00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalStatus.h"
00019 #include "object_manipulation_msgs/PickupResult.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PickupActionResult_ {
00025 typedef PickupActionResult_<ContainerAllocator> Type;
00026
00027 PickupActionResult_()
00028 : header()
00029 , status()
00030 , result()
00031 {
00032 }
00033
00034 PickupActionResult_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , status(_alloc)
00037 , result(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type;
00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status;
00046
00047 typedef ::object_manipulation_msgs::PickupResult_<ContainerAllocator> _result_type;
00048 ::object_manipulation_msgs::PickupResult_<ContainerAllocator> result;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/PickupActionResult"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "35cc61e4783a89b01b3f4ece0f5f068c"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalStatus status\n\
00070 PickupResult result\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalStatus\n\
00092 GoalID goal_id\n\
00093 uint8 status\n\
00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00097 # and has since completed its execution (Terminal State)\n\
00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00100 # to some failure (Terminal State)\n\
00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00102 # because the goal was unattainable or invalid (Terminal State)\n\
00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00104 # and has not yet completed execution\n\
00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00106 # but the action server has not yet confirmed that the goal is canceled\n\
00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00108 # and was successfully cancelled (Terminal State)\n\
00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00110 # sent over the wire by an action server\n\
00111 \n\
00112 #Allow for the user to associate a string with GoalStatus for debugging\n\
00113 string text\n\
00114 \n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: actionlib_msgs/GoalID\n\
00118 # The stamp should store the time at which this goal was requested.\n\
00119 # It is used by an action server when it tries to preempt all\n\
00120 # goals that were requested before a certain time\n\
00121 time stamp\n\
00122 \n\
00123 # The id provides a way to associate feedback and\n\
00124 # result message with specific goal requests. The id\n\
00125 # specified must be unique.\n\
00126 string id\n\
00127 \n\
00128 \n\
00129 ================================================================================\n\
00130 MSG: object_manipulation_msgs/PickupResult\n\
00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00132 \n\
00133 # The overall result of the pickup attempt\n\
00134 ManipulationResult manipulation_result\n\
00135 \n\
00136 # The performed grasp, if attempt was successful\n\
00137 Grasp grasp\n\
00138 \n\
00139 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00140 # the successful one should be the last one in this list\n\
00141 Grasp[] attempted_grasps\n\
00142 \n\
00143 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00144 GraspResult[] attempted_grasp_results\n\
00145 \n\
00146 \n\
00147 ================================================================================\n\
00148 MSG: object_manipulation_msgs/ManipulationResult\n\
00149 # Result codes for manipulation tasks\n\
00150 \n\
00151 # task completed as expected\n\
00152 # generally means you can proceed as planned\n\
00153 int32 SUCCESS = 1\n\
00154 \n\
00155 # task not possible (e.g. out of reach or obstacles in the way)\n\
00156 # generally means that the world was not disturbed, so you can try another task\n\
00157 int32 UNFEASIBLE = -1\n\
00158 \n\
00159 # task was thought possible, but failed due to unexpected events during execution\n\
00160 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00161 # your sensed world model before proceeding to another task\n\
00162 int32 FAILED = -2\n\
00163 \n\
00164 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00165 # generally requires human attention\n\
00166 int32 ERROR = -3\n\
00167 \n\
00168 # means that at some point during execution we ended up in a state that the collision-aware\n\
00169 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00170 # probably need a new collision map to move the arm out of the stuck position\n\
00171 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00172 \n\
00173 # specific to grasp actions\n\
00174 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00175 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00176 int32 LIFT_FAILED = -5\n\
00177 \n\
00178 # specific to place actions\n\
00179 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00180 # it is likely that the collision environment will see collisions between the hand and the object\n\
00181 int32 RETREAT_FAILED = -6\n\
00182 \n\
00183 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00184 int32 CANCELLED = -7\n\
00185 \n\
00186 # the actual value of this error code\n\
00187 int32 value\n\
00188 \n\
00189 ================================================================================\n\
00190 MSG: object_manipulation_msgs/Grasp\n\
00191 \n\
00192 # The internal posture of the hand for the pre-grasp\n\
00193 # only positions are used\n\
00194 sensor_msgs/JointState pre_grasp_posture\n\
00195 \n\
00196 # The internal posture of the hand for the grasp\n\
00197 # positions and efforts are used\n\
00198 sensor_msgs/JointState grasp_posture\n\
00199 \n\
00200 # The position of the end-effector for the grasp relative to a reference frame \n\
00201 # (that is always specified elsewhere, not in this message)\n\
00202 geometry_msgs/Pose grasp_pose\n\
00203 \n\
00204 # The estimated probability of success for this grasp\n\
00205 float64 success_probability\n\
00206 \n\
00207 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00208 bool cluster_rep\n\
00209 \n\
00210 # how far the pre-grasp should ideally be away from the grasp\n\
00211 float32 desired_approach_distance\n\
00212 \n\
00213 # how much distance between pre-grasp and grasp must actually be feasible \n\
00214 # for the grasp not to be rejected\n\
00215 float32 min_approach_distance\n\
00216 \n\
00217 # an optional list of obstacles that we have semantic information about\n\
00218 # and that we expect might move in the course of executing this grasp\n\
00219 # the grasp planner is expected to make sure they move in an OK way; during\n\
00220 # execution, grasp executors will not check for collisions against these objects\n\
00221 GraspableObject[] moved_obstacles\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: sensor_msgs/JointState\n\
00225 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00226 #\n\
00227 # The state of each joint (revolute or prismatic) is defined by:\n\
00228 # * the position of the joint (rad or m),\n\
00229 # * the velocity of the joint (rad/s or m/s) and \n\
00230 # * the effort that is applied in the joint (Nm or N).\n\
00231 #\n\
00232 # Each joint is uniquely identified by its name\n\
00233 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00234 # in one message have to be recorded at the same time.\n\
00235 #\n\
00236 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00237 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00238 # effort associated with them, you can leave the effort array empty. \n\
00239 #\n\
00240 # All arrays in this message should have the same size, or be empty.\n\
00241 # This is the only way to uniquely associate the joint name with the correct\n\
00242 # states.\n\
00243 \n\
00244 \n\
00245 Header header\n\
00246 \n\
00247 string[] name\n\
00248 float64[] position\n\
00249 float64[] velocity\n\
00250 float64[] effort\n\
00251 \n\
00252 ================================================================================\n\
00253 MSG: geometry_msgs/Pose\n\
00254 # A representation of pose in free space, composed of postion and orientation. \n\
00255 Point position\n\
00256 Quaternion orientation\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: geometry_msgs/Point\n\
00260 # This contains the position of a point in free space\n\
00261 float64 x\n\
00262 float64 y\n\
00263 float64 z\n\
00264 \n\
00265 ================================================================================\n\
00266 MSG: geometry_msgs/Quaternion\n\
00267 # This represents an orientation in free space in quaternion form.\n\
00268 \n\
00269 float64 x\n\
00270 float64 y\n\
00271 float64 z\n\
00272 float64 w\n\
00273 \n\
00274 ================================================================================\n\
00275 MSG: object_manipulation_msgs/GraspableObject\n\
00276 # an object that the object_manipulator can work on\n\
00277 \n\
00278 # a graspable object can be represented in multiple ways. This message\n\
00279 # can contain all of them. Which one is actually used is up to the receiver\n\
00280 # of this message. When adding new representations, one must be careful that\n\
00281 # they have reasonable lightweight defaults indicating that that particular\n\
00282 # representation is not available.\n\
00283 \n\
00284 # the tf frame to be used as a reference frame when combining information from\n\
00285 # the different representations below\n\
00286 string reference_frame_id\n\
00287 \n\
00288 # potential recognition results from a database of models\n\
00289 # all poses are relative to the object reference pose\n\
00290 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00291 \n\
00292 # the point cloud itself\n\
00293 sensor_msgs/PointCloud cluster\n\
00294 \n\
00295 # a region of a PointCloud2 of interest\n\
00296 object_manipulation_msgs/SceneRegion region\n\
00297 \n\
00298 # the name that this object has in the collision environment\n\
00299 string collision_name\n\
00300 ================================================================================\n\
00301 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00302 # Informs that a specific model from the Model Database has been \n\
00303 # identified at a certain location\n\
00304 \n\
00305 # the database id of the model\n\
00306 int32 model_id\n\
00307 \n\
00308 # the pose that it can be found in\n\
00309 geometry_msgs/PoseStamped pose\n\
00310 \n\
00311 # a measure of the confidence level in this detection result\n\
00312 float32 confidence\n\
00313 \n\
00314 # the name of the object detector that generated this detection result\n\
00315 string detector_name\n\
00316 \n\
00317 ================================================================================\n\
00318 MSG: geometry_msgs/PoseStamped\n\
00319 # A Pose with reference coordinate frame and timestamp\n\
00320 Header header\n\
00321 Pose pose\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/PointCloud\n\
00325 # This message holds a collection of 3d points, plus optional additional\n\
00326 # information about each point.\n\
00327 \n\
00328 # Time of sensor data acquisition, coordinate frame ID.\n\
00329 Header header\n\
00330 \n\
00331 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00332 # in the frame given in the header.\n\
00333 geometry_msgs/Point32[] points\n\
00334 \n\
00335 # Each channel should have the same number of elements as points array,\n\
00336 # and the data in each channel should correspond 1:1 with each point.\n\
00337 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00338 ChannelFloat32[] channels\n\
00339 \n\
00340 ================================================================================\n\
00341 MSG: geometry_msgs/Point32\n\
00342 # This contains the position of a point in free space(with 32 bits of precision).\n\
00343 # It is recommeded to use Point wherever possible instead of Point32. \n\
00344 # \n\
00345 # This recommendation is to promote interoperability. \n\
00346 #\n\
00347 # This message is designed to take up less space when sending\n\
00348 # lots of points at once, as in the case of a PointCloud. \n\
00349 \n\
00350 float32 x\n\
00351 float32 y\n\
00352 float32 z\n\
00353 ================================================================================\n\
00354 MSG: sensor_msgs/ChannelFloat32\n\
00355 # This message is used by the PointCloud message to hold optional data\n\
00356 # associated with each point in the cloud. The length of the values\n\
00357 # array should be the same as the length of the points array in the\n\
00358 # PointCloud, and each value should be associated with the corresponding\n\
00359 # point.\n\
00360 \n\
00361 # Channel names in existing practice include:\n\
00362 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00363 # This is opposite to usual conventions but remains for\n\
00364 # historical reasons. The newer PointCloud2 message has no\n\
00365 # such problem.\n\
00366 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00367 # (R,G,B) values packed into the least significant 24 bits,\n\
00368 # in order.\n\
00369 # \"intensity\" - laser or pixel intensity.\n\
00370 # \"distance\"\n\
00371 \n\
00372 # The channel name should give semantics of the channel (e.g.\n\
00373 # \"intensity\" instead of \"value\").\n\
00374 string name\n\
00375 \n\
00376 # The values array should be 1-1 with the elements of the associated\n\
00377 # PointCloud.\n\
00378 float32[] values\n\
00379 \n\
00380 ================================================================================\n\
00381 MSG: object_manipulation_msgs/SceneRegion\n\
00382 # Point cloud\n\
00383 sensor_msgs/PointCloud2 cloud\n\
00384 \n\
00385 # Indices for the region of interest\n\
00386 int32[] mask\n\
00387 \n\
00388 # One of the corresponding 2D images, if applicable\n\
00389 sensor_msgs/Image image\n\
00390 \n\
00391 # The disparity image, if applicable\n\
00392 sensor_msgs/Image disparity_image\n\
00393 \n\
00394 # Camera info for the camera that took the image\n\
00395 sensor_msgs/CameraInfo cam_info\n\
00396 \n\
00397 # a 3D region of interest for grasp planning\n\
00398 geometry_msgs/PoseStamped roi_box_pose\n\
00399 geometry_msgs/Vector3 roi_box_dims\n\
00400 \n\
00401 ================================================================================\n\
00402 MSG: sensor_msgs/PointCloud2\n\
00403 # This message holds a collection of N-dimensional points, which may\n\
00404 # contain additional information such as normals, intensity, etc. The\n\
00405 # point data is stored as a binary blob, its layout described by the\n\
00406 # contents of the \"fields\" array.\n\
00407 \n\
00408 # The point cloud data may be organized 2d (image-like) or 1d\n\
00409 # (unordered). Point clouds organized as 2d images may be produced by\n\
00410 # camera depth sensors such as stereo or time-of-flight.\n\
00411 \n\
00412 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00413 # points).\n\
00414 Header header\n\
00415 \n\
00416 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00417 # 1 and width is the length of the point cloud.\n\
00418 uint32 height\n\
00419 uint32 width\n\
00420 \n\
00421 # Describes the channels and their layout in the binary data blob.\n\
00422 PointField[] fields\n\
00423 \n\
00424 bool is_bigendian # Is this data bigendian?\n\
00425 uint32 point_step # Length of a point in bytes\n\
00426 uint32 row_step # Length of a row in bytes\n\
00427 uint8[] data # Actual point data, size is (row_step*height)\n\
00428 \n\
00429 bool is_dense # True if there are no invalid points\n\
00430 \n\
00431 ================================================================================\n\
00432 MSG: sensor_msgs/PointField\n\
00433 # This message holds the description of one point entry in the\n\
00434 # PointCloud2 message format.\n\
00435 uint8 INT8 = 1\n\
00436 uint8 UINT8 = 2\n\
00437 uint8 INT16 = 3\n\
00438 uint8 UINT16 = 4\n\
00439 uint8 INT32 = 5\n\
00440 uint8 UINT32 = 6\n\
00441 uint8 FLOAT32 = 7\n\
00442 uint8 FLOAT64 = 8\n\
00443 \n\
00444 string name # Name of field\n\
00445 uint32 offset # Offset from start of point struct\n\
00446 uint8 datatype # Datatype enumeration, see above\n\
00447 uint32 count # How many elements in the field\n\
00448 \n\
00449 ================================================================================\n\
00450 MSG: sensor_msgs/Image\n\
00451 # This message contains an uncompressed image\n\
00452 # (0, 0) is at top-left corner of image\n\
00453 #\n\
00454 \n\
00455 Header header # Header timestamp should be acquisition time of image\n\
00456 # Header frame_id should be optical frame of camera\n\
00457 # origin of frame should be optical center of cameara\n\
00458 # +x should point to the right in the image\n\
00459 # +y should point down in the image\n\
00460 # +z should point into to plane of the image\n\
00461 # If the frame_id here and the frame_id of the CameraInfo\n\
00462 # message associated with the image conflict\n\
00463 # the behavior is undefined\n\
00464 \n\
00465 uint32 height # image height, that is, number of rows\n\
00466 uint32 width # image width, that is, number of columns\n\
00467 \n\
00468 # The legal values for encoding are in file src/image_encodings.cpp\n\
00469 # If you want to standardize a new string format, join\n\
00470 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00471 \n\
00472 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00473 # taken from the list of strings in src/image_encodings.cpp\n\
00474 \n\
00475 uint8 is_bigendian # is this data bigendian?\n\
00476 uint32 step # Full row length in bytes\n\
00477 uint8[] data # actual matrix data, size is (step * rows)\n\
00478 \n\
00479 ================================================================================\n\
00480 MSG: sensor_msgs/CameraInfo\n\
00481 # This message defines meta information for a camera. It should be in a\n\
00482 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00483 # image topics named:\n\
00484 #\n\
00485 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00486 # image - monochrome, distorted\n\
00487 # image_color - color, distorted\n\
00488 # image_rect - monochrome, rectified\n\
00489 # image_rect_color - color, rectified\n\
00490 #\n\
00491 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00492 # for producing the four processed image topics from image_raw and\n\
00493 # camera_info. The meaning of the camera parameters are described in\n\
00494 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00495 #\n\
00496 # The image_geometry package provides a user-friendly interface to\n\
00497 # common operations using this meta information. If you want to, e.g.,\n\
00498 # project a 3d point into image coordinates, we strongly recommend\n\
00499 # using image_geometry.\n\
00500 #\n\
00501 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00502 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00503 # indicates an uncalibrated camera.\n\
00504 \n\
00505 #######################################################################\n\
00506 # Image acquisition info #\n\
00507 #######################################################################\n\
00508 \n\
00509 # Time of image acquisition, camera coordinate frame ID\n\
00510 Header header # Header timestamp should be acquisition time of image\n\
00511 # Header frame_id should be optical frame of camera\n\
00512 # origin of frame should be optical center of camera\n\
00513 # +x should point to the right in the image\n\
00514 # +y should point down in the image\n\
00515 # +z should point into the plane of the image\n\
00516 \n\
00517 \n\
00518 #######################################################################\n\
00519 # Calibration Parameters #\n\
00520 #######################################################################\n\
00521 # These are fixed during camera calibration. Their values will be the #\n\
00522 # same in all messages until the camera is recalibrated. Note that #\n\
00523 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00524 # #\n\
00525 # The internal parameters can be used to warp a raw (distorted) image #\n\
00526 # to: #\n\
00527 # 1. An undistorted image (requires D and K) #\n\
00528 # 2. A rectified image (requires D, K, R) #\n\
00529 # The projection matrix P projects 3D points into the rectified image.#\n\
00530 #######################################################################\n\
00531 \n\
00532 # The image dimensions with which the camera was calibrated. Normally\n\
00533 # this will be the full camera resolution in pixels.\n\
00534 uint32 height\n\
00535 uint32 width\n\
00536 \n\
00537 # The distortion model used. Supported models are listed in\n\
00538 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00539 # simple model of radial and tangential distortion - is sufficent.\n\
00540 string distortion_model\n\
00541 \n\
00542 # The distortion parameters, size depending on the distortion model.\n\
00543 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00544 float64[] D\n\
00545 \n\
00546 # Intrinsic camera matrix for the raw (distorted) images.\n\
00547 # [fx 0 cx]\n\
00548 # K = [ 0 fy cy]\n\
00549 # [ 0 0 1]\n\
00550 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00551 # coordinates using the focal lengths (fx, fy) and principal point\n\
00552 # (cx, cy).\n\
00553 float64[9] K # 3x3 row-major matrix\n\
00554 \n\
00555 # Rectification matrix (stereo cameras only)\n\
00556 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00557 # stereo image plane so that epipolar lines in both stereo images are\n\
00558 # parallel.\n\
00559 float64[9] R # 3x3 row-major matrix\n\
00560 \n\
00561 # Projection/camera matrix\n\
00562 # [fx' 0 cx' Tx]\n\
00563 # P = [ 0 fy' cy' Ty]\n\
00564 # [ 0 0 1 0]\n\
00565 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00566 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00567 # is the normal camera intrinsic matrix for the rectified image.\n\
00568 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00569 # coordinates using the focal lengths (fx', fy') and principal point\n\
00570 # (cx', cy') - these may differ from the values in K.\n\
00571 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00572 # also have R = the identity and P[1:3,1:3] = K.\n\
00573 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00574 # position of the optical center of the second camera in the first\n\
00575 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00576 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00577 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00578 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00579 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00580 # the rectified image is given by:\n\
00581 # [u v w]' = P * [X Y Z 1]'\n\
00582 # x = u / w\n\
00583 # y = v / w\n\
00584 # This holds for both images of a stereo pair.\n\
00585 float64[12] P # 3x4 row-major matrix\n\
00586 \n\
00587 \n\
00588 #######################################################################\n\
00589 # Operational Parameters #\n\
00590 #######################################################################\n\
00591 # These define the image region actually captured by the camera #\n\
00592 # driver. Although they affect the geometry of the output image, they #\n\
00593 # may be changed freely without recalibrating the camera. #\n\
00594 #######################################################################\n\
00595 \n\
00596 # Binning refers here to any camera setting which combines rectangular\n\
00597 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00598 # resolution of the output image to\n\
00599 # (width / binning_x) x (height / binning_y).\n\
00600 # The default values binning_x = binning_y = 0 is considered the same\n\
00601 # as binning_x = binning_y = 1 (no subsampling).\n\
00602 uint32 binning_x\n\
00603 uint32 binning_y\n\
00604 \n\
00605 # Region of interest (subwindow of full camera resolution), given in\n\
00606 # full resolution (unbinned) image coordinates. A particular ROI\n\
00607 # always denotes the same window of pixels on the camera sensor,\n\
00608 # regardless of binning settings.\n\
00609 # The default setting of roi (all values 0) is considered the same as\n\
00610 # full resolution (roi.width = width, roi.height = height).\n\
00611 RegionOfInterest roi\n\
00612 \n\
00613 ================================================================================\n\
00614 MSG: sensor_msgs/RegionOfInterest\n\
00615 # This message is used to specify a region of interest within an image.\n\
00616 #\n\
00617 # When used to specify the ROI setting of the camera when the image was\n\
00618 # taken, the height and width fields should either match the height and\n\
00619 # width fields for the associated image; or height = width = 0\n\
00620 # indicates that the full resolution image was captured.\n\
00621 \n\
00622 uint32 x_offset # Leftmost pixel of the ROI\n\
00623 # (0 if the ROI includes the left edge of the image)\n\
00624 uint32 y_offset # Topmost pixel of the ROI\n\
00625 # (0 if the ROI includes the top edge of the image)\n\
00626 uint32 height # Height of ROI\n\
00627 uint32 width # Width of ROI\n\
00628 \n\
00629 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00630 # ROI in this message. Typically this should be False if the full image\n\
00631 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00632 # used).\n\
00633 bool do_rectify\n\
00634 \n\
00635 ================================================================================\n\
00636 MSG: geometry_msgs/Vector3\n\
00637 # This represents a vector in free space. \n\
00638 \n\
00639 float64 x\n\
00640 float64 y\n\
00641 float64 z\n\
00642 ================================================================================\n\
00643 MSG: object_manipulation_msgs/GraspResult\n\
00644 int32 SUCCESS = 1\n\
00645 int32 GRASP_OUT_OF_REACH = 2\n\
00646 int32 GRASP_IN_COLLISION = 3\n\
00647 int32 GRASP_UNFEASIBLE = 4\n\
00648 int32 PREGRASP_OUT_OF_REACH = 5\n\
00649 int32 PREGRASP_IN_COLLISION = 6\n\
00650 int32 PREGRASP_UNFEASIBLE = 7\n\
00651 int32 LIFT_OUT_OF_REACH = 8\n\
00652 int32 LIFT_IN_COLLISION = 9\n\
00653 int32 LIFT_UNFEASIBLE = 10\n\
00654 int32 MOVE_ARM_FAILED = 11\n\
00655 int32 GRASP_FAILED = 12\n\
00656 int32 LIFT_FAILED = 13\n\
00657 int32 RETREAT_FAILED = 14\n\
00658 int32 result_code\n\
00659 \n\
00660 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
00661 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
00662 # before proceeding\n\
00663 bool continuation_possible\n\
00664 \n\
00665 "; }
00666 public:
00667 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00668
00669 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00670
00671 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00672 {
00673 ros::serialization::OStream stream(write_ptr, 1000000000);
00674 ros::serialization::serialize(stream, header);
00675 ros::serialization::serialize(stream, status);
00676 ros::serialization::serialize(stream, result);
00677 return stream.getData();
00678 }
00679
00680 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00681 {
00682 ros::serialization::IStream stream(read_ptr, 1000000000);
00683 ros::serialization::deserialize(stream, header);
00684 ros::serialization::deserialize(stream, status);
00685 ros::serialization::deserialize(stream, result);
00686 return stream.getData();
00687 }
00688
00689 ROS_DEPRECATED virtual uint32_t serializationLength() const
00690 {
00691 uint32_t size = 0;
00692 size += ros::serialization::serializationLength(header);
00693 size += ros::serialization::serializationLength(status);
00694 size += ros::serialization::serializationLength(result);
00695 return size;
00696 }
00697
00698 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > Ptr;
00699 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> const> ConstPtr;
00700 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00701 };
00702 typedef ::object_manipulation_msgs::PickupActionResult_<std::allocator<void> > PickupActionResult;
00703
00704 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult> PickupActionResultPtr;
00705 typedef boost::shared_ptr< ::object_manipulation_msgs::PickupActionResult const> PickupActionResultConstPtr;
00706
00707
00708 template<typename ContainerAllocator>
00709 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v)
00710 {
00711 ros::message_operations::Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >::stream(s, "", v);
00712 return s;}
00713
00714 }
00715
00716 namespace ros
00717 {
00718 namespace message_traits
00719 {
00720 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
00721 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> const> : public TrueType {};
00722 template<class ContainerAllocator>
00723 struct MD5Sum< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00724 static const char* value()
00725 {
00726 return "35cc61e4783a89b01b3f4ece0f5f068c";
00727 }
00728
00729 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); }
00730 static const uint64_t static_value1 = 0x35cc61e4783a89b0ULL;
00731 static const uint64_t static_value2 = 0x1b3f4ece0f5f068cULL;
00732 };
00733
00734 template<class ContainerAllocator>
00735 struct DataType< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00736 static const char* value()
00737 {
00738 return "object_manipulation_msgs/PickupActionResult";
00739 }
00740
00741 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); }
00742 };
00743
00744 template<class ContainerAllocator>
00745 struct Definition< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > {
00746 static const char* value()
00747 {
00748 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00749 \n\
00750 Header header\n\
00751 actionlib_msgs/GoalStatus status\n\
00752 PickupResult result\n\
00753 \n\
00754 ================================================================================\n\
00755 MSG: std_msgs/Header\n\
00756 # Standard metadata for higher-level stamped data types.\n\
00757 # This is generally used to communicate timestamped data \n\
00758 # in a particular coordinate frame.\n\
00759 # \n\
00760 # sequence ID: consecutively increasing ID \n\
00761 uint32 seq\n\
00762 #Two-integer timestamp that is expressed as:\n\
00763 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00764 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00765 # time-handling sugar is provided by the client library\n\
00766 time stamp\n\
00767 #Frame this data is associated with\n\
00768 # 0: no frame\n\
00769 # 1: global frame\n\
00770 string frame_id\n\
00771 \n\
00772 ================================================================================\n\
00773 MSG: actionlib_msgs/GoalStatus\n\
00774 GoalID goal_id\n\
00775 uint8 status\n\
00776 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00777 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00778 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00779 # and has since completed its execution (Terminal State)\n\
00780 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00781 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00782 # to some failure (Terminal State)\n\
00783 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00784 # because the goal was unattainable or invalid (Terminal State)\n\
00785 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00786 # and has not yet completed execution\n\
00787 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00788 # but the action server has not yet confirmed that the goal is canceled\n\
00789 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00790 # and was successfully cancelled (Terminal State)\n\
00791 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00792 # sent over the wire by an action server\n\
00793 \n\
00794 #Allow for the user to associate a string with GoalStatus for debugging\n\
00795 string text\n\
00796 \n\
00797 \n\
00798 ================================================================================\n\
00799 MSG: actionlib_msgs/GoalID\n\
00800 # The stamp should store the time at which this goal was requested.\n\
00801 # It is used by an action server when it tries to preempt all\n\
00802 # goals that were requested before a certain time\n\
00803 time stamp\n\
00804 \n\
00805 # The id provides a way to associate feedback and\n\
00806 # result message with specific goal requests. The id\n\
00807 # specified must be unique.\n\
00808 string id\n\
00809 \n\
00810 \n\
00811 ================================================================================\n\
00812 MSG: object_manipulation_msgs/PickupResult\n\
00813 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00814 \n\
00815 # The overall result of the pickup attempt\n\
00816 ManipulationResult manipulation_result\n\
00817 \n\
00818 # The performed grasp, if attempt was successful\n\
00819 Grasp grasp\n\
00820 \n\
00821 # the complete list of attempted grasp, in the order in which they have been attempted\n\
00822 # the successful one should be the last one in this list\n\
00823 Grasp[] attempted_grasps\n\
00824 \n\
00825 # the outcomes of the attempted grasps, in the same order as attempted_grasps\n\
00826 GraspResult[] attempted_grasp_results\n\
00827 \n\
00828 \n\
00829 ================================================================================\n\
00830 MSG: object_manipulation_msgs/ManipulationResult\n\
00831 # Result codes for manipulation tasks\n\
00832 \n\
00833 # task completed as expected\n\
00834 # generally means you can proceed as planned\n\
00835 int32 SUCCESS = 1\n\
00836 \n\
00837 # task not possible (e.g. out of reach or obstacles in the way)\n\
00838 # generally means that the world was not disturbed, so you can try another task\n\
00839 int32 UNFEASIBLE = -1\n\
00840 \n\
00841 # task was thought possible, but failed due to unexpected events during execution\n\
00842 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00843 # your sensed world model before proceeding to another task\n\
00844 int32 FAILED = -2\n\
00845 \n\
00846 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00847 # generally requires human attention\n\
00848 int32 ERROR = -3\n\
00849 \n\
00850 # means that at some point during execution we ended up in a state that the collision-aware\n\
00851 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00852 # probably need a new collision map to move the arm out of the stuck position\n\
00853 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00854 \n\
00855 # specific to grasp actions\n\
00856 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00857 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00858 int32 LIFT_FAILED = -5\n\
00859 \n\
00860 # specific to place actions\n\
00861 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00862 # it is likely that the collision environment will see collisions between the hand and the object\n\
00863 int32 RETREAT_FAILED = -6\n\
00864 \n\
00865 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00866 int32 CANCELLED = -7\n\
00867 \n\
00868 # the actual value of this error code\n\
00869 int32 value\n\
00870 \n\
00871 ================================================================================\n\
00872 MSG: object_manipulation_msgs/Grasp\n\
00873 \n\
00874 # The internal posture of the hand for the pre-grasp\n\
00875 # only positions are used\n\
00876 sensor_msgs/JointState pre_grasp_posture\n\
00877 \n\
00878 # The internal posture of the hand for the grasp\n\
00879 # positions and efforts are used\n\
00880 sensor_msgs/JointState grasp_posture\n\
00881 \n\
00882 # The position of the end-effector for the grasp relative to a reference frame \n\
00883 # (that is always specified elsewhere, not in this message)\n\
00884 geometry_msgs/Pose grasp_pose\n\
00885 \n\
00886 # The estimated probability of success for this grasp\n\
00887 float64 success_probability\n\
00888 \n\
00889 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00890 bool cluster_rep\n\
00891 \n\
00892 # how far the pre-grasp should ideally be away from the grasp\n\
00893 float32 desired_approach_distance\n\
00894 \n\
00895 # how much distance between pre-grasp and grasp must actually be feasible \n\
00896 # for the grasp not to be rejected\n\
00897 float32 min_approach_distance\n\
00898 \n\
00899 # an optional list of obstacles that we have semantic information about\n\
00900 # and that we expect might move in the course of executing this grasp\n\
00901 # the grasp planner is expected to make sure they move in an OK way; during\n\
00902 # execution, grasp executors will not check for collisions against these objects\n\
00903 GraspableObject[] moved_obstacles\n\
00904 \n\
00905 ================================================================================\n\
00906 MSG: sensor_msgs/JointState\n\
00907 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00908 #\n\
00909 # The state of each joint (revolute or prismatic) is defined by:\n\
00910 # * the position of the joint (rad or m),\n\
00911 # * the velocity of the joint (rad/s or m/s) and \n\
00912 # * the effort that is applied in the joint (Nm or N).\n\
00913 #\n\
00914 # Each joint is uniquely identified by its name\n\
00915 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00916 # in one message have to be recorded at the same time.\n\
00917 #\n\
00918 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00919 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00920 # effort associated with them, you can leave the effort array empty. \n\
00921 #\n\
00922 # All arrays in this message should have the same size, or be empty.\n\
00923 # This is the only way to uniquely associate the joint name with the correct\n\
00924 # states.\n\
00925 \n\
00926 \n\
00927 Header header\n\
00928 \n\
00929 string[] name\n\
00930 float64[] position\n\
00931 float64[] velocity\n\
00932 float64[] effort\n\
00933 \n\
00934 ================================================================================\n\
00935 MSG: geometry_msgs/Pose\n\
00936 # A representation of pose in free space, composed of postion and orientation. \n\
00937 Point position\n\
00938 Quaternion orientation\n\
00939 \n\
00940 ================================================================================\n\
00941 MSG: geometry_msgs/Point\n\
00942 # This contains the position of a point in free space\n\
00943 float64 x\n\
00944 float64 y\n\
00945 float64 z\n\
00946 \n\
00947 ================================================================================\n\
00948 MSG: geometry_msgs/Quaternion\n\
00949 # This represents an orientation in free space in quaternion form.\n\
00950 \n\
00951 float64 x\n\
00952 float64 y\n\
00953 float64 z\n\
00954 float64 w\n\
00955 \n\
00956 ================================================================================\n\
00957 MSG: object_manipulation_msgs/GraspableObject\n\
00958 # an object that the object_manipulator can work on\n\
00959 \n\
00960 # a graspable object can be represented in multiple ways. This message\n\
00961 # can contain all of them. Which one is actually used is up to the receiver\n\
00962 # of this message. When adding new representations, one must be careful that\n\
00963 # they have reasonable lightweight defaults indicating that that particular\n\
00964 # representation is not available.\n\
00965 \n\
00966 # the tf frame to be used as a reference frame when combining information from\n\
00967 # the different representations below\n\
00968 string reference_frame_id\n\
00969 \n\
00970 # potential recognition results from a database of models\n\
00971 # all poses are relative to the object reference pose\n\
00972 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00973 \n\
00974 # the point cloud itself\n\
00975 sensor_msgs/PointCloud cluster\n\
00976 \n\
00977 # a region of a PointCloud2 of interest\n\
00978 object_manipulation_msgs/SceneRegion region\n\
00979 \n\
00980 # the name that this object has in the collision environment\n\
00981 string collision_name\n\
00982 ================================================================================\n\
00983 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00984 # Informs that a specific model from the Model Database has been \n\
00985 # identified at a certain location\n\
00986 \n\
00987 # the database id of the model\n\
00988 int32 model_id\n\
00989 \n\
00990 # the pose that it can be found in\n\
00991 geometry_msgs/PoseStamped pose\n\
00992 \n\
00993 # a measure of the confidence level in this detection result\n\
00994 float32 confidence\n\
00995 \n\
00996 # the name of the object detector that generated this detection result\n\
00997 string detector_name\n\
00998 \n\
00999 ================================================================================\n\
01000 MSG: geometry_msgs/PoseStamped\n\
01001 # A Pose with reference coordinate frame and timestamp\n\
01002 Header header\n\
01003 Pose pose\n\
01004 \n\
01005 ================================================================================\n\
01006 MSG: sensor_msgs/PointCloud\n\
01007 # This message holds a collection of 3d points, plus optional additional\n\
01008 # information about each point.\n\
01009 \n\
01010 # Time of sensor data acquisition, coordinate frame ID.\n\
01011 Header header\n\
01012 \n\
01013 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01014 # in the frame given in the header.\n\
01015 geometry_msgs/Point32[] points\n\
01016 \n\
01017 # Each channel should have the same number of elements as points array,\n\
01018 # and the data in each channel should correspond 1:1 with each point.\n\
01019 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01020 ChannelFloat32[] channels\n\
01021 \n\
01022 ================================================================================\n\
01023 MSG: geometry_msgs/Point32\n\
01024 # This contains the position of a point in free space(with 32 bits of precision).\n\
01025 # It is recommeded to use Point wherever possible instead of Point32. \n\
01026 # \n\
01027 # This recommendation is to promote interoperability. \n\
01028 #\n\
01029 # This message is designed to take up less space when sending\n\
01030 # lots of points at once, as in the case of a PointCloud. \n\
01031 \n\
01032 float32 x\n\
01033 float32 y\n\
01034 float32 z\n\
01035 ================================================================================\n\
01036 MSG: sensor_msgs/ChannelFloat32\n\
01037 # This message is used by the PointCloud message to hold optional data\n\
01038 # associated with each point in the cloud. The length of the values\n\
01039 # array should be the same as the length of the points array in the\n\
01040 # PointCloud, and each value should be associated with the corresponding\n\
01041 # point.\n\
01042 \n\
01043 # Channel names in existing practice include:\n\
01044 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01045 # This is opposite to usual conventions but remains for\n\
01046 # historical reasons. The newer PointCloud2 message has no\n\
01047 # such problem.\n\
01048 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01049 # (R,G,B) values packed into the least significant 24 bits,\n\
01050 # in order.\n\
01051 # \"intensity\" - laser or pixel intensity.\n\
01052 # \"distance\"\n\
01053 \n\
01054 # The channel name should give semantics of the channel (e.g.\n\
01055 # \"intensity\" instead of \"value\").\n\
01056 string name\n\
01057 \n\
01058 # The values array should be 1-1 with the elements of the associated\n\
01059 # PointCloud.\n\
01060 float32[] values\n\
01061 \n\
01062 ================================================================================\n\
01063 MSG: object_manipulation_msgs/SceneRegion\n\
01064 # Point cloud\n\
01065 sensor_msgs/PointCloud2 cloud\n\
01066 \n\
01067 # Indices for the region of interest\n\
01068 int32[] mask\n\
01069 \n\
01070 # One of the corresponding 2D images, if applicable\n\
01071 sensor_msgs/Image image\n\
01072 \n\
01073 # The disparity image, if applicable\n\
01074 sensor_msgs/Image disparity_image\n\
01075 \n\
01076 # Camera info for the camera that took the image\n\
01077 sensor_msgs/CameraInfo cam_info\n\
01078 \n\
01079 # a 3D region of interest for grasp planning\n\
01080 geometry_msgs/PoseStamped roi_box_pose\n\
01081 geometry_msgs/Vector3 roi_box_dims\n\
01082 \n\
01083 ================================================================================\n\
01084 MSG: sensor_msgs/PointCloud2\n\
01085 # This message holds a collection of N-dimensional points, which may\n\
01086 # contain additional information such as normals, intensity, etc. The\n\
01087 # point data is stored as a binary blob, its layout described by the\n\
01088 # contents of the \"fields\" array.\n\
01089 \n\
01090 # The point cloud data may be organized 2d (image-like) or 1d\n\
01091 # (unordered). Point clouds organized as 2d images may be produced by\n\
01092 # camera depth sensors such as stereo or time-of-flight.\n\
01093 \n\
01094 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01095 # points).\n\
01096 Header header\n\
01097 \n\
01098 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01099 # 1 and width is the length of the point cloud.\n\
01100 uint32 height\n\
01101 uint32 width\n\
01102 \n\
01103 # Describes the channels and their layout in the binary data blob.\n\
01104 PointField[] fields\n\
01105 \n\
01106 bool is_bigendian # Is this data bigendian?\n\
01107 uint32 point_step # Length of a point in bytes\n\
01108 uint32 row_step # Length of a row in bytes\n\
01109 uint8[] data # Actual point data, size is (row_step*height)\n\
01110 \n\
01111 bool is_dense # True if there are no invalid points\n\
01112 \n\
01113 ================================================================================\n\
01114 MSG: sensor_msgs/PointField\n\
01115 # This message holds the description of one point entry in the\n\
01116 # PointCloud2 message format.\n\
01117 uint8 INT8 = 1\n\
01118 uint8 UINT8 = 2\n\
01119 uint8 INT16 = 3\n\
01120 uint8 UINT16 = 4\n\
01121 uint8 INT32 = 5\n\
01122 uint8 UINT32 = 6\n\
01123 uint8 FLOAT32 = 7\n\
01124 uint8 FLOAT64 = 8\n\
01125 \n\
01126 string name # Name of field\n\
01127 uint32 offset # Offset from start of point struct\n\
01128 uint8 datatype # Datatype enumeration, see above\n\
01129 uint32 count # How many elements in the field\n\
01130 \n\
01131 ================================================================================\n\
01132 MSG: sensor_msgs/Image\n\
01133 # This message contains an uncompressed image\n\
01134 # (0, 0) is at top-left corner of image\n\
01135 #\n\
01136 \n\
01137 Header header # Header timestamp should be acquisition time of image\n\
01138 # Header frame_id should be optical frame of camera\n\
01139 # origin of frame should be optical center of cameara\n\
01140 # +x should point to the right in the image\n\
01141 # +y should point down in the image\n\
01142 # +z should point into to plane of the image\n\
01143 # If the frame_id here and the frame_id of the CameraInfo\n\
01144 # message associated with the image conflict\n\
01145 # the behavior is undefined\n\
01146 \n\
01147 uint32 height # image height, that is, number of rows\n\
01148 uint32 width # image width, that is, number of columns\n\
01149 \n\
01150 # The legal values for encoding are in file src/image_encodings.cpp\n\
01151 # If you want to standardize a new string format, join\n\
01152 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01153 \n\
01154 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01155 # taken from the list of strings in src/image_encodings.cpp\n\
01156 \n\
01157 uint8 is_bigendian # is this data bigendian?\n\
01158 uint32 step # Full row length in bytes\n\
01159 uint8[] data # actual matrix data, size is (step * rows)\n\
01160 \n\
01161 ================================================================================\n\
01162 MSG: sensor_msgs/CameraInfo\n\
01163 # This message defines meta information for a camera. It should be in a\n\
01164 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01165 # image topics named:\n\
01166 #\n\
01167 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01168 # image - monochrome, distorted\n\
01169 # image_color - color, distorted\n\
01170 # image_rect - monochrome, rectified\n\
01171 # image_rect_color - color, rectified\n\
01172 #\n\
01173 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01174 # for producing the four processed image topics from image_raw and\n\
01175 # camera_info. The meaning of the camera parameters are described in\n\
01176 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01177 #\n\
01178 # The image_geometry package provides a user-friendly interface to\n\
01179 # common operations using this meta information. If you want to, e.g.,\n\
01180 # project a 3d point into image coordinates, we strongly recommend\n\
01181 # using image_geometry.\n\
01182 #\n\
01183 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01184 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01185 # indicates an uncalibrated camera.\n\
01186 \n\
01187 #######################################################################\n\
01188 # Image acquisition info #\n\
01189 #######################################################################\n\
01190 \n\
01191 # Time of image acquisition, camera coordinate frame ID\n\
01192 Header header # Header timestamp should be acquisition time of image\n\
01193 # Header frame_id should be optical frame of camera\n\
01194 # origin of frame should be optical center of camera\n\
01195 # +x should point to the right in the image\n\
01196 # +y should point down in the image\n\
01197 # +z should point into the plane of the image\n\
01198 \n\
01199 \n\
01200 #######################################################################\n\
01201 # Calibration Parameters #\n\
01202 #######################################################################\n\
01203 # These are fixed during camera calibration. Their values will be the #\n\
01204 # same in all messages until the camera is recalibrated. Note that #\n\
01205 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01206 # #\n\
01207 # The internal parameters can be used to warp a raw (distorted) image #\n\
01208 # to: #\n\
01209 # 1. An undistorted image (requires D and K) #\n\
01210 # 2. A rectified image (requires D, K, R) #\n\
01211 # The projection matrix P projects 3D points into the rectified image.#\n\
01212 #######################################################################\n\
01213 \n\
01214 # The image dimensions with which the camera was calibrated. Normally\n\
01215 # this will be the full camera resolution in pixels.\n\
01216 uint32 height\n\
01217 uint32 width\n\
01218 \n\
01219 # The distortion model used. Supported models are listed in\n\
01220 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01221 # simple model of radial and tangential distortion - is sufficent.\n\
01222 string distortion_model\n\
01223 \n\
01224 # The distortion parameters, size depending on the distortion model.\n\
01225 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01226 float64[] D\n\
01227 \n\
01228 # Intrinsic camera matrix for the raw (distorted) images.\n\
01229 # [fx 0 cx]\n\
01230 # K = [ 0 fy cy]\n\
01231 # [ 0 0 1]\n\
01232 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01233 # coordinates using the focal lengths (fx, fy) and principal point\n\
01234 # (cx, cy).\n\
01235 float64[9] K # 3x3 row-major matrix\n\
01236 \n\
01237 # Rectification matrix (stereo cameras only)\n\
01238 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01239 # stereo image plane so that epipolar lines in both stereo images are\n\
01240 # parallel.\n\
01241 float64[9] R # 3x3 row-major matrix\n\
01242 \n\
01243 # Projection/camera matrix\n\
01244 # [fx' 0 cx' Tx]\n\
01245 # P = [ 0 fy' cy' Ty]\n\
01246 # [ 0 0 1 0]\n\
01247 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01248 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01249 # is the normal camera intrinsic matrix for the rectified image.\n\
01250 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01251 # coordinates using the focal lengths (fx', fy') and principal point\n\
01252 # (cx', cy') - these may differ from the values in K.\n\
01253 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01254 # also have R = the identity and P[1:3,1:3] = K.\n\
01255 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01256 # position of the optical center of the second camera in the first\n\
01257 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01258 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01259 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01260 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01261 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01262 # the rectified image is given by:\n\
01263 # [u v w]' = P * [X Y Z 1]'\n\
01264 # x = u / w\n\
01265 # y = v / w\n\
01266 # This holds for both images of a stereo pair.\n\
01267 float64[12] P # 3x4 row-major matrix\n\
01268 \n\
01269 \n\
01270 #######################################################################\n\
01271 # Operational Parameters #\n\
01272 #######################################################################\n\
01273 # These define the image region actually captured by the camera #\n\
01274 # driver. Although they affect the geometry of the output image, they #\n\
01275 # may be changed freely without recalibrating the camera. #\n\
01276 #######################################################################\n\
01277 \n\
01278 # Binning refers here to any camera setting which combines rectangular\n\
01279 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01280 # resolution of the output image to\n\
01281 # (width / binning_x) x (height / binning_y).\n\
01282 # The default values binning_x = binning_y = 0 is considered the same\n\
01283 # as binning_x = binning_y = 1 (no subsampling).\n\
01284 uint32 binning_x\n\
01285 uint32 binning_y\n\
01286 \n\
01287 # Region of interest (subwindow of full camera resolution), given in\n\
01288 # full resolution (unbinned) image coordinates. A particular ROI\n\
01289 # always denotes the same window of pixels on the camera sensor,\n\
01290 # regardless of binning settings.\n\
01291 # The default setting of roi (all values 0) is considered the same as\n\
01292 # full resolution (roi.width = width, roi.height = height).\n\
01293 RegionOfInterest roi\n\
01294 \n\
01295 ================================================================================\n\
01296 MSG: sensor_msgs/RegionOfInterest\n\
01297 # This message is used to specify a region of interest within an image.\n\
01298 #\n\
01299 # When used to specify the ROI setting of the camera when the image was\n\
01300 # taken, the height and width fields should either match the height and\n\
01301 # width fields for the associated image; or height = width = 0\n\
01302 # indicates that the full resolution image was captured.\n\
01303 \n\
01304 uint32 x_offset # Leftmost pixel of the ROI\n\
01305 # (0 if the ROI includes the left edge of the image)\n\
01306 uint32 y_offset # Topmost pixel of the ROI\n\
01307 # (0 if the ROI includes the top edge of the image)\n\
01308 uint32 height # Height of ROI\n\
01309 uint32 width # Width of ROI\n\
01310 \n\
01311 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01312 # ROI in this message. Typically this should be False if the full image\n\
01313 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01314 # used).\n\
01315 bool do_rectify\n\
01316 \n\
01317 ================================================================================\n\
01318 MSG: geometry_msgs/Vector3\n\
01319 # This represents a vector in free space. \n\
01320 \n\
01321 float64 x\n\
01322 float64 y\n\
01323 float64 z\n\
01324 ================================================================================\n\
01325 MSG: object_manipulation_msgs/GraspResult\n\
01326 int32 SUCCESS = 1\n\
01327 int32 GRASP_OUT_OF_REACH = 2\n\
01328 int32 GRASP_IN_COLLISION = 3\n\
01329 int32 GRASP_UNFEASIBLE = 4\n\
01330 int32 PREGRASP_OUT_OF_REACH = 5\n\
01331 int32 PREGRASP_IN_COLLISION = 6\n\
01332 int32 PREGRASP_UNFEASIBLE = 7\n\
01333 int32 LIFT_OUT_OF_REACH = 8\n\
01334 int32 LIFT_IN_COLLISION = 9\n\
01335 int32 LIFT_UNFEASIBLE = 10\n\
01336 int32 MOVE_ARM_FAILED = 11\n\
01337 int32 GRASP_FAILED = 12\n\
01338 int32 LIFT_FAILED = 13\n\
01339 int32 RETREAT_FAILED = 14\n\
01340 int32 result_code\n\
01341 \n\
01342 # whether the state of the world was disturbed by this attempt. generally, this flag\n\
01343 # shows if another task can be attempted, or a new sensed world model is recommeded\n\
01344 # before proceeding\n\
01345 bool continuation_possible\n\
01346 \n\
01347 ";
01348 }
01349
01350 static const char* value(const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> &) { return value(); }
01351 };
01352
01353 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
01354 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> > : public TrueType {};
01355 }
01356 }
01357
01358 namespace ros
01359 {
01360 namespace serialization
01361 {
01362
01363 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >
01364 {
01365 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01366 {
01367 stream.next(m.header);
01368 stream.next(m.status);
01369 stream.next(m.result);
01370 }
01371
01372 ROS_DECLARE_ALLINONE_SERIALIZER;
01373 };
01374 }
01375 }
01376
01377 namespace ros
01378 {
01379 namespace message_operations
01380 {
01381
01382 template<class ContainerAllocator>
01383 struct Printer< ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> >
01384 {
01385 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PickupActionResult_<ContainerAllocator> & v)
01386 {
01387 s << indent << "header: ";
01388 s << std::endl;
01389 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01390 s << indent << "status: ";
01391 s << std::endl;
01392 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status);
01393 s << indent << "result: ";
01394 s << std::endl;
01395 Printer< ::object_manipulation_msgs::PickupResult_<ContainerAllocator> >::stream(s, indent + " ", v.result);
01396 }
01397 };
01398
01399
01400 }
01401 }
01402
01403 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PICKUPACTIONRESULT_H
01404