular\n\ 01279 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01280 # resolution of the output image to\n\ 01281 # (width / binning_x) x (height / binning_y).\n\ 01282 # The default values binning_x = binning_y = 0 is considered the same\n\ 01283 # as binning_x = binning_y = 1 (no subsampling).\n\ 01284 uint32 binning_x\n\ 01285 uint32 binning_y\n\ 01286 \n\ 01287 # Region of interest (subwindow of full camera resolution), given in\n\ 01288 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01289 # always denotes the same window of pixels on the camera sensor,\n\ 01290 # regardless of binning settings.\n\ 01291 # The default setting of roi (all values 0) is considered the same as\n\ 01292 # full resolution (roi.width = width, roi.height = height).\n\ 01293 RegionOfInterest roi\n\ 01294 \n\ 01295 ================================================================================\n\ 01296 MSG: sensor_msgs/RegionOfInterest\n\ 01297 # This message is used to specify a region of interest within an image.\n\ 01298 #\n\ 01299 # When used to specify the ROI setting of the camera when the image was\n\ 01300 # taken, the height and width fields should either match the height and\n\ 01301 # width fields for the associated image; or height = width = 0\n\ 01302 # indicates that the full resolution image was captured.\n\ 01303 \n\ 01304 uint32 x_offset # Leftmost pixel of the ROI\n\ 01305 # (0 if the ROI includes the left edge of the image)\n\ 01306 uint32 y_offset # Topmost pixel of the ROI\n\ 01307 # (0 if the ROI includes the top edge of the image)\n\ 01308 uint32 height # Height of ROI\n\ 01309 uint32 width # Width of ROI\n\ 01310 \n\ 01311 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01312 # ROI in this message. Typically this should be False if the full image\n\ 01313 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01314 # used).\n\ 01315 bool do_rectify\n\ 01316 \n\ 01317 ================================================================================\n\ 01318 MSG: geometry_msgs/Vector3\n\ 01319 # This represents a vector in free space. \n\ 01320 \n\ 01321 float64 x\n\ 01322 float64 y\n\ 01323 float64 z\n\ 01324 ================================================================================\n\ 01325 MSG: object_manipulation_msgs/GraspResult\n\ 01326 int32 SUCCESS = 1\n\ 01327 int32 GRASP_OUT_OF_REACH = 2\n\ 01328 int32 GRASP_IN_COLLISION = 3\n\ 01329 int32 GRASP_UNFEASIBLE = 4\n\ 01330 int32 PREGRASP_OUT_OF_REACH = 5\n\ 01331 int32 PREGRASP_IN_COLLISION = 6\n\ 01332 int32 PREGRASP_UNFEASIBLE = 7\n\ 01333 int32 LIFT_OUT_OF_REACH = 8\n\ 01334 int32 LIFT_IN_COLLISION = 9\n\ 01335 int32 LIFT_UNFEASIBLE = 10\n\ 01336 int32 MOVE_ARM_FAILED = 11\n\ 01337 int32 GRASP_FAILED = 12\n\ 01338 int32 LIFT_FAILED = 13\n\ 01339 int32 RETREAT_FAILED = 14\n\ 01340 int32 result_code\n\ 01341 \n\ 01342 # whether the state of the world was disturbed by this attempt. generally, this flag\n\ 01343 # shows if another task can be attempted, or a new sensed world model is recommeded\n\ 01344 # before proceeding\n\ 01345 bool continuation_possible\n\ 01346 \n\ 01347 "; 01348 } 01349 01350 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); } 01351 }; 01352 01353 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {}; 01354 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {}; 01355 } // namespace message_traits 01356 } // namespace ros 01357 01358 namespace ros 01359 { 01360 namespace serialization 01361 { 01362 01363 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > 01364 { 01365 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01366 { 01367 stream.next(m.header); 01368 stream.next(m.status); 01369 stream.next(m.result); 01370 } 01371 01372 ROS_DECLARE_ALLINONE_SERIALIZER; 01373 }; // struct PickupActionResult_ 01374 } // namespace serialization 01375 } // namespace ros 01376 01377 namespace ros 01378 { 01379 namespace message_operations 01380 { 01381 01382 template<class ContainerAllocator> 01383 struct Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > 01384 { 01385 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v) 01386 { 01387 s << indent << "header: "; 01388 s << std::endl; 01389 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01390 s << indent << "status: "; 01391 s << std::endl; 01392 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status); 01393 s << indent << "result: "; 01394 s << std::endl; 01395 Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, indent + " ", v.result); 01396 } 01397 }; 01398 01399 01400 } // namespace message_operations 01401 } // namespace ros 01402 01403 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H 01404