$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspableObject.h" 00018 #include "object_manipulation_msgs/Grasp.h" 00019 #include "object_manipulation_msgs/GraspableObject.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspPlanningGoal_ { 00025 typedef GraspPlanningGoal_<ContainerAllocator> Type; 00026 00027 GraspPlanningGoal_() 00028 : arm_name() 00029 , target() 00030 , collision_object_name() 00031 , collision_support_surface_name() 00032 , grasps_to_evaluate() 00033 , movable_obstacles() 00034 { 00035 } 00036 00037 GraspPlanningGoal_(const ContainerAllocator& _alloc) 00038 : arm_name(_alloc) 00039 , target(_alloc) 00040 , collision_object_name(_alloc) 00041 , collision_support_surface_name(_alloc) 00042 , grasps_to_evaluate(_alloc) 00043 , movable_obstacles(_alloc) 00044 { 00045 } 00046 00047 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type; 00048 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name; 00049 00050 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _target_type; 00051 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> target; 00052 00053 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type; 00054 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name; 00055 00056 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type; 00057 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name; 00058 00059 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_to_evaluate_type; 00060 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps_to_evaluate; 00061 00062 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type; 00063 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles; 00064 00065 00066 ROS_DEPRECATED uint32_t get_grasps_to_evaluate_size() const { return (uint32_t)grasps_to_evaluate.size(); } 00067 ROS_DEPRECATED void set_grasps_to_evaluate_size(uint32_t size) { grasps_to_evaluate.resize((size_t)size); } 00068 ROS_DEPRECATED void get_grasps_to_evaluate_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps_to_evaluate; } 00069 ROS_DEPRECATED void set_grasps_to_evaluate_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps_to_evaluate = vec; } 00070 ROS_DEPRECATED uint32_t get_movable_obstacles_size() const { return (uint32_t)movable_obstacles.size(); } 00071 ROS_DEPRECATED void set_movable_obstacles_size(uint32_t size) { movable_obstacles.resize((size_t)size); } 00072 ROS_DEPRECATED void get_movable_obstacles_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->movable_obstacles; } 00073 ROS_DEPRECATED void set_movable_obstacles_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->movable_obstacles = vec; } 00074 private: 00075 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningGoal"; } 00076 public: 00077 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00078 00079 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00080 00081 private: 00082 static const char* __s_getMD5Sum_() { return "5003fdf2225280c9d81c2bce4e645c20"; } 00083 public: 00084 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00085 00086 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00087 00088 private: 00089 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00090 # Requests that grasp planning be performed on the object to be grasped\n\ 00091 # returns a list of grasps to be tested and executed\n\ 00092 \n\ 00093 # the arm being used\n\ 00094 string arm_name\n\ 00095 \n\ 00096 # the object to be grasped\n\ 00097 GraspableObject target\n\ 00098 \n\ 00099 # the name that the target object has in the collision environment\n\ 00100 # can be left empty if no name is available\n\ 00101 string collision_object_name\n\ 00102 \n\ 00103 # the name that the support surface (e.g. table) has in the collision map\n\ 00104 # can be left empty if no name is available\n\ 00105 string collision_support_surface_name\n\ 00106 \n\ 00107 # an optional list of grasps to be evaluated by the planner\n\ 00108 Grasp[] grasps_to_evaluate\n\ 00109 \n\ 00110 # an optional list of obstacles that we have semantic information about\n\ 00111 # and that can be moved in the course of grasping\n\ 00112 GraspableObject[] movable_obstacles\n\ 00113 \n\ 00114 \n\ 00115 ================================================================================\n\ 00116 MSG: object_manipulation_msgs/GraspableObject\n\ 00117 # an object that the object_manipulator can work on\n\ 00118 \n\ 00119 # a graspable object can be represented in multiple ways. This message\n\ 00120 # can contain all of them. Which one is actually used is up to the receiver\n\ 00121 # of this message. When adding new representations, one must be careful that\n\ 00122 # they have reasonable lightweight defaults indicating that that particular\n\ 00123 # representation is not available.\n\ 00124 \n\ 00125 # the tf frame to be used as a reference frame when combining information from\n\ 00126 # the different representations below\n\ 00127 string reference_frame_id\n\ 00128 \n\ 00129 # potential recognition results from a database of models\n\ 00130 # all poses are relative to the object reference pose\n\ 00131 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00132 \n\ 00133 # the point cloud itself\n\ 00134 sensor_msgs/PointCloud cluster\n\ 00135 \n\ 00136 # a region of a PointCloud2 of interest\n\ 00137 object_manipulation_msgs/SceneRegion region\n\ 00138 \n\ 00139 # the name that this object has in the collision environment\n\ 00140 string collision_name\n\ 00141 ================================================================================\n\ 00142 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00143 # Informs that a specific model from the Model Database has been \n\ 00144 # identified at a certain location\n\ 00145 \n\ 00146 # the database id of the model\n\ 00147 int32 model_id\n\ 00148 \n\ 00149 # the pose that it can be found in\n\ 00150 geometry_msgs/PoseStamped pose\n\ 00151 \n\ 00152 # a measure of the confidence level in this detection result\n\ 00153 float32 confidence\n\ 00154 \n\ 00155 # the name of the object detector that generated this detection result\n\ 00156 string detector_name\n\ 00157 \n\ 00158 ================================================================================\n\ 00159 MSG: geometry_msgs/PoseStamped\n\ 00160 # A Pose with reference coordinate frame and timestamp\n\ 00161 Header header\n\ 00162 Pose pose\n\ 00163 \n\ 00164 ================================================================================\n\ 00165 MSG: std_msgs/Header\n\ 00166 # Standard metadata for higher-level stamped data types.\n\ 00167 # This is generally used to communicate timestamped data \n\ 00168 # in a particular coordinate frame.\n\ 00169 # \n\ 00170 # sequence ID: consecutively increasing ID \n\ 00171 uint32 seq\n\ 00172 #Two-integer timestamp that is expressed as:\n\ 00173 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00174 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00175 # time-handling sugar is provided by the client library\n\ 00176 time stamp\n\ 00177 #Frame this data is associated with\n\ 00178 # 0: no frame\n\ 00179 # 1: global frame\n\ 00180 string frame_id\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: geometry_msgs/Pose\n\ 00184 # A representation of pose in free space, composed of postion and orientation. \n\ 00185 Point position\n\ 00186 Quaternion orientation\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: geometry_msgs/Point\n\ 00190 # This contains the position of a point in free space\n\ 00191 float64 x\n\ 00192 float64 y\n\ 00193 float64 z\n\ 00194 \n\ 00195 ================================================================================\n\ 00196 MSG: geometry_msgs/Quaternion\n\ 00197 # This represents an orientation in free space in quaternion form.\n\ 00198 \n\ 00199 float64 x\n\ 00200 float64 y\n\ 00201 float64 z\n\ 00202 float64 w\n\ 00203 \n\ 00204 ================================================================================\n\ 00205 MSG: sensor_msgs/PointCloud\n\ 00206 # This message holds a collection of 3d points, plus optional additional\n\ 00207 # information about each point.\n\ 00208 \n\ 00209 # Time of sensor data acquisition, coordinate frame ID.\n\ 00210 Header header\n\ 00211 \n\ 00212 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00213 # in the frame given in the header.\n\ 00214 geometry_msgs/Point32[] points\n\ 00215 \n\ 00216 # Each channel should have the same number of elements as points array,\n\ 00217 # and the data in each channel should correspond 1:1 with each point.\n\ 00218 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00219 ChannelFloat32[] channels\n\ 00220 \n\ 00221 ================================================================================\n\ 00222 MSG: geometry_msgs/Point32\n\ 00223 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00224 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00225 # \n\ 00226 # This recommendation is to promote interoperability. \n\ 00227 #\n\ 00228 # This message is designed to take up less space when sending\n\ 00229 # lots of points at once, as in the case of a PointCloud. \n\ 00230 \n\ 00231 float32 x\n\ 00232 float32 y\n\ 00233 float32 z\n\ 00234 ================================================================================\n\ 00235 MSG: sensor_msgs/ChannelFloat32\n\ 00236 # This message is used by the PointCloud message to hold optional data\n\ 00237 # associated with each point in the cloud. The length of the values\n\ 00238 # array should be the same as the length of the points array in the\n\ 00239 # PointCloud, and each value should be associated with the corresponding\n\ 00240 # point.\n\ 00241 \n\ 00242 # Channel names in existing practice include:\n\ 00243 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00244 # This is opposite to usual conventions but remains for\n\ 00245 # historical reasons. The newer PointCloud2 message has no\n\ 00246 # such problem.\n\ 00247 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00248 # (R,G,B) values packed into the least significant 24 bits,\n\ 00249 # in order.\n\ 00250 # \"intensity\" - laser or pixel intensity.\n\ 00251 # \"distance\"\n\ 00252 \n\ 00253 # The channel name should give semantics of the channel (e.g.\n\ 00254 # \"intensity\" instead of \"value\").\n\ 00255 string name\n\ 00256 \n\ 00257 # The values array should be 1-1 with the elements of the associated\n\ 00258 # PointCloud.\n\ 00259 float32[] values\n\ 00260 \n\ 00261 ================================================================================\n\ 00262 MSG: object_manipulation_msgs/SceneRegion\n\ 00263 # Point cloud\n\ 00264 sensor_msgs/PointCloud2 cloud\n\ 00265 \n\ 00266 # Indices for the region of interest\n\ 00267 int32[] mask\n\ 00268 \n\ 00269 # One of the corresponding 2D images, if applicable\n\ 00270 sensor_msgs/Image image\n\ 00271 \n\ 00272 # The disparity image, if applicable\n\ 00273 sensor_msgs/Image disparity_image\n\ 00274 \n\ 00275 # Camera info for the camera that took the image\n\ 00276 sensor_msgs/CameraInfo cam_info\n\ 00277 \n\ 00278 # a 3D region of interest for grasp planning\n\ 00279 geometry_msgs/PoseStamped roi_box_pose\n\ 00280 geometry_msgs/Vector3 roi_box_dims\n\ 00281 \n\ 00282 ================================================================================\n\ 00283 MSG: sensor_msgs/PointCloud2\n\ 00284 # This message holds a collection of N-dimensional points, which may\n\ 00285 # contain additional information such as normals, intensity, etc. The\n\ 00286 # point data is stored as a binary blob, its layout described by the\n\ 00287 # contents of the \"fields\" array.\n\ 00288 \n\ 00289 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00290 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00291 # camera depth sensors such as stereo or time-of-flight.\n\ 00292 \n\ 00293 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00294 # points).\n\ 00295 Header header\n\ 00296 \n\ 00297 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00298 # 1 and width is the length of the point cloud.\n\ 00299 uint32 height\n\ 00300 uint32 width\n\ 00301 \n\ 00302 # Describes the channels and their layout in the binary data blob.\n\ 00303 PointField[] fields\n\ 00304 \n\ 00305 bool is_bigendian # Is this data bigendian?\n\ 00306 uint32 point_step # Length of a point in bytes\n\ 00307 uint32 row_step # Length of a row in bytes\n\ 00308 uint8[] data # Actual point data, size is (row_step*height)\n\ 00309 \n\ 00310 bool is_dense # True if there are no invalid points\n\ 00311 \n\ 00312 ================================================================================\n\ 00313 MSG: sensor_msgs/PointField\n\ 00314 # This message holds the description of one point entry in the\n\ 00315 # PointCloud2 message format.\n\ 00316 uint8 INT8 = 1\n\ 00317 uint8 UINT8 = 2\n\ 00318 uint8 INT16 = 3\n\ 00319 uint8 UINT16 = 4\n\ 00320 uint8 INT32 = 5\n\ 00321 uint8 UINT32 = 6\n\ 00322 uint8 FLOAT32 = 7\n\ 00323 uint8 FLOAT64 = 8\n\ 00324 \n\ 00325 string name # Name of field\n\ 00326 uint32 offset # Offset from start of point struct\n\ 00327 uint8 datatype # Datatype enumeration, see above\n\ 00328 uint32 count # How many elements in the field\n\ 00329 \n\ 00330 ================================================================================\n\ 00331 MSG: sensor_msgs/Image\n\ 00332 # This message contains an uncompressed image\n\ 00333 # (0, 0) is at top-left corner of image\n\ 00334 #\n\ 00335 \n\ 00336 Header header # Header timestamp should be acquisition time of image\n\ 00337 # Header frame_id should be optical frame of camera\n\ 00338 # origin of frame should be optical center of cameara\n\ 00339 # +x should point to the right in the image\n\ 00340 # +y should point down in the image\n\ 00341 # +z should point into to plane of the image\n\ 00342 # If the frame_id here and the frame_id of the CameraInfo\n\ 00343 # message associated with the image conflict\n\ 00344 # the behavior is undefined\n\ 00345 \n\ 00346 uint32 height # image height, that is, number of rows\n\ 00347 uint32 width # image width, that is, number of columns\n\ 00348 \n\ 00349 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00350 # If you want to standardize a new string format, join\n\ 00351 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00352 \n\ 00353 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00354 # taken from the list of strings in src/image_encodings.cpp\n\ 00355 \n\ 00356 uint8 is_bigendian # is this data bigendian?\n\ 00357 uint32 step # Full row length in bytes\n\ 00358 uint8[] data # actual matrix data, size is (step * rows)\n\ 00359 \n\ 00360 ================================================================================\n\ 00361 MSG: sensor_msgs/CameraInfo\n\ 00362 # This message defines meta information for a camera. It should be in a\n\ 00363 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00364 # image topics named:\n\ 00365 #\n\ 00366 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00367 # image - monochrome, distorted\n\ 00368 # image_color - color, distorted\n\ 00369 # image_rect - monochrome, rectified\n\ 00370 # image_rect_color - color, rectified\n\ 00371 #\n\ 00372 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00373 # for producing the four processed image topics from image_raw and\n\ 00374 # camera_info. The meaning of the camera parameters are described in\n\ 00375 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00376 #\n\ 00377 # The image_geometry package provides a user-friendly interface to\n\ 00378 # common operations using this meta information. If you want to, e.g.,\n\ 00379 # project a 3d point into image coordinates, we strongly recommend\n\ 00380 # using image_geometry.\n\ 00381 #\n\ 00382 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00383 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00384 # indicates an uncalibrated camera.\n\ 00385 \n\ 00386 #######################################################################\n\ 00387 # Image acquisition info #\n\ 00388 #######################################################################\n\ 00389 \n\ 00390 # Time of image acquisition, camera coordinate frame ID\n\ 00391 Header header # Header timestamp should be acquisition time of image\n\ 00392 # Header frame_id should be optical frame of camera\n\ 00393 # origin of frame should be optical center of camera\n\ 00394 # +x should point to the right in the image\n\ 00395 # +y should point down in the image\n\ 00396 # +z should point into the plane of the image\n\ 00397 \n\ 00398 \n\ 00399 #######################################################################\n\ 00400 # Calibration Parameters #\n\ 00401 #######################################################################\n\ 00402 # These are fixed during camera calibration. Their values will be the #\n\ 00403 # same in all messages until the camera is recalibrated. Note that #\n\ 00404 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00405 # #\n\ 00406 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00407 # to: #\n\ 00408 # 1. An undistorted image (requires D and K) #\n\ 00409 # 2. A rectified image (requires D, K, R) #\n\ 00410 # The projection matrix P projects 3D points into the rectified image.#\n\ 00411 #######################################################################\n\ 00412 \n\ 00413 # The image dimensions with which the camera was calibrated. Normally\n\ 00414 # this will be the full camera resolution in pixels.\n\ 00415 uint32 height\n\ 00416 uint32 width\n\ 00417 \n\ 00418 # The distortion model used. Supported models are listed in\n\ 00419 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00420 # simple model of radial and tangential distortion - is sufficent.\n\ 00421 string distortion_model\n\ 00422 \n\ 00423 # The distortion parameters, size depending on the distortion model.\n\ 00424 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00425 float64[] D\n\ 00426 \n\ 00427 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00428 # [fx 0 cx]\n\ 00429 # K = [ 0 fy cy]\n\ 00430 # [ 0 0 1]\n\ 00431 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00432 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00433 # (cx, cy).\n\ 00434 float64[9] K # 3x3 row-major matrix\n\ 00435 \n\ 00436 # Rectification matrix (stereo cameras only)\n\ 00437 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00438 # stereo image plane so that epipolar lines in both stereo images are\n\ 00439 # parallel.\n\ 00440 float64[9] R # 3x3 row-major matrix\n\ 00441 \n\ 00442 # Projection/camera matrix\n\ 00443 # [fx' 0 cx' Tx]\n\ 00444 # P = [ 0 fy' cy' Ty]\n\ 00445 # [ 0 0 1 0]\n\ 00446 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00447 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00448 # is the normal camera intrinsic matrix for the rectified image.\n\ 00449 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00450 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00451 # (cx', cy') - these may differ from the values in K.\n\ 00452 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00453 # also have R = the identity and P[1:3,1:3] = K.\n\ 00454 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00455 # position of the optical center of the second camera in the first\n\ 00456 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00457 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00458 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00459 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00460 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00461 # the rectified image is given by:\n\ 00462 # [u v w]' = P * [X Y Z 1]'\n\ 00463 # x = u / w\n\ 00464 # y = v / w\n\ 00465 # This holds for both images of a stereo pair.\n\ 00466 float64[12] P # 3x4 row-major matrix\n\ 00467 \n\ 00468 \n\ 00469 #######################################################################\n\ 00470 # Operational Parameters #\n\ 00471 #######################################################################\n\ 00472 # These define the image region actually captured by the camera #\n\ 00473 # driver. Although they affect the geometry of the output image, they #\n\ 00474 # may be changed freely without recalibrating the camera. #\n\ 00475 #######################################################################\n\ 00476 \n\ 00477 # Binning refers here to any camera setting which combines rectangular\n\ 00478 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00479 # resolution of the output image to\n\ 00480 # (width / binning_x) x (height / binning_y).\n\ 00481 # The default values binning_x = binning_y = 0 is considered the same\n\ 00482 # as binning_x = binning_y = 1 (no subsampling).\n\ 00483 uint32 binning_x\n\ 00484 uint32 binning_y\n\ 00485 \n\ 00486 # Region of interest (subwindow of full camera resolution), given in\n\ 00487 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00488 # always denotes the same window of pixels on the camera sensor,\n\ 00489 # regardless of binning settings.\n\ 00490 # The default setting of roi (all values 0) is considered the same as\n\ 00491 # full resolution (roi.width = width, roi.height = height).\n\ 00492 RegionOfInterest roi\n\ 00493 \n\ 00494 ================================================================================\n\ 00495 MSG: sensor_msgs/RegionOfInterest\n\ 00496 # This message is used to specify a region of interest within an image.\n\ 00497 #\n\ 00498 # When used to specify the ROI setting of the camera when the image was\n\ 00499 # taken, the height and width fields should either match the height and\n\ 00500 # width fields for the associated image; or height = width = 0\n\ 00501 # indicates that the full resolution image was captured.\n\ 00502 \n\ 00503 uint32 x_offset # Leftmost pixel of the ROI\n\ 00504 # (0 if the ROI includes the left edge of the image)\n\ 00505 uint32 y_offset # Topmost pixel of the ROI\n\ 00506 # (0 if the ROI includes the top edge of the image)\n\ 00507 uint32 height # Height of ROI\n\ 00508 uint32 width # Width of ROI\n\ 00509 \n\ 00510 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00511 # ROI in this message. Typically this should be False if the full image\n\ 00512 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00513 # used).\n\ 00514 bool do_rectify\n\ 00515 \n\ 00516 ================================================================================\n\ 00517 MSG: geometry_msgs/Vector3\n\ 00518 # This represents a vector in free space. \n\ 00519 \n\ 00520 float64 x\n\ 00521 float64 y\n\ 00522 float64 z\n\ 00523 ================================================================================\n\ 00524 MSG: object_manipulation_msgs/Grasp\n\ 00525 \n\ 00526 # The internal posture of the hand for the pre-grasp\n\ 00527 # only positions are used\n\ 00528 sensor_msgs/JointState pre_grasp_posture\n\ 00529 \n\ 00530 # The internal posture of the hand for the grasp\n\ 00531 # positions and efforts are used\n\ 00532 sensor_msgs/JointState grasp_posture\n\ 00533 \n\ 00534 # The position of the end-effector for the grasp relative to a reference frame \n\ 00535 # (that is always specified elsewhere, not in this message)\n\ 00536 geometry_msgs/Pose grasp_pose\n\ 00537 \n\ 00538 # The estimated probability of success for this grasp\n\ 00539 float64 success_probability\n\ 00540 \n\ 00541 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00542 bool cluster_rep\n\ 00543 \n\ 00544 # how far the pre-grasp should ideally be away from the grasp\n\ 00545 float32 desired_approach_distance\n\ 00546 \n\ 00547 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00548 # for the grasp not to be rejected\n\ 00549 float32 min_approach_distance\n\ 00550 \n\ 00551 # an optional list of obstacles that we have semantic information about\n\ 00552 # and that we expect might move in the course of executing this grasp\n\ 00553 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00554 # execution, grasp executors will not check for collisions against these objects\n\ 00555 GraspableObject[] moved_obstacles\n\ 00556 \n\ 00557 ================================================================================\n\ 00558 MSG: sensor_msgs/JointState\n\ 00559 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00560 #\n\ 00561 # The state of each joint (revolute or prismatic) is defined by:\n\ 00562 # * the position of the joint (rad or m),\n\ 00563 # * the velocity of the joint (rad/s or m/s) and \n\ 00564 # * the effort that is applied in the joint (Nm or N).\n\ 00565 #\n\ 00566 # Each joint is uniquely identified by its name\n\ 00567 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00568 # in one message have to be recorded at the same time.\n\ 00569 #\n\ 00570 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00571 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00572 # effort associated with them, you can leave the effort array empty. \n\ 00573 #\n\ 00574 # All arrays in this message should have the same size, or be empty.\n\ 00575 # This is the only way to uniquely associate the joint name with the correct\n\ 00576 # states.\n\ 00577 \n\ 00578 \n\ 00579 Header header\n\ 00580 \n\ 00581 string[] name\n\ 00582 float64[] position\n\ 00583 float64[] velocity\n\ 00584 float64[] effort\n\ 00585 \n\ 00586 "; } 00587 public: 00588 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00589 00590 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00591 00592 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00593 { 00594 ros::serialization::OStream stream(write_ptr, 1000000000); 00595 ros::serialization::serialize(stream, arm_name); 00596 ros::serialization::serialize(stream, target); 00597 ros::serialization::serialize(stream, collision_object_name); 00598 ros::serialization::serialize(stream, collision_support_surface_name); 00599 ros::serialization::serialize(stream, grasps_to_evaluate); 00600 ros::serialization::serialize(stream, movable_obstacles); 00601 return stream.getData(); 00602 } 00603 00604 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00605 { 00606 ros::serialization::IStream stream(read_ptr, 1000000000); 00607 ros::serialization::deserialize(stream, arm_name); 00608 ros::serialization::deserialize(stream, target); 00609 ros::serialization::deserialize(stream, collision_object_name); 00610 ros::serialization::deserialize(stream, collision_support_surface_name); 00611 ros::serialization::deserialize(stream, grasps_to_evaluate); 00612 ros::serialization::deserialize(stream, movable_obstacles); 00613 return stream.getData(); 00614 } 00615 00616 ROS_DEPRECATED virtual uint32_t serializationLength() const 00617 { 00618 uint32_t size = 0; 00619 size += ros::serialization::serializationLength(arm_name); 00620 size += ros::serialization::serializationLength(target); 00621 size += ros::serialization::serializationLength(collision_object_name); 00622 size += ros::serialization::serializationLength(collision_support_surface_name); 00623 size += ros::serialization::serializationLength(grasps_to_evaluate); 00624 size += ros::serialization::serializationLength(movable_obstacles); 00625 return size; 00626 } 00627 00628 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > Ptr; 00629 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> const> ConstPtr; 00630 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00631 }; // struct GraspPlanningGoal 00632 typedef ::object_manipulation_msgs::GraspPlanningGoal_<std::allocator<void> > GraspPlanningGoal; 00633 00634 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningGoal> GraspPlanningGoalPtr; 00635 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningGoal const> GraspPlanningGoalConstPtr; 00636 00637 00638 template<typename ContainerAllocator> 00639 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> & v) 00640 { 00641 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> >::stream(s, "", v); 00642 return s;} 00643 00644 } // namespace object_manipulation_msgs 00645 00646 namespace ros 00647 { 00648 namespace message_traits 00649 { 00650 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > : public TrueType {}; 00651 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> const> : public TrueType {}; 00652 template<class ContainerAllocator> 00653 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > { 00654 static const char* value() 00655 { 00656 return "5003fdf2225280c9d81c2bce4e645c20"; 00657 } 00658 00659 static const char* value(const ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> &) { return value(); } 00660 static const uint64_t static_value1 = 0x5003fdf2225280c9ULL; 00661 static const uint64_t static_value2 = 0xd81c2bce4e645c20ULL; 00662 }; 00663 00664 template<class ContainerAllocator> 00665 struct DataType< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > { 00666 static const char* value() 00667 { 00668 return "object_manipulation_msgs/GraspPlanningGoal"; 00669 } 00670 00671 static const char* value(const ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> &) { return value(); } 00672 }; 00673 00674 template<class ContainerAllocator> 00675 struct Definition< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > { 00676 static const char* value() 00677 { 00678 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00679 # Requests that grasp planning be performed on the object to be grasped\n\ 00680 # returns a list of grasps to be tested and executed\n\ 00681 \n\ 00682 # the arm being used\n\ 00683 string arm_name\n\ 00684 \n\ 00685 # the object to be grasped\n\ 00686 GraspableObject target\n\ 00687 \n\ 00688 # the name that the target object has in the collision environment\n\ 00689 # can be left empty if no name is available\n\ 00690 string collision_object_name\n\ 00691 \n\ 00692 # the name that the support surface (e.g. table) has in the collision map\n\ 00693 # can be left empty if no name is available\n\ 00694 string collision_support_surface_name\n\ 00695 \n\ 00696 # an optional list of grasps to be evaluated by the planner\n\ 00697 Grasp[] grasps_to_evaluate\n\ 00698 \n\ 00699 # an optional list of obstacles that we have semantic information about\n\ 00700 # and that can be moved in the course of grasping\n\ 00701 GraspableObject[] movable_obstacles\n\ 00702 \n\ 00703 \n\ 00704 ================================================================================\n\ 00705 MSG: object_manipulation_msgs/GraspableObject\n\ 00706 # an object that the object_manipulator can work on\n\ 00707 \n\ 00708 # a graspable object can be represented in multiple ways. This message\n\ 00709 # can contain all of them. Which one is actually used is up to the receiver\n\ 00710 # of this message. When adding new representations, one must be careful that\n\ 00711 # they have reasonable lightweight defaults indicating that that particular\n\ 00712 # representation is not available.\n\ 00713 \n\ 00714 # the tf frame to be used as a reference frame when combining information from\n\ 00715 # the different representations below\n\ 00716 string reference_frame_id\n\ 00717 \n\ 00718 # potential recognition results from a database of models\n\ 00719 # all poses are relative to the object reference pose\n\ 00720 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00721 \n\ 00722 # the point cloud itself\n\ 00723 sensor_msgs/PointCloud cluster\n\ 00724 \n\ 00725 # a region of a PointCloud2 of interest\n\ 00726 object_manipulation_msgs/SceneRegion region\n\ 00727 \n\ 00728 # the name that this object has in the collision environment\n\ 00729 string collision_name\n\ 00730 ================================================================================\n\ 00731 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00732 # Informs that a specific model from the Model Database has been \n\ 00733 # identified at a certain location\n\ 00734 \n\ 00735 # the database id of the model\n\ 00736 int32 model_id\n\ 00737 \n\ 00738 # the pose that it can be found in\n\ 00739 geometry_msgs/PoseStamped pose\n\ 00740 \n\ 00741 # a measure of the confidence level in this detection result\n\ 00742 float32 confidence\n\ 00743 \n\ 00744 # the name of the object detector that generated this detection result\n\ 00745 string detector_name\n\ 00746 \n\ 00747 ================================================================================\n\ 00748 MSG: geometry_msgs/PoseStamped\n\ 00749 # A Pose with reference coordinate frame and timestamp\n\ 00750 Header header\n\ 00751 Pose pose\n\ 00752 \n\ 00753 ================================================================================\n\ 00754 MSG: std_msgs/Header\n\ 00755 # Standard metadata for higher-level stamped data types.\n\ 00756 # This is generally used to communicate timestamped data \n\ 00757 # in a particular coordinate frame.\n\ 00758 # \n\ 00759 # sequence ID: consecutively increasing ID \n\ 00760 uint32 seq\n\ 00761 #Two-integer timestamp that is expressed as:\n\ 00762 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00763 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00764 # time-handling sugar is provided by the client library\n\ 00765 time stamp\n\ 00766 #Frame this data is associated with\n\ 00767 # 0: no frame\n\ 00768 # 1: global frame\n\ 00769 string frame_id\n\ 00770 \n\ 00771 ================================================================================\n\ 00772 MSG: geometry_msgs/Pose\n\ 00773 # A representation of pose in free space, composed of postion and orientation. \n\ 00774 Point position\n\ 00775 Quaternion orientation\n\ 00776 \n\ 00777 ================================================================================\n\ 00778 MSG: geometry_msgs/Point\n\ 00779 # This contains the position of a point in free space\n\ 00780 float64 x\n\ 00781 float64 y\n\ 00782 float64 z\n\ 00783 \n\ 00784 ================================================================================\n\ 00785 MSG: geometry_msgs/Quaternion\n\ 00786 # This represents an orientation in free space in quaternion form.\n\ 00787 \n\ 00788 float64 x\n\ 00789 float64 y\n\ 00790 float64 z\n\ 00791 float64 w\n\ 00792 \n\ 00793 ================================================================================\n\ 00794 MSG: sensor_msgs/PointCloud\n\ 00795 # This message holds a collection of 3d points, plus optional additional\n\ 00796 # information about each point.\n\ 00797 \n\ 00798 # Time of sensor data acquisition, coordinate frame ID.\n\ 00799 Header header\n\ 00800 \n\ 00801 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00802 # in the frame given in the header.\n\ 00803 geometry_msgs/Point32[] points\n\ 00804 \n\ 00805 # Each channel should have the same number of elements as points array,\n\ 00806 # and the data in each channel should correspond 1:1 with each point.\n\ 00807 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00808 ChannelFloat32[] channels\n\ 00809 \n\ 00810 ================================================================================\n\ 00811 MSG: geometry_msgs/Point32\n\ 00812 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00813 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00814 # \n\ 00815 # This recommendation is to promote interoperability. \n\ 00816 #\n\ 00817 # This message is designed to take up less space when sending\n\ 00818 # lots of points at once, as in the case of a PointCloud. \n\ 00819 \n\ 00820 float32 x\n\ 00821 float32 y\n\ 00822 float32 z\n\ 00823 ================================================================================\n\ 00824 MSG: sensor_msgs/ChannelFloat32\n\ 00825 # This message is used by the PointCloud message to hold optional data\n\ 00826 # associated with each point in the cloud. The length of the values\n\ 00827 # array should be the same as the length of the points array in the\n\ 00828 # PointCloud, and each value should be associated with the corresponding\n\ 00829 # point.\n\ 00830 \n\ 00831 # Channel names in existing practice include:\n\ 00832 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00833 # This is opposite to usual conventions but remains for\n\ 00834 # historical reasons. The newer PointCloud2 message has no\n\ 00835 # such problem.\n\ 00836 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00837 # (R,G,B) values packed into the least significant 24 bits,\n\ 00838 # in order.\n\ 00839 # \"intensity\" - laser or pixel intensity.\n\ 00840 # \"distance\"\n\ 00841 \n\ 00842 # The channel name should give semantics of the channel (e.g.\n\ 00843 # \"intensity\" instead of \"value\").\n\ 00844 string name\n\ 00845 \n\ 00846 # The values array should be 1-1 with the elements of the associated\n\ 00847 # PointCloud.\n\ 00848 float32[] values\n\ 00849 \n\ 00850 ================================================================================\n\ 00851 MSG: object_manipulation_msgs/SceneRegion\n\ 00852 # Point cloud\n\ 00853 sensor_msgs/PointCloud2 cloud\n\ 00854 \n\ 00855 # Indices for the region of interest\n\ 00856 int32[] mask\n\ 00857 \n\ 00858 # One of the corresponding 2D images, if applicable\n\ 00859 sensor_msgs/Image image\n\ 00860 \n\ 00861 # The disparity image, if applicable\n\ 00862 sensor_msgs/Image disparity_image\n\ 00863 \n\ 00864 # Camera info for the camera that took the image\n\ 00865 sensor_msgs/CameraInfo cam_info\n\ 00866 \n\ 00867 # a 3D region of interest for grasp planning\n\ 00868 geometry_msgs/PoseStamped roi_box_pose\n\ 00869 geometry_msgs/Vector3 roi_box_dims\n\ 00870 \n\ 00871 ================================================================================\n\ 00872 MSG: sensor_msgs/PointCloud2\n\ 00873 # This message holds a collection of N-dimensional points, which may\n\ 00874 # contain additional information such as normals, intensity, etc. The\n\ 00875 # point data is stored as a binary blob, its layout described by the\n\ 00876 # contents of the \"fields\" array.\n\ 00877 \n\ 00878 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00879 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00880 # camera depth sensors such as stereo or time-of-flight.\n\ 00881 \n\ 00882 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00883 # points).\n\ 00884 Header header\n\ 00885 \n\ 00886 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00887 # 1 and width is the length of the point cloud.\n\ 00888 uint32 height\n\ 00889 uint32 width\n\ 00890 \n\ 00891 # Describes the channels and their layout in the binary data blob.\n\ 00892 PointField[] fields\n\ 00893 \n\ 00894 bool is_bigendian # Is this data bigendian?\n\ 00895 uint32 point_step # Length of a point in bytes\n\ 00896 uint32 row_step # Length of a row in bytes\n\ 00897 uint8[] data # Actual point data, size is (row_step*height)\n\ 00898 \n\ 00899 bool is_dense # True if there are no invalid points\n\ 00900 \n\ 00901 ================================================================================\n\ 00902 MSG: sensor_msgs/PointField\n\ 00903 # This message holds the description of one point entry in the\n\ 00904 # PointCloud2 message format.\n\ 00905 uint8 INT8 = 1\n\ 00906 uint8 UINT8 = 2\n\ 00907 uint8 INT16 = 3\n\ 00908 uint8 UINT16 = 4\n\ 00909 uint8 INT32 = 5\n\ 00910 uint8 UINT32 = 6\n\ 00911 uint8 FLOAT32 = 7\n\ 00912 uint8 FLOAT64 = 8\n\ 00913 \n\ 00914 string name # Name of field\n\ 00915 uint32 offset # Offset from start of point struct\n\ 00916 uint8 datatype # Datatype enumeration, see above\n\ 00917 uint32 count # How many elements in the field\n\ 00918 \n\ 00919 ================================================================================\n\ 00920 MSG: sensor_msgs/Image\n\ 00921 # This message contains an uncompressed image\n\ 00922 # (0, 0) is at top-left corner of image\n\ 00923 #\n\ 00924 \n\ 00925 Header header # Header timestamp should be acquisition time of image\n\ 00926 # Header frame_id should be optical frame of camera\n\ 00927 # origin of frame should be optical center of cameara\n\ 00928 # +x should point to the right in the image\n\ 00929 # +y should point down in the image\n\ 00930 # +z should point into to plane of the image\n\ 00931 # If the frame_id here and the frame_id of the CameraInfo\n\ 00932 # message associated with the image conflict\n\ 00933 # the behavior is undefined\n\ 00934 \n\ 00935 uint32 height # image height, that is, number of rows\n\ 00936 uint32 width # image width, that is, number of columns\n\ 00937 \n\ 00938 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00939 # If you want to standardize a new string format, join\n\ 00940 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00941 \n\ 00942 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00943 # taken from the list of strings in src/image_encodings.cpp\n\ 00944 \n\ 00945 uint8 is_bigendian # is this data bigendian?\n\ 00946 uint32 step # Full row length in bytes\n\ 00947 uint8[] data # actual matrix data, size is (step * rows)\n\ 00948 \n\ 00949 ================================================================================\n\ 00950 MSG: sensor_msgs/CameraInfo\n\ 00951 # This message defines meta information for a camera. It should be in a\n\ 00952 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00953 # image topics named:\n\ 00954 #\n\ 00955 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00956 # image - monochrome, distorted\n\ 00957 # image_color - color, distorted\n\ 00958 # image_rect - monochrome, rectified\n\ 00959 # image_rect_color - color, rectified\n\ 00960 #\n\ 00961 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00962 # for producing the four processed image topics from image_raw and\n\ 00963 # camera_info. The meaning of the camera parameters are described in\n\ 00964 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00965 #\n\ 00966 # The image_geometry package provides a user-friendly interface to\n\ 00967 # common operations using this meta information. If you want to, e.g.,\n\ 00968 # project a 3d point into image coordinates, we strongly recommend\n\ 00969 # using image_geometry.\n\ 00970 #\n\ 00971 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00972 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00973 # indicates an uncalibrated camera.\n\ 00974 \n\ 00975 #######################################################################\n\ 00976 # Image acquisition info #\n\ 00977 #######################################################################\n\ 00978 \n\ 00979 # Time of image acquisition, camera coordinate frame ID\n\ 00980 Header header # Header timestamp should be acquisition time of image\n\ 00981 # Header frame_id should be optical frame of camera\n\ 00982 # origin of frame should be optical center of camera\n\ 00983 # +x should point to the right in the image\n\ 00984 # +y should point down in the image\n\ 00985 # +z should point into the plane of the image\n\ 00986 \n\ 00987 \n\ 00988 #######################################################################\n\ 00989 # Calibration Parameters #\n\ 00990 #######################################################################\n\ 00991 # These are fixed during camera calibration. Their values will be the #\n\ 00992 # same in all messages until the camera is recalibrated. Note that #\n\ 00993 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00994 # #\n\ 00995 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00996 # to: #\n\ 00997 # 1. An undistorted image (requires D and K) #\n\ 00998 # 2. A rectified image (requires D, K, R) #\n\ 00999 # The projection matrix P projects 3D points into the rectified image.#\n\ 01000 #######################################################################\n\ 01001 \n\ 01002 # The image dimensions with which the camera was calibrated. Normally\n\ 01003 # this will be the full camera resolution in pixels.\n\ 01004 uint32 height\n\ 01005 uint32 width\n\ 01006 \n\ 01007 # The distortion model used. Supported models are listed in\n\ 01008 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01009 # simple model of radial and tangential distortion - is sufficent.\n\ 01010 string distortion_model\n\ 01011 \n\ 01012 # The distortion parameters, size depending on the distortion model.\n\ 01013 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01014 float64[] D\n\ 01015 \n\ 01016 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01017 # [fx 0 cx]\n\ 01018 # K = [ 0 fy cy]\n\ 01019 # [ 0 0 1]\n\ 01020 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01021 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01022 # (cx, cy).\n\ 01023 float64[9] K # 3x3 row-major matrix\n\ 01024 \n\ 01025 # Rectification matrix (stereo cameras only)\n\ 01026 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01027 # stereo image plane so that epipolar lines in both stereo images are\n\ 01028 # parallel.\n\ 01029 float64[9] R # 3x3 row-major matrix\n\ 01030 \n\ 01031 # Projection/camera matrix\n\ 01032 # [fx' 0 cx' Tx]\n\ 01033 # P = [ 0 fy' cy' Ty]\n\ 01034 # [ 0 0 1 0]\n\ 01035 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01036 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01037 # is the normal camera intrinsic matrix for the rectified image.\n\ 01038 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01039 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01040 # (cx', cy') - these may differ from the values in K.\n\ 01041 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01042 # also have R = the identity and P[1:3,1:3] = K.\n\ 01043 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01044 # position of the optical center of the second camera in the first\n\ 01045 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01046 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01047 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01048 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01049 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01050 # the rectified image is given by:\n\ 01051 # [u v w]' = P * [X Y Z 1]'\n\ 01052 # x = u / w\n\ 01053 # y = v / w\n\ 01054 # This holds for both images of a stereo pair.\n\ 01055 float64[12] P # 3x4 row-major matrix\n\ 01056 \n\ 01057 \n\ 01058 #######################################################################\n\ 01059 # Operational Parameters #\n\ 01060 #######################################################################\n\ 01061 # These define the image region actually captured by the camera #\n\ 01062 # driver. Although they affect the geometry of the output image, they #\n\ 01063 # may be changed freely without recalibrating the camera. #\n\ 01064 #######################################################################\n\ 01065 \n\ 01066 # Binning refers here to any camera setting which combines rectangular\n\ 01067 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01068 # resolution of the output image to\n\ 01069 # (width / binning_x) x (height / binning_y).\n\ 01070 # The default values binning_x = binning_y = 0 is considered the same\n\ 01071 # as binning_x = binning_y = 1 (no subsampling).\n\ 01072 uint32 binning_x\n\ 01073 uint32 binning_y\n\ 01074 \n\ 01075 # Region of interest (subwindow of full camera resolution), given in\n\ 01076 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01077 # always denotes the same window of pixels on the camera sensor,\n\ 01078 # regardless of binning settings.\n\ 01079 # The default setting of roi (all values 0) is considered the same as\n\ 01080 # full resolution (roi.width = width, roi.height = height).\n\ 01081 RegionOfInterest roi\n\ 01082 \n\ 01083 ================================================================================\n\ 01084 MSG: sensor_msgs/RegionOfInterest\n\ 01085 # This message is used to specify a region of interest within an image.\n\ 01086 #\n\ 01087 # When used to specify the ROI setting of the camera when the image was\n\ 01088 # taken, the height and width fields should either match the height and\n\ 01089 # width fields for the associated image; or height = width = 0\n\ 01090 # indicates that the full resolution image was captured.\n\ 01091 \n\ 01092 uint32 x_offset # Leftmost pixel of the ROI\n\ 01093 # (0 if the ROI includes the left edge of the image)\n\ 01094 uint32 y_offset # Topmost pixel of the ROI\n\ 01095 # (0 if the ROI includes the top edge of the image)\n\ 01096 uint32 height # Height of ROI\n\ 01097 uint32 width # Width of ROI\n\ 01098 \n\ 01099 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01100 # ROI in this message. Typically this should be False if the full image\n\ 01101 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01102 # used).\n\ 01103 bool do_rectify\n\ 01104 \n\ 01105 ================================================================================\n\ 01106 MSG: geometry_msgs/Vector3\n\ 01107 # This represents a vector in free space. \n\ 01108 \n\ 01109 float64 x\n\ 01110 float64 y\n\ 01111 float64 z\n\ 01112 ================================================================================\n\ 01113 MSG: object_manipulation_msgs/Grasp\n\ 01114 \n\ 01115 # The internal posture of the hand for the pre-grasp\n\ 01116 # only positions are used\n\ 01117 sensor_msgs/JointState pre_grasp_posture\n\ 01118 \n\ 01119 # The internal posture of the hand for the grasp\n\ 01120 # positions and efforts are used\n\ 01121 sensor_msgs/JointState grasp_posture\n\ 01122 \n\ 01123 # The position of the end-effector for the grasp relative to a reference frame \n\ 01124 # (that is always specified elsewhere, not in this message)\n\ 01125 geometry_msgs/Pose grasp_pose\n\ 01126 \n\ 01127 # The estimated probability of success for this grasp\n\ 01128 float64 success_probability\n\ 01129 \n\ 01130 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01131 bool cluster_rep\n\ 01132 \n\ 01133 # how far the pre-grasp should ideally be away from the grasp\n\ 01134 float32 desired_approach_distance\n\ 01135 \n\ 01136 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01137 # for the grasp not to be rejected\n\ 01138 float32 min_approach_distance\n\ 01139 \n\ 01140 # an optional list of obstacles that we have semantic information about\n\ 01141 # and that we expect might move in the course of executing this grasp\n\ 01142 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01143 # execution, grasp executors will not check for collisions against these objects\n\ 01144 GraspableObject[] moved_obstacles\n\ 01145 \n\ 01146 ================================================================================\n\ 01147 MSG: sensor_msgs/JointState\n\ 01148 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01149 #\n\ 01150 # The state of each joint (revolute or prismatic) is defined by:\n\ 01151 # * the position of the joint (rad or m),\n\ 01152 # * the velocity of the joint (rad/s or m/s) and \n\ 01153 # * the effort that is applied in the joint (Nm or N).\n\ 01154 #\n\ 01155 # Each joint is uniquely identified by its name\n\ 01156 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01157 # in one message have to be recorded at the same time.\n\ 01158 #\n\ 01159 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01160 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01161 # effort associated with them, you can leave the effort array empty. \n\ 01162 #\n\ 01163 # All arrays in this message should have the same size, or be empty.\n\ 01164 # This is the only way to uniquely associate the joint name with the correct\n\ 01165 # states.\n\ 01166 \n\ 01167 \n\ 01168 Header header\n\ 01169 \n\ 01170 string[] name\n\ 01171 float64[] position\n\ 01172 float64[] velocity\n\ 01173 float64[] effort\n\ 01174 \n\ 01175 "; 01176 } 01177 01178 static const char* value(const ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> &) { return value(); } 01179 }; 01180 01181 } // namespace message_traits 01182 } // namespace ros 01183 01184 namespace ros 01185 { 01186 namespace serialization 01187 { 01188 01189 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > 01190 { 01191 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01192 { 01193 stream.next(m.arm_name); 01194 stream.next(m.target); 01195 stream.next(m.collision_object_name); 01196 stream.next(m.collision_support_surface_name); 01197 stream.next(m.grasps_to_evaluate); 01198 stream.next(m.movable_obstacles); 01199 } 01200 01201 ROS_DECLARE_ALLINONE_SERIALIZER; 01202 }; // struct GraspPlanningGoal_ 01203 } // namespace serialization 01204 } // namespace ros 01205 01206 namespace ros 01207 { 01208 namespace message_operations 01209 { 01210 01211 template<class ContainerAllocator> 01212 struct Printer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> > 01213 { 01214 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> & v) 01215 { 01216 s << indent << "arm_name: "; 01217 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name); 01218 s << indent << "target: "; 01219 s << std::endl; 01220 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.target); 01221 s << indent << "collision_object_name: "; 01222 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name); 01223 s << indent << "collision_support_surface_name: "; 01224 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name); 01225 s << indent << "grasps_to_evaluate[]" << std::endl; 01226 for (size_t i = 0; i < v.grasps_to_evaluate.size(); ++i) 01227 { 01228 s << indent << " grasps_to_evaluate[" << i << "]: "; 01229 s << std::endl; 01230 s << indent; 01231 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasps_to_evaluate[i]); 01232 } 01233 s << indent << "movable_obstacles[]" << std::endl; 01234 for (size_t i = 0; i < v.movable_obstacles.size(); ++i) 01235 { 01236 s << indent << " movable_obstacles[" << i << "]: "; 01237 s << std::endl; 01238 s << indent; 01239 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]); 01240 } 01241 } 01242 }; 01243 01244 01245 } // namespace message_operations 01246 } // namespace ros 01247 01248 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGGOAL_H 01249