$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspableObject.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "household_objects_database_msgs/DatabaseModelPose.h" 00018 #include "sensor_msgs/PointCloud.h" 00019 #include "object_manipulation_msgs/SceneRegion.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspableObject_ { 00025 typedef GraspableObject_<ContainerAllocator> Type; 00026 00027 GraspableObject_() 00028 : reference_frame_id() 00029 , potential_models() 00030 , cluster() 00031 , region() 00032 , collision_name() 00033 { 00034 } 00035 00036 GraspableObject_(const ContainerAllocator& _alloc) 00037 : reference_frame_id(_alloc) 00038 , potential_models(_alloc) 00039 , cluster(_alloc) 00040 , region(_alloc) 00041 , collision_name(_alloc) 00042 { 00043 } 00044 00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _reference_frame_id_type; 00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > reference_frame_id; 00047 00048 typedef std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > _potential_models_type; 00049 std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > potential_models; 00050 00051 typedef ::sensor_msgs::PointCloud_<ContainerAllocator> _cluster_type; 00052 ::sensor_msgs::PointCloud_<ContainerAllocator> cluster; 00053 00054 typedef ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> _region_type; 00055 ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> region; 00056 00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_name_type; 00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_name; 00059 00060 00061 ROS_DEPRECATED uint32_t get_potential_models_size() const { return (uint32_t)potential_models.size(); } 00062 ROS_DEPRECATED void set_potential_models_size(uint32_t size) { potential_models.resize((size_t)size); } 00063 ROS_DEPRECATED void get_potential_models_vec(std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) const { vec = this->potential_models; } 00064 ROS_DEPRECATED void set_potential_models_vec(const std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) { this->potential_models = vec; } 00065 private: 00066 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspableObject"; } 00067 public: 00068 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00069 00070 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00071 00072 private: 00073 static const char* __s_getMD5Sum_() { return "fb38ca9beebc9a80929b7a0397d84cf3"; } 00074 public: 00075 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00076 00077 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00078 00079 private: 00080 static const char* __s_getMessageDefinition_() { return "# an object that the object_manipulator can work on\n\ 00081 \n\ 00082 # a graspable object can be represented in multiple ways. This message\n\ 00083 # can contain all of them. Which one is actually used is up to the receiver\n\ 00084 # of this message. When adding new representations, one must be careful that\n\ 00085 # they have reasonable lightweight defaults indicating that that particular\n\ 00086 # representation is not available.\n\ 00087 \n\ 00088 # the tf frame to be used as a reference frame when combining information from\n\ 00089 # the different representations below\n\ 00090 string reference_frame_id\n\ 00091 \n\ 00092 # potential recognition results from a database of models\n\ 00093 # all poses are relative to the object reference pose\n\ 00094 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00095 \n\ 00096 # the point cloud itself\n\ 00097 sensor_msgs/PointCloud cluster\n\ 00098 \n\ 00099 # a region of a PointCloud2 of interest\n\ 00100 object_manipulation_msgs/SceneRegion region\n\ 00101 \n\ 00102 # the name that this object has in the collision environment\n\ 00103 string collision_name\n\ 00104 ================================================================================\n\ 00105 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00106 # Informs that a specific model from the Model Database has been \n\ 00107 # identified at a certain location\n\ 00108 \n\ 00109 # the database id of the model\n\ 00110 int32 model_id\n\ 00111 \n\ 00112 # the pose that it can be found in\n\ 00113 geometry_msgs/PoseStamped pose\n\ 00114 \n\ 00115 # a measure of the confidence level in this detection result\n\ 00116 float32 confidence\n\ 00117 \n\ 00118 # the name of the object detector that generated this detection result\n\ 00119 string detector_name\n\ 00120 \n\ 00121 ================================================================================\n\ 00122 MSG: geometry_msgs/PoseStamped\n\ 00123 # A Pose with reference coordinate frame and timestamp\n\ 00124 Header header\n\ 00125 Pose pose\n\ 00126 \n\ 00127 ================================================================================\n\ 00128 MSG: std_msgs/Header\n\ 00129 # Standard metadata for higher-level stamped data types.\n\ 00130 # This is generally used to communicate timestamped data \n\ 00131 # in a particular coordinate frame.\n\ 00132 # \n\ 00133 # sequence ID: consecutively increasing ID \n\ 00134 uint32 seq\n\ 00135 #Two-integer timestamp that is expressed as:\n\ 00136 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00137 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00138 # time-handling sugar is provided by the client library\n\ 00139 time stamp\n\ 00140 #Frame this data is associated with\n\ 00141 # 0: no frame\n\ 00142 # 1: global frame\n\ 00143 string frame_id\n\ 00144 \n\ 00145 ================================================================================\n\ 00146 MSG: geometry_msgs/Pose\n\ 00147 # A representation of pose in free space, composed of postion and orientation. \n\ 00148 Point position\n\ 00149 Quaternion orientation\n\ 00150 \n\ 00151 ================================================================================\n\ 00152 MSG: geometry_msgs/Point\n\ 00153 # This contains the position of a point in free space\n\ 00154 float64 x\n\ 00155 float64 y\n\ 00156 float64 z\n\ 00157 \n\ 00158 ================================================================================\n\ 00159 MSG: geometry_msgs/Quaternion\n\ 00160 # This represents an orientation in free space in quaternion form.\n\ 00161 \n\ 00162 float64 x\n\ 00163 float64 y\n\ 00164 float64 z\n\ 00165 float64 w\n\ 00166 \n\ 00167 ================================================================================\n\ 00168 MSG: sensor_msgs/PointCloud\n\ 00169 # This message holds a collection of 3d points, plus optional additional\n\ 00170 # information about each point.\n\ 00171 \n\ 00172 # Time of sensor data acquisition, coordinate frame ID.\n\ 00173 Header header\n\ 00174 \n\ 00175 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00176 # in the frame given in the header.\n\ 00177 geometry_msgs/Point32[] points\n\ 00178 \n\ 00179 # Each channel should have the same number of elements as points array,\n\ 00180 # and the data in each channel should correspond 1:1 with each point.\n\ 00181 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00182 ChannelFloat32[] channels\n\ 00183 \n\ 00184 ================================================================================\n\ 00185 MSG: geometry_msgs/Point32\n\ 00186 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00187 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00188 # \n\ 00189 # This recommendation is to promote interoperability. \n\ 00190 #\n\ 00191 # This message is designed to take up less space when sending\n\ 00192 # lots of points at once, as in the case of a PointCloud. \n\ 00193 \n\ 00194 float32 x\n\ 00195 float32 y\n\ 00196 float32 z\n\ 00197 ================================================================================\n\ 00198 MSG: sensor_msgs/ChannelFloat32\n\ 00199 # This message is used by the PointCloud message to hold optional data\n\ 00200 # associated with each point in the cloud. The length of the values\n\ 00201 # array should be the same as the length of the points array in the\n\ 00202 # PointCloud, and each value should be associated with the corresponding\n\ 00203 # point.\n\ 00204 \n\ 00205 # Channel names in existing practice include:\n\ 00206 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00207 # This is opposite to usual conventions but remains for\n\ 00208 # historical reasons. The newer PointCloud2 message has no\n\ 00209 # such problem.\n\ 00210 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00211 # (R,G,B) values packed into the least significant 24 bits,\n\ 00212 # in order.\n\ 00213 # \"intensity\" - laser or pixel intensity.\n\ 00214 # \"distance\"\n\ 00215 \n\ 00216 # The channel name should give semantics of the channel (e.g.\n\ 00217 # \"intensity\" instead of \"value\").\n\ 00218 string name\n\ 00219 \n\ 00220 # The values array should be 1-1 with the elements of the associated\n\ 00221 # PointCloud.\n\ 00222 float32[] values\n\ 00223 \n\ 00224 ================================================================================\n\ 00225 MSG: object_manipulation_msgs/SceneRegion\n\ 00226 # Point cloud\n\ 00227 sensor_msgs/PointCloud2 cloud\n\ 00228 \n\ 00229 # Indices for the region of interest\n\ 00230 int32[] mask\n\ 00231 \n\ 00232 # One of the corresponding 2D images, if applicable\n\ 00233 sensor_msgs/Image image\n\ 00234 \n\ 00235 # The disparity image, if applicable\n\ 00236 sensor_msgs/Image disparity_image\n\ 00237 \n\ 00238 # Camera info for the camera that took the image\n\ 00239 sensor_msgs/CameraInfo cam_info\n\ 00240 \n\ 00241 # a 3D region of interest for grasp planning\n\ 00242 geometry_msgs/PoseStamped roi_box_pose\n\ 00243 geometry_msgs/Vector3 roi_box_dims\n\ 00244 \n\ 00245 ================================================================================\n\ 00246 MSG: sensor_msgs/PointCloud2\n\ 00247 # This message holds a collection of N-dimensional points, which may\n\ 00248 # contain additional information such as normals, intensity, etc. The\n\ 00249 # point data is stored as a binary blob, its layout described by the\n\ 00250 # contents of the \"fields\" array.\n\ 00251 \n\ 00252 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00253 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00254 # camera depth sensors such as stereo or time-of-flight.\n\ 00255 \n\ 00256 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00257 # points).\n\ 00258 Header header\n\ 00259 \n\ 00260 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00261 # 1 and width is the length of the point cloud.\n\ 00262 uint32 height\n\ 00263 uint32 width\n\ 00264 \n\ 00265 # Describes the channels and their layout in the binary data blob.\n\ 00266 PointField[] fields\n\ 00267 \n\ 00268 bool is_bigendian # Is this data bigendian?\n\ 00269 uint32 point_step # Length of a point in bytes\n\ 00270 uint32 row_step # Length of a row in bytes\n\ 00271 uint8[] data # Actual point data, size is (row_step*height)\n\ 00272 \n\ 00273 bool is_dense # True if there are no invalid points\n\ 00274 \n\ 00275 ================================================================================\n\ 00276 MSG: sensor_msgs/PointField\n\ 00277 # This message holds the description of one point entry in the\n\ 00278 # PointCloud2 message format.\n\ 00279 uint8 INT8 = 1\n\ 00280 uint8 UINT8 = 2\n\ 00281 uint8 INT16 = 3\n\ 00282 uint8 UINT16 = 4\n\ 00283 uint8 INT32 = 5\n\ 00284 uint8 UINT32 = 6\n\ 00285 uint8 FLOAT32 = 7\n\ 00286 uint8 FLOAT64 = 8\n\ 00287 \n\ 00288 string name # Name of field\n\ 00289 uint32 offset # Offset from start of point struct\n\ 00290 uint8 datatype # Datatype enumeration, see above\n\ 00291 uint32 count # How many elements in the field\n\ 00292 \n\ 00293 ================================================================================\n\ 00294 MSG: sensor_msgs/Image\n\ 00295 # This message contains an uncompressed image\n\ 00296 # (0, 0) is at top-left corner of image\n\ 00297 #\n\ 00298 \n\ 00299 Header header # Header timestamp should be acquisition time of image\n\ 00300 # Header frame_id should be optical frame of camera\n\ 00301 # origin of frame should be optical center of cameara\n\ 00302 # +x should point to the right in the image\n\ 00303 # +y should point down in the image\n\ 00304 # +z should point into to plane of the image\n\ 00305 # If the frame_id here and the frame_id of the CameraInfo\n\ 00306 # message associated with the image conflict\n\ 00307 # the behavior is undefined\n\ 00308 \n\ 00309 uint32 height # image height, that is, number of rows\n\ 00310 uint32 width # image width, that is, number of columns\n\ 00311 \n\ 00312 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00313 # If you want to standardize a new string format, join\n\ 00314 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00315 \n\ 00316 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00317 # taken from the list of strings in src/image_encodings.cpp\n\ 00318 \n\ 00319 uint8 is_bigendian # is this data bigendian?\n\ 00320 uint32 step # Full row length in bytes\n\ 00321 uint8[] data # actual matrix data, size is (step * rows)\n\ 00322 \n\ 00323 ================================================================================\n\ 00324 MSG: sensor_msgs/CameraInfo\n\ 00325 # This message defines meta information for a camera. It should be in a\n\ 00326 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00327 # image topics named:\n\ 00328 #\n\ 00329 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00330 # image - monochrome, distorted\n\ 00331 # image_color - color, distorted\n\ 00332 # image_rect - monochrome, rectified\n\ 00333 # image_rect_color - color, rectified\n\ 00334 #\n\ 00335 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00336 # for producing the four processed image topics from image_raw and\n\ 00337 # camera_info. The meaning of the camera parameters are described in\n\ 00338 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00339 #\n\ 00340 # The image_geometry package provides a user-friendly interface to\n\ 00341 # common operations using this meta information. If you want to, e.g.,\n\ 00342 # project a 3d point into image coordinates, we strongly recommend\n\ 00343 # using image_geometry.\n\ 00344 #\n\ 00345 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00346 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00347 # indicates an uncalibrated camera.\n\ 00348 \n\ 00349 #######################################################################\n\ 00350 # Image acquisition info #\n\ 00351 #######################################################################\n\ 00352 \n\ 00353 # Time of image acquisition, camera coordinate frame ID\n\ 00354 Header header # Header timestamp should be acquisition time of image\n\ 00355 # Header frame_id should be optical frame of camera\n\ 00356 # origin of frame should be optical center of camera\n\ 00357 # +x should point to the right in the image\n\ 00358 # +y should point down in the image\n\ 00359 # +z should point into the plane of the image\n\ 00360 \n\ 00361 \n\ 00362 #######################################################################\n\ 00363 # Calibration Parameters #\n\ 00364 #######################################################################\n\ 00365 # These are fixed during camera calibration. Their values will be the #\n\ 00366 # same in all messages until the camera is recalibrated. Note that #\n\ 00367 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00368 # #\n\ 00369 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00370 # to: #\n\ 00371 # 1. An undistorted image (requires D and K) #\n\ 00372 # 2. A rectified image (requires D, K, R) #\n\ 00373 # The projection matrix P projects 3D points into the rectified image.#\n\ 00374 #######################################################################\n\ 00375 \n\ 00376 # The image dimensions with which the camera was calibrated. Normally\n\ 00377 # this will be the full camera resolution in pixels.\n\ 00378 uint32 height\n\ 00379 uint32 width\n\ 00380 \n\ 00381 # The distortion model used. Supported models are listed in\n\ 00382 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00383 # simple model of radial and tangential distortion - is sufficent.\n\ 00384 string distortion_model\n\ 00385 \n\ 00386 # The distortion parameters, size depending on the distortion model.\n\ 00387 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00388 float64[] D\n\ 00389 \n\ 00390 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00391 # [fx 0 cx]\n\ 00392 # K = [ 0 fy cy]\n\ 00393 # [ 0 0 1]\n\ 00394 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00395 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00396 # (cx, cy).\n\ 00397 float64[9] K # 3x3 row-major matrix\n\ 00398 \n\ 00399 # Rectification matrix (stereo cameras only)\n\ 00400 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00401 # stereo image plane so that epipolar lines in both stereo images are\n\ 00402 # parallel.\n\ 00403 float64[9] R # 3x3 row-major matrix\n\ 00404 \n\ 00405 # Projection/camera matrix\n\ 00406 # [fx' 0 cx' Tx]\n\ 00407 # P = [ 0 fy' cy' Ty]\n\ 00408 # [ 0 0 1 0]\n\ 00409 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00410 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00411 # is the normal camera intrinsic matrix for the rectified image.\n\ 00412 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00413 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00414 # (cx', cy') - these may differ from the values in K.\n\ 00415 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00416 # also have R = the identity and P[1:3,1:3] = K.\n\ 00417 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00418 # position of the optical center of the second camera in the first\n\ 00419 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00420 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00421 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00422 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00423 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00424 # the rectified image is given by:\n\ 00425 # [u v w]' = P * [X Y Z 1]'\n\ 00426 # x = u / w\n\ 00427 # y = v / w\n\ 00428 # This holds for both images of a stereo pair.\n\ 00429 float64[12] P # 3x4 row-major matrix\n\ 00430 \n\ 00431 \n\ 00432 #######################################################################\n\ 00433 # Operational Parameters #\n\ 00434 #######################################################################\n\ 00435 # These define the image region actually captured by the camera #\n\ 00436 # driver. Although they affect the geometry of the output image, they #\n\ 00437 # may be changed freely without recalibrating the camera. #\n\ 00438 #######################################################################\n\ 00439 \n\ 00440 # Binning refers here to any camera setting which combines rectangular\n\ 00441 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00442 # resolution of the output image to\n\ 00443 # (width / binning_x) x (height / binning_y).\n\ 00444 # The default values binning_x = binning_y = 0 is considered the same\n\ 00445 # as binning_x = binning_y = 1 (no subsampling).\n\ 00446 uint32 binning_x\n\ 00447 uint32 binning_y\n\ 00448 \n\ 00449 # Region of interest (subwindow of full camera resolution), given in\n\ 00450 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00451 # always denotes the same window of pixels on the camera sensor,\n\ 00452 # regardless of binning settings.\n\ 00453 # The default setting of roi (all values 0) is considered the same as\n\ 00454 # full resolution (roi.width = width, roi.height = height).\n\ 00455 RegionOfInterest roi\n\ 00456 \n\ 00457 ================================================================================\n\ 00458 MSG: sensor_msgs/RegionOfInterest\n\ 00459 # This message is used to specify a region of interest within an image.\n\ 00460 #\n\ 00461 # When used to specify the ROI setting of the camera when the image was\n\ 00462 # taken, the height and width fields should either match the height and\n\ 00463 # width fields for the associated image; or height = width = 0\n\ 00464 # indicates that the full resolution image was captured.\n\ 00465 \n\ 00466 uint32 x_offset # Leftmost pixel of the ROI\n\ 00467 # (0 if the ROI includes the left edge of the image)\n\ 00468 uint32 y_offset # Topmost pixel of the ROI\n\ 00469 # (0 if the ROI includes the top edge of the image)\n\ 00470 uint32 height # Height of ROI\n\ 00471 uint32 width # Width of ROI\n\ 00472 \n\ 00473 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00474 # ROI in this message. Typically this should be False if the full image\n\ 00475 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00476 # used).\n\ 00477 bool do_rectify\n\ 00478 \n\ 00479 ================================================================================\n\ 00480 MSG: geometry_msgs/Vector3\n\ 00481 # This represents a vector in free space. \n\ 00482 \n\ 00483 float64 x\n\ 00484 float64 y\n\ 00485 float64 z\n\ 00486 "; } 00487 public: 00488 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00489 00490 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00491 00492 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00493 { 00494 ros::serialization::OStream stream(write_ptr, 1000000000); 00495 ros::serialization::serialize(stream, reference_frame_id); 00496 ros::serialization::serialize(stream, potential_models); 00497 ros::serialization::serialize(stream, cluster); 00498 ros::serialization::serialize(stream, region); 00499 ros::serialization::serialize(stream, collision_name); 00500 return stream.getData(); 00501 } 00502 00503 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00504 { 00505 ros::serialization::IStream stream(read_ptr, 1000000000); 00506 ros::serialization::deserialize(stream, reference_frame_id); 00507 ros::serialization::deserialize(stream, potential_models); 00508 ros::serialization::deserialize(stream, cluster); 00509 ros::serialization::deserialize(stream, region); 00510 ros::serialization::deserialize(stream, collision_name); 00511 return stream.getData(); 00512 } 00513 00514 ROS_DEPRECATED virtual uint32_t serializationLength() const 00515 { 00516 uint32_t size = 0; 00517 size += ros::serialization::serializationLength(reference_frame_id); 00518 size += ros::serialization::serializationLength(potential_models); 00519 size += ros::serialization::serializationLength(cluster); 00520 size += ros::serialization::serializationLength(region); 00521 size += ros::serialization::serializationLength(collision_name); 00522 return size; 00523 } 00524 00525 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > Ptr; 00526 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> ConstPtr; 00527 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00528 }; // struct GraspableObject 00529 typedef ::object_manipulation_msgs::GraspableObject_<std::allocator<void> > GraspableObject; 00530 00531 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject> GraspableObjectPtr; 00532 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject const> GraspableObjectConstPtr; 00533 00534 00535 template<typename ContainerAllocator> 00536 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v) 00537 { 00538 ros::message_operations::Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, "", v); 00539 return s;} 00540 00541 } // namespace object_manipulation_msgs 00542 00543 namespace ros 00544 { 00545 namespace message_traits 00546 { 00547 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > : public TrueType {}; 00548 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> : public TrueType {}; 00549 template<class ContainerAllocator> 00550 struct MD5Sum< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > { 00551 static const char* value() 00552 { 00553 return "fb38ca9beebc9a80929b7a0397d84cf3"; 00554 } 00555 00556 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); } 00557 static const uint64_t static_value1 = 0xfb38ca9beebc9a80ULL; 00558 static const uint64_t static_value2 = 0x929b7a0397d84cf3ULL; 00559 }; 00560 00561 template<class ContainerAllocator> 00562 struct DataType< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > { 00563 static const char* value() 00564 { 00565 return "object_manipulation_msgs/GraspableObject"; 00566 } 00567 00568 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); } 00569 }; 00570 00571 template<class ContainerAllocator> 00572 struct Definition< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > { 00573 static const char* value() 00574 { 00575 return "# an object that the object_manipulator can work on\n\ 00576 \n\ 00577 # a graspable object can be represented in multiple ways. This message\n\ 00578 # can contain all of them. Which one is actually used is up to the receiver\n\ 00579 # of this message. When adding new representations, one must be careful that\n\ 00580 # they have reasonable lightweight defaults indicating that that particular\n\ 00581 # representation is not available.\n\ 00582 \n\ 00583 # the tf frame to be used as a reference frame when combining information from\n\ 00584 # the different representations below\n\ 00585 string reference_frame_id\n\ 00586 \n\ 00587 # potential recognition results from a database of models\n\ 00588 # all poses are relative to the object reference pose\n\ 00589 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00590 \n\ 00591 # the point cloud itself\n\ 00592 sensor_msgs/PointCloud cluster\n\ 00593 \n\ 00594 # a region of a PointCloud2 of interest\n\ 00595 object_manipulation_msgs/SceneRegion region\n\ 00596 \n\ 00597 # the name that this object has in the collision environment\n\ 00598 string collision_name\n\ 00599 ================================================================================\n\ 00600 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00601 # Informs that a specific model from the Model Database has been \n\ 00602 # identified at a certain location\n\ 00603 \n\ 00604 # the database id of the model\n\ 00605 int32 model_id\n\ 00606 \n\ 00607 # the pose that it can be found in\n\ 00608 geometry_msgs/PoseStamped pose\n\ 00609 \n\ 00610 # a measure of the confidence level in this detection result\n\ 00611 float32 confidence\n\ 00612 \n\ 00613 # the name of the object detector that generated this detection result\n\ 00614 string detector_name\n\ 00615 \n\ 00616 ================================================================================\n\ 00617 MSG: geometry_msgs/PoseStamped\n\ 00618 # A Pose with reference coordinate frame and timestamp\n\ 00619 Header header\n\ 00620 Pose pose\n\ 00621 \n\ 00622 ================================================================================\n\ 00623 MSG: std_msgs/Header\n\ 00624 # Standard metadata for higher-level stamped data types.\n\ 00625 # This is generally used to communicate timestamped data \n\ 00626 # in a particular coordinate frame.\n\ 00627 # \n\ 00628 # sequence ID: consecutively increasing ID \n\ 00629 uint32 seq\n\ 00630 #Two-integer timestamp that is expressed as:\n\ 00631 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00632 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00633 # time-handling sugar is provided by the client library\n\ 00634 time stamp\n\ 00635 #Frame this data is associated with\n\ 00636 # 0: no frame\n\ 00637 # 1: global frame\n\ 00638 string frame_id\n\ 00639 \n\ 00640 ================================================================================\n\ 00641 MSG: geometry_msgs/Pose\n\ 00642 # A representation of pose in free space, composed of postion and orientation. \n\ 00643 Point position\n\ 00644 Quaternion orientation\n\ 00645 \n\ 00646 ================================================================================\n\ 00647 MSG: geometry_msgs/Point\n\ 00648 # This contains the position of a point in free space\n\ 00649 float64 x\n\ 00650 float64 y\n\ 00651 float64 z\n\ 00652 \n\ 00653 ================================================================================\n\ 00654 MSG: geometry_msgs/Quaternion\n\ 00655 # This represents an orientation in free space in quaternion form.\n\ 00656 \n\ 00657 float64 x\n\ 00658 float64 y\n\ 00659 float64 z\n\ 00660 float64 w\n\ 00661 \n\ 00662 ================================================================================\n\ 00663 MSG: sensor_msgs/PointCloud\n\ 00664 # This message holds a collection of 3d points, plus optional additional\n\ 00665 # information about each point.\n\ 00666 \n\ 00667 # Time of sensor data acquisition, coordinate frame ID.\n\ 00668 Header header\n\ 00669 \n\ 00670 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00671 # in the frame given in the header.\n\ 00672 geometry_msgs/Point32[] points\n\ 00673 \n\ 00674 # Each channel should have the same number of elements as points array,\n\ 00675 # and the data in each channel should correspond 1:1 with each point.\n\ 00676 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00677 ChannelFloat32[] channels\n\ 00678 \n\ 00679 ================================================================================\n\ 00680 MSG: geometry_msgs/Point32\n\ 00681 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00682 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00683 # \n\ 00684 # This recommendation is to promote interoperability. \n\ 00685 #\n\ 00686 # This message is designed to take up less space when sending\n\ 00687 # lots of points at once, as in the case of a PointCloud. \n\ 00688 \n\ 00689 float32 x\n\ 00690 float32 y\n\ 00691 float32 z\n\ 00692 ================================================================================\n\ 00693 MSG: sensor_msgs/ChannelFloat32\n\ 00694 # This message is used by the PointCloud message to hold optional data\n\ 00695 # associated with each point in the cloud. The length of the values\n\ 00696 # array should be the same as the length of the points array in the\n\ 00697 # PointCloud, and each value should be associated with the corresponding\n\ 00698 # point.\n\ 00699 \n\ 00700 # Channel names in existing practice include:\n\ 00701 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00702 # This is opposite to usual conventions but remains for\n\ 00703 # historical reasons. The newer PointCloud2 message has no\n\ 00704 # such problem.\n\ 00705 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00706 # (R,G,B) values packed into the least significant 24 bits,\n\ 00707 # in order.\n\ 00708 # \"intensity\" - laser or pixel intensity.\n\ 00709 # \"distance\"\n\ 00710 \n\ 00711 # The channel name should give semantics of the channel (e.g.\n\ 00712 # \"intensity\" instead of \"value\").\n\ 00713 string name\n\ 00714 \n\ 00715 # The values array should be 1-1 with the elements of the associated\n\ 00716 # PointCloud.\n\ 00717 float32[] values\n\ 00718 \n\ 00719 ================================================================================\n\ 00720 MSG: object_manipulation_msgs/SceneRegion\n\ 00721 # Point cloud\n\ 00722 sensor_msgs/PointCloud2 cloud\n\ 00723 \n\ 00724 # Indices for the region of interest\n\ 00725 int32[] mask\n\ 00726 \n\ 00727 # One of the corresponding 2D images, if applicable\n\ 00728 sensor_msgs/Image image\n\ 00729 \n\ 00730 # The disparity image, if applicable\n\ 00731 sensor_msgs/Image disparity_image\n\ 00732 \n\ 00733 # Camera info for the camera that took the image\n\ 00734 sensor_msgs/CameraInfo cam_info\n\ 00735 \n\ 00736 # a 3D region of interest for grasp planning\n\ 00737 geometry_msgs/PoseStamped roi_box_pose\n\ 00738 geometry_msgs/Vector3 roi_box_dims\n\ 00739 \n\ 00740 ================================================================================\n\ 00741 MSG: sensor_msgs/PointCloud2\n\ 00742 # This message holds a collection of N-dimensional points, which may\n\ 00743 # contain additional information such as normals, intensity, etc. The\n\ 00744 # point data is stored as a binary blob, its layout described by the\n\ 00745 # contents of the \"fields\" array.\n\ 00746 \n\ 00747 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00748 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00749 # camera depth sensors such as stereo or time-of-flight.\n\ 00750 \n\ 00751 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00752 # points).\n\ 00753 Header header\n\ 00754 \n\ 00755 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00756 # 1 and width is the length of the point cloud.\n\ 00757 uint32 height\n\ 00758 uint32 width\n\ 00759 \n\ 00760 # Describes the channels and their layout in the binary data blob.\n\ 00761 PointField[] fields\n\ 00762 \n\ 00763 bool is_bigendian # Is this data bigendian?\n\ 00764 uint32 point_step # Length of a point in bytes\n\ 00765 uint32 row_step # Length of a row in bytes\n\ 00766 uint8[] data # Actual point data, size is (row_step*height)\n\ 00767 \n\ 00768 bool is_dense # True if there are no invalid points\n\ 00769 \n\ 00770 ================================================================================\n\ 00771 MSG: sensor_msgs/PointField\n\ 00772 # This message holds the description of one point entry in the\n\ 00773 # PointCloud2 message format.\n\ 00774 uint8 INT8 = 1\n\ 00775 uint8 UINT8 = 2\n\ 00776 uint8 INT16 = 3\n\ 00777 uint8 UINT16 = 4\n\ 00778 uint8 INT32 = 5\n\ 00779 uint8 UINT32 = 6\n\ 00780 uint8 FLOAT32 = 7\n\ 00781 uint8 FLOAT64 = 8\n\ 00782 \n\ 00783 string name # Name of field\n\ 00784 uint32 offset # Offset from start of point struct\n\ 00785 uint8 datatype # Datatype enumeration, see above\n\ 00786 uint32 count # How many elements in the field\n\ 00787 \n\ 00788 ================================================================================\n\ 00789 MSG: sensor_msgs/Image\n\ 00790 # This message contains an uncompressed image\n\ 00791 # (0, 0) is at top-left corner of image\n\ 00792 #\n\ 00793 \n\ 00794 Header header # Header timestamp should be acquisition time of image\n\ 00795 # Header frame_id should be optical frame of camera\n\ 00796 # origin of frame should be optical center of cameara\n\ 00797 # +x should point to the right in the image\n\ 00798 # +y should point down in the image\n\ 00799 # +z should point into to plane of the image\n\ 00800 # If the frame_id here and the frame_id of the CameraInfo\n\ 00801 # message associated with the image conflict\n\ 00802 # the behavior is undefined\n\ 00803 \n\ 00804 uint32 height # image height, that is, number of rows\n\ 00805 uint32 width # image width, that is, number of columns\n\ 00806 \n\ 00807 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00808 # If you want to standardize a new string format, join\n\ 00809 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00810 \n\ 00811 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00812 # taken from the list of strings in src/image_encodings.cpp\n\ 00813 \n\ 00814 uint8 is_bigendian # is this data bigendian?\n\ 00815 uint32 step # Full row length in bytes\n\ 00816 uint8[] data # actual matrix data, size is (step * rows)\n\ 00817 \n\ 00818 ================================================================================\n\ 00819 MSG: sensor_msgs/CameraInfo\n\ 00820 # This message defines meta information for a camera. It should be in a\n\ 00821 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00822 # image topics named:\n\ 00823 #\n\ 00824 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00825 # image - monochrome, distorted\n\ 00826 # image_color - color, distorted\n\ 00827 # image_rect - monochrome, rectified\n\ 00828 # image_rect_color - color, rectified\n\ 00829 #\n\ 00830 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00831 # for producing the four processed image topics from image_raw and\n\ 00832 # camera_info. The meaning of the camera parameters are described in\n\ 00833 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00834 #\n\ 00835 # The image_geometry package provides a user-friendly interface to\n\ 00836 # common operations using this meta information. If you want to, e.g.,\n\ 00837 # project a 3d point into image coordinates, we strongly recommend\n\ 00838 # using image_geometry.\n\ 00839 #\n\ 00840 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00841 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00842 # indicates an uncalibrated camera.\n\ 00843 \n\ 00844 #######################################################################\n\ 00845 # Image acquisition info #\n\ 00846 #######################################################################\n\ 00847 \n\ 00848 # Time of image acquisition, camera coordinate frame ID\n\ 00849 Header header # Header timestamp should be acquisition time of image\n\ 00850 # Header frame_id should be optical frame of camera\n\ 00851 # origin of frame should be optical center of camera\n\ 00852 # +x should point to the right in the image\n\ 00853 # +y should point down in the image\n\ 00854 # +z should point into the plane of the image\n\ 00855 \n\ 00856 \n\ 00857 #######################################################################\n\ 00858 # Calibration Parameters #\n\ 00859 #######################################################################\n\ 00860 # These are fixed during camera calibration. Their values will be the #\n\ 00861 # same in all messages until the camera is recalibrated. Note that #\n\ 00862 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00863 # #\n\ 00864 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00865 # to: #\n\ 00866 # 1. An undistorted image (requires D and K) #\n\ 00867 # 2. A rectified image (requires D, K, R) #\n\ 00868 # The projection matrix P projects 3D points into the rectified image.#\n\ 00869 #######################################################################\n\ 00870 \n\ 00871 # The image dimensions with which the camera was calibrated. Normally\n\ 00872 # this will be the full camera resolution in pixels.\n\ 00873 uint32 height\n\ 00874 uint32 width\n\ 00875 \n\ 00876 # The distortion model used. Supported models are listed in\n\ 00877 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00878 # simple model of radial and tangential distortion - is sufficent.\n\ 00879 string distortion_model\n\ 00880 \n\ 00881 # The distortion parameters, size depending on the distortion model.\n\ 00882 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00883 float64[] D\n\ 00884 \n\ 00885 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00886 # [fx 0 cx]\n\ 00887 # K = [ 0 fy cy]\n\ 00888 # [ 0 0 1]\n\ 00889 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00890 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00891 # (cx, cy).\n\ 00892 float64[9] K # 3x3 row-major matrix\n\ 00893 \n\ 00894 # Rectification matrix (stereo cameras only)\n\ 00895 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00896 # stereo image plane so that epipolar lines in both stereo images are\n\ 00897 # parallel.\n\ 00898 float64[9] R # 3x3 row-major matrix\n\ 00899 \n\ 00900 # Projection/camera matrix\n\ 00901 # [fx' 0 cx' Tx]\n\ 00902 # P = [ 0 fy' cy' Ty]\n\ 00903 # [ 0 0 1 0]\n\ 00904 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00905 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00906 # is the normal camera intrinsic matrix for the rectified image.\n\ 00907 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00908 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00909 # (cx', cy') - these may differ from the values in K.\n\ 00910 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00911 # also have R = the identity and P[1:3,1:3] = K.\n\ 00912 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00913 # position of the optical center of the second camera in the first\n\ 00914 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00915 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00916 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00917 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00918 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00919 # the rectified image is given by:\n\ 00920 # [u v w]' = P * [X Y Z 1]'\n\ 00921 # x = u / w\n\ 00922 # y = v / w\n\ 00923 # This holds for both images of a stereo pair.\n\ 00924 float64[12] P # 3x4 row-major matrix\n\ 00925 \n\ 00926 \n\ 00927 #######################################################################\n\ 00928 # Operational Parameters #\n\ 00929 #######################################################################\n\ 00930 # These define the image region actually captured by the camera #\n\ 00931 # driver. Although they affect the geometry of the output image, they #\n\ 00932 # may be changed freely without recalibrating the camera. #\n\ 00933 #######################################################################\n\ 00934 \n\ 00935 # Binning refers here to any camera setting which combines rectangular\n\ 00936 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00937 # resolution of the output image to\n\ 00938 # (width / binning_x) x (height / binning_y).\n\ 00939 # The default values binning_x = binning_y = 0 is considered the same\n\ 00940 # as binning_x = binning_y = 1 (no subsampling).\n\ 00941 uint32 binning_x\n\ 00942 uint32 binning_y\n\ 00943 \n\ 00944 # Region of interest (subwindow of full camera resolution), given in\n\ 00945 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00946 # always denotes the same window of pixels on the camera sensor,\n\ 00947 # regardless of binning settings.\n\ 00948 # The default setting of roi (all values 0) is considered the same as\n\ 00949 # full resolution (roi.width = width, roi.height = height).\n\ 00950 RegionOfInterest roi\n\ 00951 \n\ 00952 ================================================================================\n\ 00953 MSG: sensor_msgs/RegionOfInterest\n\ 00954 # This message is used to specify a region of interest within an image.\n\ 00955 #\n\ 00956 # When used to specify the ROI setting of the camera when the image was\n\ 00957 # taken, the height and width fields should either match the height and\n\ 00958 # width fields for the associated image; or height = width = 0\n\ 00959 # indicates that the full resolution image was captured.\n\ 00960 \n\ 00961 uint32 x_offset # Leftmost pixel of the ROI\n\ 00962 # (0 if the ROI includes the left edge of the image)\n\ 00963 uint32 y_offset # Topmost pixel of the ROI\n\ 00964 # (0 if the ROI includes the top edge of the image)\n\ 00965 uint32 height # Height of ROI\n\ 00966 uint32 width # Width of ROI\n\ 00967 \n\ 00968 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00969 # ROI in this message. Typically this should be False if the full image\n\ 00970 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00971 # used).\n\ 00972 bool do_rectify\n\ 00973 \n\ 00974 ================================================================================\n\ 00975 MSG: geometry_msgs/Vector3\n\ 00976 # This represents a vector in free space. \n\ 00977 \n\ 00978 float64 x\n\ 00979 float64 y\n\ 00980 float64 z\n\ 00981 "; 00982 } 00983 00984 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); } 00985 }; 00986 00987 } // namespace message_traits 00988 } // namespace ros 00989 00990 namespace ros 00991 { 00992 namespace serialization 00993 { 00994 00995 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > 00996 { 00997 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00998 { 00999 stream.next(m.reference_frame_id); 01000 stream.next(m.potential_models); 01001 stream.next(m.cluster); 01002 stream.next(m.region); 01003 stream.next(m.collision_name); 01004 } 01005 01006 ROS_DECLARE_ALLINONE_SERIALIZER; 01007 }; // struct GraspableObject_ 01008 } // namespace serialization 01009 } // namespace ros 01010 01011 namespace ros 01012 { 01013 namespace message_operations 01014 { 01015 01016 template<class ContainerAllocator> 01017 struct Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > 01018 { 01019 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v) 01020 { 01021 s << indent << "reference_frame_id: "; 01022 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.reference_frame_id); 01023 s << indent << "potential_models[]" << std::endl; 01024 for (size_t i = 0; i < v.potential_models.size(); ++i) 01025 { 01026 s << indent << " potential_models[" << i << "]: "; 01027 s << std::endl; 01028 s << indent; 01029 Printer< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::stream(s, indent + " ", v.potential_models[i]); 01030 } 01031 s << indent << "cluster: "; 01032 s << std::endl; 01033 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.cluster); 01034 s << indent << "region: "; 01035 s << std::endl; 01036 Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, indent + " ", v.region); 01037 s << indent << "collision_name: "; 01038 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_name); 01039 } 01040 }; 01041 01042 01043 } // namespace message_operations 01044 } // namespace ros 01045 01046 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H 01047