00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "household_objects_database_msgs/DatabaseModelPose.h"
00018 #include "sensor_msgs/PointCloud.h"
00019 #include "object_manipulation_msgs/SceneRegion.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspableObject_ {
00025 typedef GraspableObject_<ContainerAllocator> Type;
00026
00027 GraspableObject_()
00028 : reference_frame_id()
00029 , potential_models()
00030 , cluster()
00031 , region()
00032 , collision_name()
00033 {
00034 }
00035
00036 GraspableObject_(const ContainerAllocator& _alloc)
00037 : reference_frame_id(_alloc)
00038 , potential_models(_alloc)
00039 , cluster(_alloc)
00040 , region(_alloc)
00041 , collision_name(_alloc)
00042 {
00043 }
00044
00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _reference_frame_id_type;
00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > reference_frame_id;
00047
00048 typedef std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > _potential_models_type;
00049 std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > potential_models;
00050
00051 typedef ::sensor_msgs::PointCloud_<ContainerAllocator> _cluster_type;
00052 ::sensor_msgs::PointCloud_<ContainerAllocator> cluster;
00053
00054 typedef ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> _region_type;
00055 ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> region;
00056
00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_name_type;
00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_name;
00059
00060
00061 ROS_DEPRECATED uint32_t get_potential_models_size() const { return (uint32_t)potential_models.size(); }
00062 ROS_DEPRECATED void set_potential_models_size(uint32_t size) { potential_models.resize((size_t)size); }
00063 ROS_DEPRECATED void get_potential_models_vec(std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) const { vec = this->potential_models; }
00064 ROS_DEPRECATED void set_potential_models_vec(const std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) { this->potential_models = vec; }
00065 private:
00066 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspableObject"; }
00067 public:
00068 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00069
00070 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00071
00072 private:
00073 static const char* __s_getMD5Sum_() { return "fb38ca9beebc9a80929b7a0397d84cf3"; }
00074 public:
00075 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00076
00077 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00078
00079 private:
00080 static const char* __s_getMessageDefinition_() { return "# an object that the object_manipulator can work on\n\
00081 \n\
00082 # a graspable object can be represented in multiple ways. This message\n\
00083 # can contain all of them. Which one is actually used is up to the receiver\n\
00084 # of this message. When adding new representations, one must be careful that\n\
00085 # they have reasonable lightweight defaults indicating that that particular\n\
00086 # representation is not available.\n\
00087 \n\
00088 # the tf frame to be used as a reference frame when combining information from\n\
00089 # the different representations below\n\
00090 string reference_frame_id\n\
00091 \n\
00092 # potential recognition results from a database of models\n\
00093 # all poses are relative to the object reference pose\n\
00094 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00095 \n\
00096 # the point cloud itself\n\
00097 sensor_msgs/PointCloud cluster\n\
00098 \n\
00099 # a region of a PointCloud2 of interest\n\
00100 object_manipulation_msgs/SceneRegion region\n\
00101 \n\
00102 # the name that this object has in the collision environment\n\
00103 string collision_name\n\
00104 ================================================================================\n\
00105 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00106 # Informs that a specific model from the Model Database has been \n\
00107 # identified at a certain location\n\
00108 \n\
00109 # the database id of the model\n\
00110 int32 model_id\n\
00111 \n\
00112 # the pose that it can be found in\n\
00113 geometry_msgs/PoseStamped pose\n\
00114 \n\
00115 # a measure of the confidence level in this detection result\n\
00116 float32 confidence\n\
00117 \n\
00118 # the name of the object detector that generated this detection result\n\
00119 string detector_name\n\
00120 \n\
00121 ================================================================================\n\
00122 MSG: geometry_msgs/PoseStamped\n\
00123 # A Pose with reference coordinate frame and timestamp\n\
00124 Header header\n\
00125 Pose pose\n\
00126 \n\
00127 ================================================================================\n\
00128 MSG: std_msgs/Header\n\
00129 # Standard metadata for higher-level stamped data types.\n\
00130 # This is generally used to communicate timestamped data \n\
00131 # in a particular coordinate frame.\n\
00132 # \n\
00133 # sequence ID: consecutively increasing ID \n\
00134 uint32 seq\n\
00135 #Two-integer timestamp that is expressed as:\n\
00136 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00137 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00138 # time-handling sugar is provided by the client library\n\
00139 time stamp\n\
00140 #Frame this data is associated with\n\
00141 # 0: no frame\n\
00142 # 1: global frame\n\
00143 string frame_id\n\
00144 \n\
00145 ================================================================================\n\
00146 MSG: geometry_msgs/Pose\n\
00147 # A representation of pose in free space, composed of postion and orientation. \n\
00148 Point position\n\
00149 Quaternion orientation\n\
00150 \n\
00151 ================================================================================\n\
00152 MSG: geometry_msgs/Point\n\
00153 # This contains the position of a point in free space\n\
00154 float64 x\n\
00155 float64 y\n\
00156 float64 z\n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: geometry_msgs/Quaternion\n\
00160 # This represents an orientation in free space in quaternion form.\n\
00161 \n\
00162 float64 x\n\
00163 float64 y\n\
00164 float64 z\n\
00165 float64 w\n\
00166 \n\
00167 ================================================================================\n\
00168 MSG: sensor_msgs/PointCloud\n\
00169 # This message holds a collection of 3d points, plus optional additional\n\
00170 # information about each point.\n\
00171 \n\
00172 # Time of sensor data acquisition, coordinate frame ID.\n\
00173 Header header\n\
00174 \n\
00175 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00176 # in the frame given in the header.\n\
00177 geometry_msgs/Point32[] points\n\
00178 \n\
00179 # Each channel should have the same number of elements as points array,\n\
00180 # and the data in each channel should correspond 1:1 with each point.\n\
00181 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00182 ChannelFloat32[] channels\n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: geometry_msgs/Point32\n\
00186 # This contains the position of a point in free space(with 32 bits of precision).\n\
00187 # It is recommeded to use Point wherever possible instead of Point32. \n\
00188 # \n\
00189 # This recommendation is to promote interoperability. \n\
00190 #\n\
00191 # This message is designed to take up less space when sending\n\
00192 # lots of points at once, as in the case of a PointCloud. \n\
00193 \n\
00194 float32 x\n\
00195 float32 y\n\
00196 float32 z\n\
00197 ================================================================================\n\
00198 MSG: sensor_msgs/ChannelFloat32\n\
00199 # This message is used by the PointCloud message to hold optional data\n\
00200 # associated with each point in the cloud. The length of the values\n\
00201 # array should be the same as the length of the points array in the\n\
00202 # PointCloud, and each value should be associated with the corresponding\n\
00203 # point.\n\
00204 \n\
00205 # Channel names in existing practice include:\n\
00206 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00207 # This is opposite to usual conventions but remains for\n\
00208 # historical reasons. The newer PointCloud2 message has no\n\
00209 # such problem.\n\
00210 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00211 # (R,G,B) values packed into the least significant 24 bits,\n\
00212 # in order.\n\
00213 # \"intensity\" - laser or pixel intensity.\n\
00214 # \"distance\"\n\
00215 \n\
00216 # The channel name should give semantics of the channel (e.g.\n\
00217 # \"intensity\" instead of \"value\").\n\
00218 string name\n\
00219 \n\
00220 # The values array should be 1-1 with the elements of the associated\n\
00221 # PointCloud.\n\
00222 float32[] values\n\
00223 \n\
00224 ================================================================================\n\
00225 MSG: object_manipulation_msgs/SceneRegion\n\
00226 # Point cloud\n\
00227 sensor_msgs/PointCloud2 cloud\n\
00228 \n\
00229 # Indices for the region of interest\n\
00230 int32[] mask\n\
00231 \n\
00232 # One of the corresponding 2D images, if applicable\n\
00233 sensor_msgs/Image image\n\
00234 \n\
00235 # The disparity image, if applicable\n\
00236 sensor_msgs/Image disparity_image\n\
00237 \n\
00238 # Camera info for the camera that took the image\n\
00239 sensor_msgs/CameraInfo cam_info\n\
00240 \n\
00241 # a 3D region of interest for grasp planning\n\
00242 geometry_msgs/PoseStamped roi_box_pose\n\
00243 geometry_msgs/Vector3 roi_box_dims\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: sensor_msgs/PointCloud2\n\
00247 # This message holds a collection of N-dimensional points, which may\n\
00248 # contain additional information such as normals, intensity, etc. The\n\
00249 # point data is stored as a binary blob, its layout described by the\n\
00250 # contents of the \"fields\" array.\n\
00251 \n\
00252 # The point cloud data may be organized 2d (image-like) or 1d\n\
00253 # (unordered). Point clouds organized as 2d images may be produced by\n\
00254 # camera depth sensors such as stereo or time-of-flight.\n\
00255 \n\
00256 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00257 # points).\n\
00258 Header header\n\
00259 \n\
00260 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00261 # 1 and width is the length of the point cloud.\n\
00262 uint32 height\n\
00263 uint32 width\n\
00264 \n\
00265 # Describes the channels and their layout in the binary data blob.\n\
00266 PointField[] fields\n\
00267 \n\
00268 bool is_bigendian # Is this data bigendian?\n\
00269 uint32 point_step # Length of a point in bytes\n\
00270 uint32 row_step # Length of a row in bytes\n\
00271 uint8[] data # Actual point data, size is (row_step*height)\n\
00272 \n\
00273 bool is_dense # True if there are no invalid points\n\
00274 \n\
00275 ================================================================================\n\
00276 MSG: sensor_msgs/PointField\n\
00277 # This message holds the description of one point entry in the\n\
00278 # PointCloud2 message format.\n\
00279 uint8 INT8 = 1\n\
00280 uint8 UINT8 = 2\n\
00281 uint8 INT16 = 3\n\
00282 uint8 UINT16 = 4\n\
00283 uint8 INT32 = 5\n\
00284 uint8 UINT32 = 6\n\
00285 uint8 FLOAT32 = 7\n\
00286 uint8 FLOAT64 = 8\n\
00287 \n\
00288 string name # Name of field\n\
00289 uint32 offset # Offset from start of point struct\n\
00290 uint8 datatype # Datatype enumeration, see above\n\
00291 uint32 count # How many elements in the field\n\
00292 \n\
00293 ================================================================================\n\
00294 MSG: sensor_msgs/Image\n\
00295 # This message contains an uncompressed image\n\
00296 # (0, 0) is at top-left corner of image\n\
00297 #\n\
00298 \n\
00299 Header header # Header timestamp should be acquisition time of image\n\
00300 # Header frame_id should be optical frame of camera\n\
00301 # origin of frame should be optical center of cameara\n\
00302 # +x should point to the right in the image\n\
00303 # +y should point down in the image\n\
00304 # +z should point into to plane of the image\n\
00305 # If the frame_id here and the frame_id of the CameraInfo\n\
00306 # message associated with the image conflict\n\
00307 # the behavior is undefined\n\
00308 \n\
00309 uint32 height # image height, that is, number of rows\n\
00310 uint32 width # image width, that is, number of columns\n\
00311 \n\
00312 # The legal values for encoding are in file src/image_encodings.cpp\n\
00313 # If you want to standardize a new string format, join\n\
00314 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00315 \n\
00316 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00317 # taken from the list of strings in src/image_encodings.cpp\n\
00318 \n\
00319 uint8 is_bigendian # is this data bigendian?\n\
00320 uint32 step # Full row length in bytes\n\
00321 uint8[] data # actual matrix data, size is (step * rows)\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/CameraInfo\n\
00325 # This message defines meta information for a camera. It should be in a\n\
00326 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00327 # image topics named:\n\
00328 #\n\
00329 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00330 # image - monochrome, distorted\n\
00331 # image_color - color, distorted\n\
00332 # image_rect - monochrome, rectified\n\
00333 # image_rect_color - color, rectified\n\
00334 #\n\
00335 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00336 # for producing the four processed image topics from image_raw and\n\
00337 # camera_info. The meaning of the camera parameters are described in\n\
00338 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00339 #\n\
00340 # The image_geometry package provides a user-friendly interface to\n\
00341 # common operations using this meta information. If you want to, e.g.,\n\
00342 # project a 3d point into image coordinates, we strongly recommend\n\
00343 # using image_geometry.\n\
00344 #\n\
00345 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00346 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00347 # indicates an uncalibrated camera.\n\
00348 \n\
00349 #######################################################################\n\
00350 # Image acquisition info #\n\
00351 #######################################################################\n\
00352 \n\
00353 # Time of image acquisition, camera coordinate frame ID\n\
00354 Header header # Header timestamp should be acquisition time of image\n\
00355 # Header frame_id should be optical frame of camera\n\
00356 # origin of frame should be optical center of camera\n\
00357 # +x should point to the right in the image\n\
00358 # +y should point down in the image\n\
00359 # +z should point into the plane of the image\n\
00360 \n\
00361 \n\
00362 #######################################################################\n\
00363 # Calibration Parameters #\n\
00364 #######################################################################\n\
00365 # These are fixed during camera calibration. Their values will be the #\n\
00366 # same in all messages until the camera is recalibrated. Note that #\n\
00367 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00368 # #\n\
00369 # The internal parameters can be used to warp a raw (distorted) image #\n\
00370 # to: #\n\
00371 # 1. An undistorted image (requires D and K) #\n\
00372 # 2. A rectified image (requires D, K, R) #\n\
00373 # The projection matrix P projects 3D points into the rectified image.#\n\
00374 #######################################################################\n\
00375 \n\
00376 # The image dimensions with which the camera was calibrated. Normally\n\
00377 # this will be the full camera resolution in pixels.\n\
00378 uint32 height\n\
00379 uint32 width\n\
00380 \n\
00381 # The distortion model used. Supported models are listed in\n\
00382 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00383 # simple model of radial and tangential distortion - is sufficent.\n\
00384 string distortion_model\n\
00385 \n\
00386 # The distortion parameters, size depending on the distortion model.\n\
00387 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00388 float64[] D\n\
00389 \n\
00390 # Intrinsic camera matrix for the raw (distorted) images.\n\
00391 # [fx 0 cx]\n\
00392 # K = [ 0 fy cy]\n\
00393 # [ 0 0 1]\n\
00394 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00395 # coordinates using the focal lengths (fx, fy) and principal point\n\
00396 # (cx, cy).\n\
00397 float64[9] K # 3x3 row-major matrix\n\
00398 \n\
00399 # Rectification matrix (stereo cameras only)\n\
00400 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00401 # stereo image plane so that epipolar lines in both stereo images are\n\
00402 # parallel.\n\
00403 float64[9] R # 3x3 row-major matrix\n\
00404 \n\
00405 # Projection/camera matrix\n\
00406 # [fx' 0 cx' Tx]\n\
00407 # P = [ 0 fy' cy' Ty]\n\
00408 # [ 0 0 1 0]\n\
00409 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00410 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00411 # is the normal camera intrinsic matrix for the rectified image.\n\
00412 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00413 # coordinates using the focal lengths (fx', fy') and principal point\n\
00414 # (cx', cy') - these may differ from the values in K.\n\
00415 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00416 # also have R = the identity and P[1:3,1:3] = K.\n\
00417 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00418 # position of the optical center of the second camera in the first\n\
00419 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00420 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00421 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00422 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00423 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00424 # the rectified image is given by:\n\
00425 # [u v w]' = P * [X Y Z 1]'\n\
00426 # x = u / w\n\
00427 # y = v / w\n\
00428 # This holds for both images of a stereo pair.\n\
00429 float64[12] P # 3x4 row-major matrix\n\
00430 \n\
00431 \n\
00432 #######################################################################\n\
00433 # Operational Parameters #\n\
00434 #######################################################################\n\
00435 # These define the image region actually captured by the camera #\n\
00436 # driver. Although they affect the geometry of the output image, they #\n\
00437 # may be changed freely without recalibrating the camera. #\n\
00438 #######################################################################\n\
00439 \n\
00440 # Binning refers here to any camera setting which combines rectangular\n\
00441 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00442 # resolution of the output image to\n\
00443 # (width / binning_x) x (height / binning_y).\n\
00444 # The default values binning_x = binning_y = 0 is considered the same\n\
00445 # as binning_x = binning_y = 1 (no subsampling).\n\
00446 uint32 binning_x\n\
00447 uint32 binning_y\n\
00448 \n\
00449 # Region of interest (subwindow of full camera resolution), given in\n\
00450 # full resolution (unbinned) image coordinates. A particular ROI\n\
00451 # always denotes the same window of pixels on the camera sensor,\n\
00452 # regardless of binning settings.\n\
00453 # The default setting of roi (all values 0) is considered the same as\n\
00454 # full resolution (roi.width = width, roi.height = height).\n\
00455 RegionOfInterest roi\n\
00456 \n\
00457 ================================================================================\n\
00458 MSG: sensor_msgs/RegionOfInterest\n\
00459 # This message is used to specify a region of interest within an image.\n\
00460 #\n\
00461 # When used to specify the ROI setting of the camera when the image was\n\
00462 # taken, the height and width fields should either match the height and\n\
00463 # width fields for the associated image; or height = width = 0\n\
00464 # indicates that the full resolution image was captured.\n\
00465 \n\
00466 uint32 x_offset # Leftmost pixel of the ROI\n\
00467 # (0 if the ROI includes the left edge of the image)\n\
00468 uint32 y_offset # Topmost pixel of the ROI\n\
00469 # (0 if the ROI includes the top edge of the image)\n\
00470 uint32 height # Height of ROI\n\
00471 uint32 width # Width of ROI\n\
00472 \n\
00473 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00474 # ROI in this message. Typically this should be False if the full image\n\
00475 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00476 # used).\n\
00477 bool do_rectify\n\
00478 \n\
00479 ================================================================================\n\
00480 MSG: geometry_msgs/Vector3\n\
00481 # This represents a vector in free space. \n\
00482 \n\
00483 float64 x\n\
00484 float64 y\n\
00485 float64 z\n\
00486 "; }
00487 public:
00488 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00489
00490 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00491
00492 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00493 {
00494 ros::serialization::OStream stream(write_ptr, 1000000000);
00495 ros::serialization::serialize(stream, reference_frame_id);
00496 ros::serialization::serialize(stream, potential_models);
00497 ros::serialization::serialize(stream, cluster);
00498 ros::serialization::serialize(stream, region);
00499 ros::serialization::serialize(stream, collision_name);
00500 return stream.getData();
00501 }
00502
00503 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00504 {
00505 ros::serialization::IStream stream(read_ptr, 1000000000);
00506 ros::serialization::deserialize(stream, reference_frame_id);
00507 ros::serialization::deserialize(stream, potential_models);
00508 ros::serialization::deserialize(stream, cluster);
00509 ros::serialization::deserialize(stream, region);
00510 ros::serialization::deserialize(stream, collision_name);
00511 return stream.getData();
00512 }
00513
00514 ROS_DEPRECATED virtual uint32_t serializationLength() const
00515 {
00516 uint32_t size = 0;
00517 size += ros::serialization::serializationLength(reference_frame_id);
00518 size += ros::serialization::serializationLength(potential_models);
00519 size += ros::serialization::serializationLength(cluster);
00520 size += ros::serialization::serializationLength(region);
00521 size += ros::serialization::serializationLength(collision_name);
00522 return size;
00523 }
00524
00525 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > Ptr;
00526 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> ConstPtr;
00527 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00528 };
00529 typedef ::object_manipulation_msgs::GraspableObject_<std::allocator<void> > GraspableObject;
00530
00531 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject> GraspableObjectPtr;
00532 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject const> GraspableObjectConstPtr;
00533
00534
00535 template<typename ContainerAllocator>
00536 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
00537 {
00538 ros::message_operations::Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, "", v);
00539 return s;}
00540
00541 }
00542
00543 namespace ros
00544 {
00545 namespace message_traits
00546 {
00547 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > : public TrueType {};
00548 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> : public TrueType {};
00549 template<class ContainerAllocator>
00550 struct MD5Sum< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00551 static const char* value()
00552 {
00553 return "fb38ca9beebc9a80929b7a0397d84cf3";
00554 }
00555
00556 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00557 static const uint64_t static_value1 = 0xfb38ca9beebc9a80ULL;
00558 static const uint64_t static_value2 = 0x929b7a0397d84cf3ULL;
00559 };
00560
00561 template<class ContainerAllocator>
00562 struct DataType< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00563 static const char* value()
00564 {
00565 return "object_manipulation_msgs/GraspableObject";
00566 }
00567
00568 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00569 };
00570
00571 template<class ContainerAllocator>
00572 struct Definition< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00573 static const char* value()
00574 {
00575 return "# an object that the object_manipulator can work on\n\
00576 \n\
00577 # a graspable object can be represented in multiple ways. This message\n\
00578 # can contain all of them. Which one is actually used is up to the receiver\n\
00579 # of this message. When adding new representations, one must be careful that\n\
00580 # they have reasonable lightweight defaults indicating that that particular\n\
00581 # representation is not available.\n\
00582 \n\
00583 # the tf frame to be used as a reference frame when combining information from\n\
00584 # the different representations below\n\
00585 string reference_frame_id\n\
00586 \n\
00587 # potential recognition results from a database of models\n\
00588 # all poses are relative to the object reference pose\n\
00589 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00590 \n\
00591 # the point cloud itself\n\
00592 sensor_msgs/PointCloud cluster\n\
00593 \n\
00594 # a region of a PointCloud2 of interest\n\
00595 object_manipulation_msgs/SceneRegion region\n\
00596 \n\
00597 # the name that this object has in the collision environment\n\
00598 string collision_name\n\
00599 ================================================================================\n\
00600 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00601 # Informs that a specific model from the Model Database has been \n\
00602 # identified at a certain location\n\
00603 \n\
00604 # the database id of the model\n\
00605 int32 model_id\n\
00606 \n\
00607 # the pose that it can be found in\n\
00608 geometry_msgs/PoseStamped pose\n\
00609 \n\
00610 # a measure of the confidence level in this detection result\n\
00611 float32 confidence\n\
00612 \n\
00613 # the name of the object detector that generated this detection result\n\
00614 string detector_name\n\
00615 \n\
00616 ================================================================================\n\
00617 MSG: geometry_msgs/PoseStamped\n\
00618 # A Pose with reference coordinate frame and timestamp\n\
00619 Header header\n\
00620 Pose pose\n\
00621 \n\
00622 ================================================================================\n\
00623 MSG: std_msgs/Header\n\
00624 # Standard metadata for higher-level stamped data types.\n\
00625 # This is generally used to communicate timestamped data \n\
00626 # in a particular coordinate frame.\n\
00627 # \n\
00628 # sequence ID: consecutively increasing ID \n\
00629 uint32 seq\n\
00630 #Two-integer timestamp that is expressed as:\n\
00631 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00632 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00633 # time-handling sugar is provided by the client library\n\
00634 time stamp\n\
00635 #Frame this data is associated with\n\
00636 # 0: no frame\n\
00637 # 1: global frame\n\
00638 string frame_id\n\
00639 \n\
00640 ================================================================================\n\
00641 MSG: geometry_msgs/Pose\n\
00642 # A representation of pose in free space, composed of postion and orientation. \n\
00643 Point position\n\
00644 Quaternion orientation\n\
00645 \n\
00646 ================================================================================\n\
00647 MSG: geometry_msgs/Point\n\
00648 # This contains the position of a point in free space\n\
00649 float64 x\n\
00650 float64 y\n\
00651 float64 z\n\
00652 \n\
00653 ================================================================================\n\
00654 MSG: geometry_msgs/Quaternion\n\
00655 # This represents an orientation in free space in quaternion form.\n\
00656 \n\
00657 float64 x\n\
00658 float64 y\n\
00659 float64 z\n\
00660 float64 w\n\
00661 \n\
00662 ================================================================================\n\
00663 MSG: sensor_msgs/PointCloud\n\
00664 # This message holds a collection of 3d points, plus optional additional\n\
00665 # information about each point.\n\
00666 \n\
00667 # Time of sensor data acquisition, coordinate frame ID.\n\
00668 Header header\n\
00669 \n\
00670 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00671 # in the frame given in the header.\n\
00672 geometry_msgs/Point32[] points\n\
00673 \n\
00674 # Each channel should have the same number of elements as points array,\n\
00675 # and the data in each channel should correspond 1:1 with each point.\n\
00676 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00677 ChannelFloat32[] channels\n\
00678 \n\
00679 ================================================================================\n\
00680 MSG: geometry_msgs/Point32\n\
00681 # This contains the position of a point in free space(with 32 bits of precision).\n\
00682 # It is recommeded to use Point wherever possible instead of Point32. \n\
00683 # \n\
00684 # This recommendation is to promote interoperability. \n\
00685 #\n\
00686 # This message is designed to take up less space when sending\n\
00687 # lots of points at once, as in the case of a PointCloud. \n\
00688 \n\
00689 float32 x\n\
00690 float32 y\n\
00691 float32 z\n\
00692 ================================================================================\n\
00693 MSG: sensor_msgs/ChannelFloat32\n\
00694 # This message is used by the PointCloud message to hold optional data\n\
00695 # associated with each point in the cloud. The length of the values\n\
00696 # array should be the same as the length of the points array in the\n\
00697 # PointCloud, and each value should be associated with the corresponding\n\
00698 # point.\n\
00699 \n\
00700 # Channel names in existing practice include:\n\
00701 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00702 # This is opposite to usual conventions but remains for\n\
00703 # historical reasons. The newer PointCloud2 message has no\n\
00704 # such problem.\n\
00705 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00706 # (R,G,B) values packed into the least significant 24 bits,\n\
00707 # in order.\n\
00708 # \"intensity\" - laser or pixel intensity.\n\
00709 # \"distance\"\n\
00710 \n\
00711 # The channel name should give semantics of the channel (e.g.\n\
00712 # \"intensity\" instead of \"value\").\n\
00713 string name\n\
00714 \n\
00715 # The values array should be 1-1 with the elements of the associated\n\
00716 # PointCloud.\n\
00717 float32[] values\n\
00718 \n\
00719 ================================================================================\n\
00720 MSG: object_manipulation_msgs/SceneRegion\n\
00721 # Point cloud\n\
00722 sensor_msgs/PointCloud2 cloud\n\
00723 \n\
00724 # Indices for the region of interest\n\
00725 int32[] mask\n\
00726 \n\
00727 # One of the corresponding 2D images, if applicable\n\
00728 sensor_msgs/Image image\n\
00729 \n\
00730 # The disparity image, if applicable\n\
00731 sensor_msgs/Image disparity_image\n\
00732 \n\
00733 # Camera info for the camera that took the image\n\
00734 sensor_msgs/CameraInfo cam_info\n\
00735 \n\
00736 # a 3D region of interest for grasp planning\n\
00737 geometry_msgs/PoseStamped roi_box_pose\n\
00738 geometry_msgs/Vector3 roi_box_dims\n\
00739 \n\
00740 ================================================================================\n\
00741 MSG: sensor_msgs/PointCloud2\n\
00742 # This message holds a collection of N-dimensional points, which may\n\
00743 # contain additional information such as normals, intensity, etc. The\n\
00744 # point data is stored as a binary blob, its layout described by the\n\
00745 # contents of the \"fields\" array.\n\
00746 \n\
00747 # The point cloud data may be organized 2d (image-like) or 1d\n\
00748 # (unordered). Point clouds organized as 2d images may be produced by\n\
00749 # camera depth sensors such as stereo or time-of-flight.\n\
00750 \n\
00751 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00752 # points).\n\
00753 Header header\n\
00754 \n\
00755 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00756 # 1 and width is the length of the point cloud.\n\
00757 uint32 height\n\
00758 uint32 width\n\
00759 \n\
00760 # Describes the channels and their layout in the binary data blob.\n\
00761 PointField[] fields\n\
00762 \n\
00763 bool is_bigendian # Is this data bigendian?\n\
00764 uint32 point_step # Length of a point in bytes\n\
00765 uint32 row_step # Length of a row in bytes\n\
00766 uint8[] data # Actual point data, size is (row_step*height)\n\
00767 \n\
00768 bool is_dense # True if there are no invalid points\n\
00769 \n\
00770 ================================================================================\n\
00771 MSG: sensor_msgs/PointField\n\
00772 # This message holds the description of one point entry in the\n\
00773 # PointCloud2 message format.\n\
00774 uint8 INT8 = 1\n\
00775 uint8 UINT8 = 2\n\
00776 uint8 INT16 = 3\n\
00777 uint8 UINT16 = 4\n\
00778 uint8 INT32 = 5\n\
00779 uint8 UINT32 = 6\n\
00780 uint8 FLOAT32 = 7\n\
00781 uint8 FLOAT64 = 8\n\
00782 \n\
00783 string name # Name of field\n\
00784 uint32 offset # Offset from start of point struct\n\
00785 uint8 datatype # Datatype enumeration, see above\n\
00786 uint32 count # How many elements in the field\n\
00787 \n\
00788 ================================================================================\n\
00789 MSG: sensor_msgs/Image\n\
00790 # This message contains an uncompressed image\n\
00791 # (0, 0) is at top-left corner of image\n\
00792 #\n\
00793 \n\
00794 Header header # Header timestamp should be acquisition time of image\n\
00795 # Header frame_id should be optical frame of camera\n\
00796 # origin of frame should be optical center of cameara\n\
00797 # +x should point to the right in the image\n\
00798 # +y should point down in the image\n\
00799 # +z should point into to plane of the image\n\
00800 # If the frame_id here and the frame_id of the CameraInfo\n\
00801 # message associated with the image conflict\n\
00802 # the behavior is undefined\n\
00803 \n\
00804 uint32 height # image height, that is, number of rows\n\
00805 uint32 width # image width, that is, number of columns\n\
00806 \n\
00807 # The legal values for encoding are in file src/image_encodings.cpp\n\
00808 # If you want to standardize a new string format, join\n\
00809 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00810 \n\
00811 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00812 # taken from the list of strings in src/image_encodings.cpp\n\
00813 \n\
00814 uint8 is_bigendian # is this data bigendian?\n\
00815 uint32 step # Full row length in bytes\n\
00816 uint8[] data # actual matrix data, size is (step * rows)\n\
00817 \n\
00818 ================================================================================\n\
00819 MSG: sensor_msgs/CameraInfo\n\
00820 # This message defines meta information for a camera. It should be in a\n\
00821 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00822 # image topics named:\n\
00823 #\n\
00824 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00825 # image - monochrome, distorted\n\
00826 # image_color - color, distorted\n\
00827 # image_rect - monochrome, rectified\n\
00828 # image_rect_color - color, rectified\n\
00829 #\n\
00830 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00831 # for producing the four processed image topics from image_raw and\n\
00832 # camera_info. The meaning of the camera parameters are described in\n\
00833 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00834 #\n\
00835 # The image_geometry package provides a user-friendly interface to\n\
00836 # common operations using this meta information. If you want to, e.g.,\n\
00837 # project a 3d point into image coordinates, we strongly recommend\n\
00838 # using image_geometry.\n\
00839 #\n\
00840 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00841 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00842 # indicates an uncalibrated camera.\n\
00843 \n\
00844 #######################################################################\n\
00845 # Image acquisition info #\n\
00846 #######################################################################\n\
00847 \n\
00848 # Time of image acquisition, camera coordinate frame ID\n\
00849 Header header # Header timestamp should be acquisition time of image\n\
00850 # Header frame_id should be optical frame of camera\n\
00851 # origin of frame should be optical center of camera\n\
00852 # +x should point to the right in the image\n\
00853 # +y should point down in the image\n\
00854 # +z should point into the plane of the image\n\
00855 \n\
00856 \n\
00857 #######################################################################\n\
00858 # Calibration Parameters #\n\
00859 #######################################################################\n\
00860 # These are fixed during camera calibration. Their values will be the #\n\
00861 # same in all messages until the camera is recalibrated. Note that #\n\
00862 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00863 # #\n\
00864 # The internal parameters can be used to warp a raw (distorted) image #\n\
00865 # to: #\n\
00866 # 1. An undistorted image (requires D and K) #\n\
00867 # 2. A rectified image (requires D, K, R) #\n\
00868 # The projection matrix P projects 3D points into the rectified image.#\n\
00869 #######################################################################\n\
00870 \n\
00871 # The image dimensions with which the camera was calibrated. Normally\n\
00872 # this will be the full camera resolution in pixels.\n\
00873 uint32 height\n\
00874 uint32 width\n\
00875 \n\
00876 # The distortion model used. Supported models are listed in\n\
00877 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00878 # simple model of radial and tangential distortion - is sufficent.\n\
00879 string distortion_model\n\
00880 \n\
00881 # The distortion parameters, size depending on the distortion model.\n\
00882 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00883 float64[] D\n\
00884 \n\
00885 # Intrinsic camera matrix for the raw (distorted) images.\n\
00886 # [fx 0 cx]\n\
00887 # K = [ 0 fy cy]\n\
00888 # [ 0 0 1]\n\
00889 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00890 # coordinates using the focal lengths (fx, fy) and principal point\n\
00891 # (cx, cy).\n\
00892 float64[9] K # 3x3 row-major matrix\n\
00893 \n\
00894 # Rectification matrix (stereo cameras only)\n\
00895 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00896 # stereo image plane so that epipolar lines in both stereo images are\n\
00897 # parallel.\n\
00898 float64[9] R # 3x3 row-major matrix\n\
00899 \n\
00900 # Projection/camera matrix\n\
00901 # [fx' 0 cx' Tx]\n\
00902 # P = [ 0 fy' cy' Ty]\n\
00903 # [ 0 0 1 0]\n\
00904 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00905 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00906 # is the normal camera intrinsic matrix for the rectified image.\n\
00907 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00908 # coordinates using the focal lengths (fx', fy') and principal point\n\
00909 # (cx', cy') - these may differ from the values in K.\n\
00910 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00911 # also have R = the identity and P[1:3,1:3] = K.\n\
00912 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00913 # position of the optical center of the second camera in the first\n\
00914 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00915 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00916 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00917 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00918 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00919 # the rectified image is given by:\n\
00920 # [u v w]' = P * [X Y Z 1]'\n\
00921 # x = u / w\n\
00922 # y = v / w\n\
00923 # This holds for both images of a stereo pair.\n\
00924 float64[12] P # 3x4 row-major matrix\n\
00925 \n\
00926 \n\
00927 #######################################################################\n\
00928 # Operational Parameters #\n\
00929 #######################################################################\n\
00930 # These define the image region actually captured by the camera #\n\
00931 # driver. Although they affect the geometry of the output image, they #\n\
00932 # may be changed freely without recalibrating the camera. #\n\
00933 #######################################################################\n\
00934 \n\
00935 # Binning refers here to any camera setting which combines rectangular\n\
00936 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00937 # resolution of the output image to\n\
00938 # (width / binning_x) x (height / binning_y).\n\
00939 # The default values binning_x = binning_y = 0 is considered the same\n\
00940 # as binning_x = binning_y = 1 (no subsampling).\n\
00941 uint32 binning_x\n\
00942 uint32 binning_y\n\
00943 \n\
00944 # Region of interest (subwindow of full camera resolution), given in\n\
00945 # full resolution (unbinned) image coordinates. A particular ROI\n\
00946 # always denotes the same window of pixels on the camera sensor,\n\
00947 # regardless of binning settings.\n\
00948 # The default setting of roi (all values 0) is considered the same as\n\
00949 # full resolution (roi.width = width, roi.height = height).\n\
00950 RegionOfInterest roi\n\
00951 \n\
00952 ================================================================================\n\
00953 MSG: sensor_msgs/RegionOfInterest\n\
00954 # This message is used to specify a region of interest within an image.\n\
00955 #\n\
00956 # When used to specify the ROI setting of the camera when the image was\n\
00957 # taken, the height and width fields should either match the height and\n\
00958 # width fields for the associated image; or height = width = 0\n\
00959 # indicates that the full resolution image was captured.\n\
00960 \n\
00961 uint32 x_offset # Leftmost pixel of the ROI\n\
00962 # (0 if the ROI includes the left edge of the image)\n\
00963 uint32 y_offset # Topmost pixel of the ROI\n\
00964 # (0 if the ROI includes the top edge of the image)\n\
00965 uint32 height # Height of ROI\n\
00966 uint32 width # Width of ROI\n\
00967 \n\
00968 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00969 # ROI in this message. Typically this should be False if the full image\n\
00970 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00971 # used).\n\
00972 bool do_rectify\n\
00973 \n\
00974 ================================================================================\n\
00975 MSG: geometry_msgs/Vector3\n\
00976 # This represents a vector in free space. \n\
00977 \n\
00978 float64 x\n\
00979 float64 y\n\
00980 float64 z\n\
00981 ";
00982 }
00983
00984 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00985 };
00986
00987 }
00988 }
00989
00990 namespace ros
00991 {
00992 namespace serialization
00993 {
00994
00995 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
00996 {
00997 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00998 {
00999 stream.next(m.reference_frame_id);
01000 stream.next(m.potential_models);
01001 stream.next(m.cluster);
01002 stream.next(m.region);
01003 stream.next(m.collision_name);
01004 }
01005
01006 ROS_DECLARE_ALLINONE_SERIALIZER;
01007 };
01008 }
01009 }
01010
01011 namespace ros
01012 {
01013 namespace message_operations
01014 {
01015
01016 template<class ContainerAllocator>
01017 struct Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
01018 {
01019 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
01020 {
01021 s << indent << "reference_frame_id: ";
01022 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.reference_frame_id);
01023 s << indent << "potential_models[]" << std::endl;
01024 for (size_t i = 0; i < v.potential_models.size(); ++i)
01025 {
01026 s << indent << " potential_models[" << i << "]: ";
01027 s << std::endl;
01028 s << indent;
01029 Printer< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::stream(s, indent + " ", v.potential_models[i]);
01030 }
01031 s << indent << "cluster: ";
01032 s << std::endl;
01033 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.cluster);
01034 s << indent << "region: ";
01035 s << std::endl;
01036 Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, indent + " ", v.region);
01037 s << indent << "collision_name: ";
01038 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_name);
01039 }
01040 };
01041
01042
01043 }
01044 }
01045
01046 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
01047