$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningFeedback.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/Grasp.h" 00018 00019 namespace object_manipulation_msgs 00020 { 00021 template <class ContainerAllocator> 00022 struct GraspPlanningFeedback_ { 00023 typedef GraspPlanningFeedback_<ContainerAllocator> Type; 00024 00025 GraspPlanningFeedback_() 00026 : grasps() 00027 { 00028 } 00029 00030 GraspPlanningFeedback_(const ContainerAllocator& _alloc) 00031 : grasps(_alloc) 00032 { 00033 } 00034 00035 typedef std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > _grasps_type; 00036 std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > grasps; 00037 00038 00039 ROS_DEPRECATED uint32_t get_grasps_size() const { return (uint32_t)grasps.size(); } 00040 ROS_DEPRECATED void set_grasps_size(uint32_t size) { grasps.resize((size_t)size); } 00041 ROS_DEPRECATED void get_grasps_vec(std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) const { vec = this->grasps; } 00042 ROS_DEPRECATED void set_grasps_vec(const std::vector< ::object_manipulation_msgs::Grasp_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::other > & vec) { this->grasps = vec; } 00043 private: 00044 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningFeedback"; } 00045 public: 00046 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00047 00048 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00049 00050 private: 00051 static const char* __s_getMD5Sum_() { return "7545a4f0b7d645678d5ba66709912a4b"; } 00052 public: 00053 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00054 00055 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00056 00057 private: 00058 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00059 \n\ 00060 # grasps planned so far\n\ 00061 Grasp[] grasps\n\ 00062 \n\ 00063 \n\ 00064 \n\ 00065 ================================================================================\n\ 00066 MSG: object_manipulation_msgs/Grasp\n\ 00067 \n\ 00068 # The internal posture of the hand for the pre-grasp\n\ 00069 # only positions are used\n\ 00070 sensor_msgs/JointState pre_grasp_posture\n\ 00071 \n\ 00072 # The internal posture of the hand for the grasp\n\ 00073 # positions and efforts are used\n\ 00074 sensor_msgs/JointState grasp_posture\n\ 00075 \n\ 00076 # The position of the end-effector for the grasp relative to a reference frame \n\ 00077 # (that is always specified elsewhere, not in this message)\n\ 00078 geometry_msgs/Pose grasp_pose\n\ 00079 \n\ 00080 # The estimated probability of success for this grasp\n\ 00081 float64 success_probability\n\ 00082 \n\ 00083 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00084 bool cluster_rep\n\ 00085 \n\ 00086 # how far the pre-grasp should ideally be away from the grasp\n\ 00087 float32 desired_approach_distance\n\ 00088 \n\ 00089 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00090 # for the grasp not to be rejected\n\ 00091 float32 min_approach_distance\n\ 00092 \n\ 00093 # an optional list of obstacles that we have semantic information about\n\ 00094 # and that we expect might move in the course of executing this grasp\n\ 00095 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00096 # execution, grasp executors will not check for collisions against these objects\n\ 00097 GraspableObject[] moved_obstacles\n\ 00098 \n\ 00099 ================================================================================\n\ 00100 MSG: sensor_msgs/JointState\n\ 00101 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00102 #\n\ 00103 # The state of each joint (revolute or prismatic) is defined by:\n\ 00104 # * the position of the joint (rad or m),\n\ 00105 # * the velocity of the joint (rad/s or m/s) and \n\ 00106 # * the effort that is applied in the joint (Nm or N).\n\ 00107 #\n\ 00108 # Each joint is uniquely identified by its name\n\ 00109 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00110 # in one message have to be recorded at the same time.\n\ 00111 #\n\ 00112 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00113 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00114 # effort associated with them, you can leave the effort array empty. \n\ 00115 #\n\ 00116 # All arrays in this message should have the same size, or be empty.\n\ 00117 # This is the only way to uniquely associate the joint name with the correct\n\ 00118 # states.\n\ 00119 \n\ 00120 \n\ 00121 Header header\n\ 00122 \n\ 00123 string[] name\n\ 00124 float64[] position\n\ 00125 float64[] velocity\n\ 00126 float64[] effort\n\ 00127 \n\ 00128 ================================================================================\n\ 00129 MSG: std_msgs/Header\n\ 00130 # Standard metadata for higher-level stamped data types.\n\ 00131 # This is generally used to communicate timestamped data \n\ 00132 # in a particular coordinate frame.\n\ 00133 # \n\ 00134 # sequence ID: consecutively increasing ID \n\ 00135 uint32 seq\n\ 00136 #Two-integer timestamp that is expressed as:\n\ 00137 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00138 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00139 # time-handling sugar is provided by the client library\n\ 00140 time stamp\n\ 00141 #Frame this data is associated with\n\ 00142 # 0: no frame\n\ 00143 # 1: global frame\n\ 00144 string frame_id\n\ 00145 \n\ 00146 ================================================================================\n\ 00147 MSG: geometry_msgs/Pose\n\ 00148 # A representation of pose in free space, composed of postion and orientation. \n\ 00149 Point position\n\ 00150 Quaternion orientation\n\ 00151 \n\ 00152 ================================================================================\n\ 00153 MSG: geometry_msgs/Point\n\ 00154 # This contains the position of a point in free space\n\ 00155 float64 x\n\ 00156 float64 y\n\ 00157 float64 z\n\ 00158 \n\ 00159 ================================================================================\n\ 00160 MSG: geometry_msgs/Quaternion\n\ 00161 # This represents an orientation in free space in quaternion form.\n\ 00162 \n\ 00163 float64 x\n\ 00164 float64 y\n\ 00165 float64 z\n\ 00166 float64 w\n\ 00167 \n\ 00168 ================================================================================\n\ 00169 MSG: object_manipulation_msgs/GraspableObject\n\ 00170 # an object that the object_manipulator can work on\n\ 00171 \n\ 00172 # a graspable object can be represented in multiple ways. This message\n\ 00173 # can contain all of them. Which one is actually used is up to the receiver\n\ 00174 # of this message. When adding new representations, one must be careful that\n\ 00175 # they have reasonable lightweight defaults indicating that that particular\n\ 00176 # representation is not available.\n\ 00177 \n\ 00178 # the tf frame to be used as a reference frame when combining information from\n\ 00179 # the different representations below\n\ 00180 string reference_frame_id\n\ 00181 \n\ 00182 # potential recognition results from a database of models\n\ 00183 # all poses are relative to the object reference pose\n\ 00184 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00185 \n\ 00186 # the point cloud itself\n\ 00187 sensor_msgs/PointCloud cluster\n\ 00188 \n\ 00189 # a region of a PointCloud2 of interest\n\ 00190 object_manipulation_msgs/SceneRegion region\n\ 00191 \n\ 00192 # the name that this object has in the collision environment\n\ 00193 string collision_name\n\ 00194 ================================================================================\n\ 00195 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00196 # Informs that a specific model from the Model Database has been \n\ 00197 # identified at a certain location\n\ 00198 \n\ 00199 # the database id of the model\n\ 00200 int32 model_id\n\ 00201 \n\ 00202 # the pose that it can be found in\n\ 00203 geometry_msgs/PoseStamped pose\n\ 00204 \n\ 00205 # a measure of the confidence level in this detection result\n\ 00206 float32 confidence\n\ 00207 \n\ 00208 # the name of the object detector that generated this detection result\n\ 00209 string detector_name\n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: geometry_msgs/PoseStamped\n\ 00213 # A Pose with reference coordinate frame and timestamp\n\ 00214 Header header\n\ 00215 Pose pose\n\ 00216 \n\ 00217 ================================================================================\n\ 00218 MSG: sensor_msgs/PointCloud\n\ 00219 # This message holds a collection of 3d points, plus optional additional\n\ 00220 # information about each point.\n\ 00221 \n\ 00222 # Time of sensor data acquisition, coordinate frame ID.\n\ 00223 Header header\n\ 00224 \n\ 00225 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00226 # in the frame given in the header.\n\ 00227 geometry_msgs/Point32[] points\n\ 00228 \n\ 00229 # Each channel should have the same number of elements as points array,\n\ 00230 # and the data in each channel should correspond 1:1 with each point.\n\ 00231 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00232 ChannelFloat32[] channels\n\ 00233 \n\ 00234 ================================================================================\n\ 00235 MSG: geometry_msgs/Point32\n\ 00236 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00237 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00238 # \n\ 00239 # This recommendation is to promote interoperability. \n\ 00240 #\n\ 00241 # This message is designed to take up less space when sending\n\ 00242 # lots of points at once, as in the case of a PointCloud. \n\ 00243 \n\ 00244 float32 x\n\ 00245 float32 y\n\ 00246 float32 z\n\ 00247 ================================================================================\n\ 00248 MSG: sensor_msgs/ChannelFloat32\n\ 00249 # This message is used by the PointCloud message to hold optional data\n\ 00250 # associated with each point in the cloud. The length of the values\n\ 00251 # array should be the same as the length of the points array in the\n\ 00252 # PointCloud, and each value should be associated with the corresponding\n\ 00253 # point.\n\ 00254 \n\ 00255 # Channel names in existing practice include:\n\ 00256 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00257 # This is opposite to usual conventions but remains for\n\ 00258 # historical reasons. The newer PointCloud2 message has no\n\ 00259 # such problem.\n\ 00260 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00261 # (R,G,B) values packed into the least significant 24 bits,\n\ 00262 # in order.\n\ 00263 # \"intensity\" - laser or pixel intensity.\n\ 00264 # \"distance\"\n\ 00265 \n\ 00266 # The channel name should give semantics of the channel (e.g.\n\ 00267 # \"intensity\" instead of \"value\").\n\ 00268 string name\n\ 00269 \n\ 00270 # The values array should be 1-1 with the elements of the associated\n\ 00271 # PointCloud.\n\ 00272 float32[] values\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: object_manipulation_msgs/SceneRegion\n\ 00276 # Point cloud\n\ 00277 sensor_msgs/PointCloud2 cloud\n\ 00278 \n\ 00279 # Indices for the region of interest\n\ 00280 int32[] mask\n\ 00281 \n\ 00282 # One of the corresponding 2D images, if applicable\n\ 00283 sensor_msgs/Image image\n\ 00284 \n\ 00285 # The disparity image, if applicable\n\ 00286 sensor_msgs/Image disparity_image\n\ 00287 \n\ 00288 # Camera info for the camera that took the image\n\ 00289 sensor_msgs/CameraInfo cam_info\n\ 00290 \n\ 00291 # a 3D region of interest for grasp planning\n\ 00292 geometry_msgs/PoseStamped roi_box_pose\n\ 00293 geometry_msgs/Vector3 roi_box_dims\n\ 00294 \n\ 00295 ================================================================================\n\ 00296 MSG: sensor_msgs/PointCloud2\n\ 00297 # This message holds a collection of N-dimensional points, which may\n\ 00298 # contain additional information such as normals, intensity, etc. The\n\ 00299 # point data is stored as a binary blob, its layout described by the\n\ 00300 # contents of the \"fields\" array.\n\ 00301 \n\ 00302 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00303 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00304 # camera depth sensors such as stereo or time-of-flight.\n\ 00305 \n\ 00306 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00307 # points).\n\ 00308 Header header\n\ 00309 \n\ 00310 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00311 # 1 and width is the length of the point cloud.\n\ 00312 uint32 height\n\ 00313 uint32 width\n\ 00314 \n\ 00315 # Describes the channels and their layout in the binary data blob.\n\ 00316 PointField[] fields\n\ 00317 \n\ 00318 bool is_bigendian # Is this data bigendian?\n\ 00319 uint32 point_step # Length of a point in bytes\n\ 00320 uint32 row_step # Length of a row in bytes\n\ 00321 uint8[] data # Actual point data, size is (row_step*height)\n\ 00322 \n\ 00323 bool is_dense # True if there are no invalid points\n\ 00324 \n\ 00325 ================================================================================\n\ 00326 MSG: sensor_msgs/PointField\n\ 00327 # This message holds the description of one point entry in the\n\ 00328 # PointCloud2 message format.\n\ 00329 uint8 INT8 = 1\n\ 00330 uint8 UINT8 = 2\n\ 00331 uint8 INT16 = 3\n\ 00332 uint8 UINT16 = 4\n\ 00333 uint8 INT32 = 5\n\ 00334 uint8 UINT32 = 6\n\ 00335 uint8 FLOAT32 = 7\n\ 00336 uint8 FLOAT64 = 8\n\ 00337 \n\ 00338 string name # Name of field\n\ 00339 uint32 offset # Offset from start of point struct\n\ 00340 uint8 datatype # Datatype enumeration, see above\n\ 00341 uint32 count # How many elements in the field\n\ 00342 \n\ 00343 ================================================================================\n\ 00344 MSG: sensor_msgs/Image\n\ 00345 # This message contains an uncompressed image\n\ 00346 # (0, 0) is at top-left corner of image\n\ 00347 #\n\ 00348 \n\ 00349 Header header # Header timestamp should be acquisition time of image\n\ 00350 # Header frame_id should be optical frame of camera\n\ 00351 # origin of frame should be optical center of cameara\n\ 00352 # +x should point to the right in the image\n\ 00353 # +y should point down in the image\n\ 00354 # +z should point into to plane of the image\n\ 00355 # If the frame_id here and the frame_id of the CameraInfo\n\ 00356 # message associated with the image conflict\n\ 00357 # the behavior is undefined\n\ 00358 \n\ 00359 uint32 height # image height, that is, number of rows\n\ 00360 uint32 width # image width, that is, number of columns\n\ 00361 \n\ 00362 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00363 # If you want to standardize a new string format, join\n\ 00364 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00365 \n\ 00366 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00367 # taken from the list of strings in src/image_encodings.cpp\n\ 00368 \n\ 00369 uint8 is_bigendian # is this data bigendian?\n\ 00370 uint32 step # Full row length in bytes\n\ 00371 uint8[] data # actual matrix data, size is (step * rows)\n\ 00372 \n\ 00373 ================================================================================\n\ 00374 MSG: sensor_msgs/CameraInfo\n\ 00375 # This message defines meta information for a camera. It should be in a\n\ 00376 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00377 # image topics named:\n\ 00378 #\n\ 00379 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00380 # image - monochrome, distorted\n\ 00381 # image_color - color, distorted\n\ 00382 # image_rect - monochrome, rectified\n\ 00383 # image_rect_color - color, rectified\n\ 00384 #\n\ 00385 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00386 # for producing the four processed image topics from image_raw and\n\ 00387 # camera_info. The meaning of the camera parameters are described in\n\ 00388 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00389 #\n\ 00390 # The image_geometry package provides a user-friendly interface to\n\ 00391 # common operations using this meta information. If you want to, e.g.,\n\ 00392 # project a 3d point into image coordinates, we strongly recommend\n\ 00393 # using image_geometry.\n\ 00394 #\n\ 00395 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00396 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00397 # indicates an uncalibrated camera.\n\ 00398 \n\ 00399 #######################################################################\n\ 00400 # Image acquisition info #\n\ 00401 #######################################################################\n\ 00402 \n\ 00403 # Time of image acquisition, camera coordinate frame ID\n\ 00404 Header header # Header timestamp should be acquisition time of image\n\ 00405 # Header frame_id should be optical frame of camera\n\ 00406 # origin of frame should be optical center of camera\n\ 00407 # +x should point to the right in the image\n\ 00408 # +y should point down in the image\n\ 00409 # +z should point into the plane of the image\n\ 00410 \n\ 00411 \n\ 00412 #######################################################################\n\ 00413 # Calibration Parameters #\n\ 00414 #######################################################################\n\ 00415 # These are fixed during camera calibration. Their values will be the #\n\ 00416 # same in all messages until the camera is recalibrated. Note that #\n\ 00417 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00418 # #\n\ 00419 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00420 # to: #\n\ 00421 # 1. An undistorted image (requires D and K) #\n\ 00422 # 2. A rectified image (requires D, K, R) #\n\ 00423 # The projection matrix P projects 3D points into the rectified image.#\n\ 00424 #######################################################################\n\ 00425 \n\ 00426 # The image dimensions with which the camera was calibrated. Normally\n\ 00427 # this will be the full camera resolution in pixels.\n\ 00428 uint32 height\n\ 00429 uint32 width\n\ 00430 \n\ 00431 # The distortion model used. Supported models are listed in\n\ 00432 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00433 # simple model of radial and tangential distortion - is sufficent.\n\ 00434 string distortion_model\n\ 00435 \n\ 00436 # The distortion parameters, size depending on the distortion model.\n\ 00437 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00438 float64[] D\n\ 00439 \n\ 00440 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00441 # [fx 0 cx]\n\ 00442 # K = [ 0 fy cy]\n\ 00443 # [ 0 0 1]\n\ 00444 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00445 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00446 # (cx, cy).\n\ 00447 float64[9] K # 3x3 row-major matrix\n\ 00448 \n\ 00449 # Rectification matrix (stereo cameras only)\n\ 00450 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00451 # stereo image plane so that epipolar lines in both stereo images are\n\ 00452 # parallel.\n\ 00453 float64[9] R # 3x3 row-major matrix\n\ 00454 \n\ 00455 # Projection/camera matrix\n\ 00456 # [fx' 0 cx' Tx]\n\ 00457 # P = [ 0 fy' cy' Ty]\n\ 00458 # [ 0 0 1 0]\n\ 00459 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00460 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00461 # is the normal camera intrinsic matrix for the rectified image.\n\ 00462 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00463 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00464 # (cx', cy') - these may differ from the values in K.\n\ 00465 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00466 # also have R = the identity and P[1:3,1:3] = K.\n\ 00467 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00468 # position of the optical center of the second camera in the first\n\ 00469 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00470 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00471 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00472 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00473 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00474 # the rectified image is given by:\n\ 00475 # [u v w]' = P * [X Y Z 1]'\n\ 00476 # x = u / w\n\ 00477 # y = v / w\n\ 00478 # This holds for both images of a stereo pair.\n\ 00479 float64[12] P # 3x4 row-major matrix\n\ 00480 \n\ 00481 \n\ 00482 #######################################################################\n\ 00483 # Operational Parameters #\n\ 00484 #######################################################################\n\ 00485 # These define the image region actually captured by the camera #\n\ 00486 # driver. Although they affect the geometry of the output image, they #\n\ 00487 # may be changed freely without recalibrating the camera. #\n\ 00488 #######################################################################\n\ 00489 \n\ 00490 # Binning refers here to any camera setting which combines rectangular\n\ 00491 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00492 # resolution of the output image to\n\ 00493 # (width / binning_x) x (height / binning_y).\n\ 00494 # The default values binning_x = binning_y = 0 is considered the same\n\ 00495 # as binning_x = binning_y = 1 (no subsampling).\n\ 00496 uint32 binning_x\n\ 00497 uint32 binning_y\n\ 00498 \n\ 00499 # Region of interest (subwindow of full camera resolution), given in\n\ 00500 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00501 # always denotes the same window of pixels on the camera sensor,\n\ 00502 # regardless of binning settings.\n\ 00503 # The default setting of roi (all values 0) is considered the same as\n\ 00504 # full resolution (roi.width = width, roi.height = height).\n\ 00505 RegionOfInterest roi\n\ 00506 \n\ 00507 ================================================================================\n\ 00508 MSG: sensor_msgs/RegionOfInterest\n\ 00509 # This message is used to specify a region of interest within an image.\n\ 00510 #\n\ 00511 # When used to specify the ROI setting of the camera when the image was\n\ 00512 # taken, the height and width fields should either match the height and\n\ 00513 # width fields for the associated image; or height = width = 0\n\ 00514 # indicates that the full resolution image was captured.\n\ 00515 \n\ 00516 uint32 x_offset # Leftmost pixel of the ROI\n\ 00517 # (0 if the ROI includes the left edge of the image)\n\ 00518 uint32 y_offset # Topmost pixel of the ROI\n\ 00519 # (0 if the ROI includes the top edge of the image)\n\ 00520 uint32 height # Height of ROI\n\ 00521 uint32 width # Width of ROI\n\ 00522 \n\ 00523 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00524 # ROI in this message. Typically this should be False if the full image\n\ 00525 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00526 # used).\n\ 00527 bool do_rectify\n\ 00528 \n\ 00529 ================================================================================\n\ 00530 MSG: geometry_msgs/Vector3\n\ 00531 # This represents a vector in free space. \n\ 00532 \n\ 00533 float64 x\n\ 00534 float64 y\n\ 00535 float64 z\n\ 00536 "; } 00537 public: 00538 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00539 00540 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00541 00542 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00543 { 00544 ros::serialization::OStream stream(write_ptr, 1000000000); 00545 ros::serialization::serialize(stream, grasps); 00546 return stream.getData(); 00547 } 00548 00549 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00550 { 00551 ros::serialization::IStream stream(read_ptr, 1000000000); 00552 ros::serialization::deserialize(stream, grasps); 00553 return stream.getData(); 00554 } 00555 00556 ROS_DEPRECATED virtual uint32_t serializationLength() const 00557 { 00558 uint32_t size = 0; 00559 size += ros::serialization::serializationLength(grasps); 00560 return size; 00561 } 00562 00563 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > Ptr; 00564 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> const> ConstPtr; 00565 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00566 }; // struct GraspPlanningFeedback 00567 typedef ::object_manipulation_msgs::GraspPlanningFeedback_<std::allocator<void> > GraspPlanningFeedback; 00568 00569 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback> GraspPlanningFeedbackPtr; 00570 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningFeedback const> GraspPlanningFeedbackConstPtr; 00571 00572 00573 template<typename ContainerAllocator> 00574 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> & v) 00575 { 00576 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >::stream(s, "", v); 00577 return s;} 00578 00579 } // namespace object_manipulation_msgs 00580 00581 namespace ros 00582 { 00583 namespace message_traits 00584 { 00585 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > : public TrueType {}; 00586 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> const> : public TrueType {}; 00587 template<class ContainerAllocator> 00588 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > { 00589 static const char* value() 00590 { 00591 return "7545a4f0b7d645678d5ba66709912a4b"; 00592 } 00593 00594 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); } 00595 static const uint64_t static_value1 = 0x7545a4f0b7d64567ULL; 00596 static const uint64_t static_value2 = 0x8d5ba66709912a4bULL; 00597 }; 00598 00599 template<class ContainerAllocator> 00600 struct DataType< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > { 00601 static const char* value() 00602 { 00603 return "object_manipulation_msgs/GraspPlanningFeedback"; 00604 } 00605 00606 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); } 00607 }; 00608 00609 template<class ContainerAllocator> 00610 struct Definition< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > { 00611 static const char* value() 00612 { 00613 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00614 \n\ 00615 # grasps planned so far\n\ 00616 Grasp[] grasps\n\ 00617 \n\ 00618 \n\ 00619 \n\ 00620 ================================================================================\n\ 00621 MSG: object_manipulation_msgs/Grasp\n\ 00622 \n\ 00623 # The internal posture of the hand for the pre-grasp\n\ 00624 # only positions are used\n\ 00625 sensor_msgs/JointState pre_grasp_posture\n\ 00626 \n\ 00627 # The internal posture of the hand for the grasp\n\ 00628 # positions and efforts are used\n\ 00629 sensor_msgs/JointState grasp_posture\n\ 00630 \n\ 00631 # The position of the end-effector for the grasp relative to a reference frame \n\ 00632 # (that is always specified elsewhere, not in this message)\n\ 00633 geometry_msgs/Pose grasp_pose\n\ 00634 \n\ 00635 # The estimated probability of success for this grasp\n\ 00636 float64 success_probability\n\ 00637 \n\ 00638 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00639 bool cluster_rep\n\ 00640 \n\ 00641 # how far the pre-grasp should ideally be away from the grasp\n\ 00642 float32 desired_approach_distance\n\ 00643 \n\ 00644 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00645 # for the grasp not to be rejected\n\ 00646 float32 min_approach_distance\n\ 00647 \n\ 00648 # an optional list of obstacles that we have semantic information about\n\ 00649 # and that we expect might move in the course of executing this grasp\n\ 00650 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00651 # execution, grasp executors will not check for collisions against these objects\n\ 00652 GraspableObject[] moved_obstacles\n\ 00653 \n\ 00654 ================================================================================\n\ 00655 MSG: sensor_msgs/JointState\n\ 00656 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00657 #\n\ 00658 # The state of each joint (revolute or prismatic) is defined by:\n\ 00659 # * the position of the joint (rad or m),\n\ 00660 # * the velocity of the joint (rad/s or m/s) and \n\ 00661 # * the effort that is applied in the joint (Nm or N).\n\ 00662 #\n\ 00663 # Each joint is uniquely identified by its name\n\ 00664 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00665 # in one message have to be recorded at the same time.\n\ 00666 #\n\ 00667 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00668 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00669 # effort associated with them, you can leave the effort array empty. \n\ 00670 #\n\ 00671 # All arrays in this message should have the same size, or be empty.\n\ 00672 # This is the only way to uniquely associate the joint name with the correct\n\ 00673 # states.\n\ 00674 \n\ 00675 \n\ 00676 Header header\n\ 00677 \n\ 00678 string[] name\n\ 00679 float64[] position\n\ 00680 float64[] velocity\n\ 00681 float64[] effort\n\ 00682 \n\ 00683 ================================================================================\n\ 00684 MSG: std_msgs/Header\n\ 00685 # Standard metadata for higher-level stamped data types.\n\ 00686 # This is generally used to communicate timestamped data \n\ 00687 # in a particular coordinate frame.\n\ 00688 # \n\ 00689 # sequence ID: consecutively increasing ID \n\ 00690 uint32 seq\n\ 00691 #Two-integer timestamp that is expressed as:\n\ 00692 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00693 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00694 # time-handling sugar is provided by the client library\n\ 00695 time stamp\n\ 00696 #Frame this data is associated with\n\ 00697 # 0: no frame\n\ 00698 # 1: global frame\n\ 00699 string frame_id\n\ 00700 \n\ 00701 ================================================================================\n\ 00702 MSG: geometry_msgs/Pose\n\ 00703 # A representation of pose in free space, composed of postion and orientation. \n\ 00704 Point position\n\ 00705 Quaternion orientation\n\ 00706 \n\ 00707 ================================================================================\n\ 00708 MSG: geometry_msgs/Point\n\ 00709 # This contains the position of a point in free space\n\ 00710 float64 x\n\ 00711 float64 y\n\ 00712 float64 z\n\ 00713 \n\ 00714 ================================================================================\n\ 00715 MSG: geometry_msgs/Quaternion\n\ 00716 # This represents an orientation in free space in quaternion form.\n\ 00717 \n\ 00718 float64 x\n\ 00719 float64 y\n\ 00720 float64 z\n\ 00721 float64 w\n\ 00722 \n\ 00723 ================================================================================\n\ 00724 MSG: object_manipulation_msgs/GraspableObject\n\ 00725 # an object that the object_manipulator can work on\n\ 00726 \n\ 00727 # a graspable object can be represented in multiple ways. This message\n\ 00728 # can contain all of them. Which one is actually used is up to the receiver\n\ 00729 # of this message. When adding new representations, one must be careful that\n\ 00730 # they have reasonable lightweight defaults indicating that that particular\n\ 00731 # representation is not available.\n\ 00732 \n\ 00733 # the tf frame to be used as a reference frame when combining information from\n\ 00734 # the different representations below\n\ 00735 string reference_frame_id\n\ 00736 \n\ 00737 # potential recognition results from a database of models\n\ 00738 # all poses are relative to the object reference pose\n\ 00739 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00740 \n\ 00741 # the point cloud itself\n\ 00742 sensor_msgs/PointCloud cluster\n\ 00743 \n\ 00744 # a region of a PointCloud2 of interest\n\ 00745 object_manipulation_msgs/SceneRegion region\n\ 00746 \n\ 00747 # the name that this object has in the collision environment\n\ 00748 string collision_name\n\ 00749 ================================================================================\n\ 00750 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00751 # Informs that a specific model from the Model Database has been \n\ 00752 # identified at a certain location\n\ 00753 \n\ 00754 # the database id of the model\n\ 00755 int32 model_id\n\ 00756 \n\ 00757 # the pose that it can be found in\n\ 00758 geometry_msgs/PoseStamped pose\n\ 00759 \n\ 00760 # a measure of the confidence level in this detection result\n\ 00761 float32 confidence\n\ 00762 \n\ 00763 # the name of the object detector that generated this detection result\n\ 00764 string detector_name\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: geometry_msgs/PoseStamped\n\ 00768 # A Pose with reference coordinate frame and timestamp\n\ 00769 Header header\n\ 00770 Pose pose\n\ 00771 \n\ 00772 ================================================================================\n\ 00773 MSG: sensor_msgs/PointCloud\n\ 00774 # This message holds a collection of 3d points, plus optional additional\n\ 00775 # information about each point.\n\ 00776 \n\ 00777 # Time of sensor data acquisition, coordinate frame ID.\n\ 00778 Header header\n\ 00779 \n\ 00780 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00781 # in the frame given in the header.\n\ 00782 geometry_msgs/Point32[] points\n\ 00783 \n\ 00784 # Each channel should have the same number of elements as points array,\n\ 00785 # and the data in each channel should correspond 1:1 with each point.\n\ 00786 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00787 ChannelFloat32[] channels\n\ 00788 \n\ 00789 ================================================================================\n\ 00790 MSG: geometry_msgs/Point32\n\ 00791 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00792 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00793 # \n\ 00794 # This recommendation is to promote interoperability. \n\ 00795 #\n\ 00796 # This message is designed to take up less space when sending\n\ 00797 # lots of points at once, as in the case of a PointCloud. \n\ 00798 \n\ 00799 float32 x\n\ 00800 float32 y\n\ 00801 float32 z\n\ 00802 ================================================================================\n\ 00803 MSG: sensor_msgs/ChannelFloat32\n\ 00804 # This message is used by the PointCloud message to hold optional data\n\ 00805 # associated with each point in the cloud. The length of the values\n\ 00806 # array should be the same as the length of the points array in the\n\ 00807 # PointCloud, and each value should be associated with the corresponding\n\ 00808 # point.\n\ 00809 \n\ 00810 # Channel names in existing practice include:\n\ 00811 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00812 # This is opposite to usual conventions but remains for\n\ 00813 # historical reasons. The newer PointCloud2 message has no\n\ 00814 # such problem.\n\ 00815 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00816 # (R,G,B) values packed into the least significant 24 bits,\n\ 00817 # in order.\n\ 00818 # \"intensity\" - laser or pixel intensity.\n\ 00819 # \"distance\"\n\ 00820 \n\ 00821 # The channel name should give semantics of the channel (e.g.\n\ 00822 # \"intensity\" instead of \"value\").\n\ 00823 string name\n\ 00824 \n\ 00825 # The values array should be 1-1 with the elements of the associated\n\ 00826 # PointCloud.\n\ 00827 float32[] values\n\ 00828 \n\ 00829 ================================================================================\n\ 00830 MSG: object_manipulation_msgs/SceneRegion\n\ 00831 # Point cloud\n\ 00832 sensor_msgs/PointCloud2 cloud\n\ 00833 \n\ 00834 # Indices for the region of interest\n\ 00835 int32[] mask\n\ 00836 \n\ 00837 # One of the corresponding 2D images, if applicable\n\ 00838 sensor_msgs/Image image\n\ 00839 \n\ 00840 # The disparity image, if applicable\n\ 00841 sensor_msgs/Image disparity_image\n\ 00842 \n\ 00843 # Camera info for the camera that took the image\n\ 00844 sensor_msgs/CameraInfo cam_info\n\ 00845 \n\ 00846 # a 3D region of interest for grasp planning\n\ 00847 geometry_msgs/PoseStamped roi_box_pose\n\ 00848 geometry_msgs/Vector3 roi_box_dims\n\ 00849 \n\ 00850 ================================================================================\n\ 00851 MSG: sensor_msgs/PointCloud2\n\ 00852 # This message holds a collection of N-dimensional points, which may\n\ 00853 # contain additional information such as normals, intensity, etc. The\n\ 00854 # point data is stored as a binary blob, its layout described by the\n\ 00855 # contents of the \"fields\" array.\n\ 00856 \n\ 00857 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00858 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00859 # camera depth sensors such as stereo or time-of-flight.\n\ 00860 \n\ 00861 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00862 # points).\n\ 00863 Header header\n\ 00864 \n\ 00865 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00866 # 1 and width is the length of the point cloud.\n\ 00867 uint32 height\n\ 00868 uint32 width\n\ 00869 \n\ 00870 # Describes the channels and their layout in the binary data blob.\n\ 00871 PointField[] fields\n\ 00872 \n\ 00873 bool is_bigendian # Is this data bigendian?\n\ 00874 uint32 point_step # Length of a point in bytes\n\ 00875 uint32 row_step # Length of a row in bytes\n\ 00876 uint8[] data # Actual point data, size is (row_step*height)\n\ 00877 \n\ 00878 bool is_dense # True if there are no invalid points\n\ 00879 \n\ 00880 ================================================================================\n\ 00881 MSG: sensor_msgs/PointField\n\ 00882 # This message holds the description of one point entry in the\n\ 00883 # PointCloud2 message format.\n\ 00884 uint8 INT8 = 1\n\ 00885 uint8 UINT8 = 2\n\ 00886 uint8 INT16 = 3\n\ 00887 uint8 UINT16 = 4\n\ 00888 uint8 INT32 = 5\n\ 00889 uint8 UINT32 = 6\n\ 00890 uint8 FLOAT32 = 7\n\ 00891 uint8 FLOAT64 = 8\n\ 00892 \n\ 00893 string name # Name of field\n\ 00894 uint32 offset # Offset from start of point struct\n\ 00895 uint8 datatype # Datatype enumeration, see above\n\ 00896 uint32 count # How many elements in the field\n\ 00897 \n\ 00898 ================================================================================\n\ 00899 MSG: sensor_msgs/Image\n\ 00900 # This message contains an uncompressed image\n\ 00901 # (0, 0) is at top-left corner of image\n\ 00902 #\n\ 00903 \n\ 00904 Header header # Header timestamp should be acquisition time of image\n\ 00905 # Header frame_id should be optical frame of camera\n\ 00906 # origin of frame should be optical center of cameara\n\ 00907 # +x should point to the right in the image\n\ 00908 # +y should point down in the image\n\ 00909 # +z should point into to plane of the image\n\ 00910 # If the frame_id here and the frame_id of the CameraInfo\n\ 00911 # message associated with the image conflict\n\ 00912 # the behavior is undefined\n\ 00913 \n\ 00914 uint32 height # image height, that is, number of rows\n\ 00915 uint32 width # image width, that is, number of columns\n\ 00916 \n\ 00917 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00918 # If you want to standardize a new string format, join\n\ 00919 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00920 \n\ 00921 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00922 # taken from the list of strings in src/image_encodings.cpp\n\ 00923 \n\ 00924 uint8 is_bigendian # is this data bigendian?\n\ 00925 uint32 step # Full row length in bytes\n\ 00926 uint8[] data # actual matrix data, size is (step * rows)\n\ 00927 \n\ 00928 ================================================================================\n\ 00929 MSG: sensor_msgs/CameraInfo\n\ 00930 # This message defines meta information for a camera. It should be in a\n\ 00931 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00932 # image topics named:\n\ 00933 #\n\ 00934 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00935 # image - monochrome, distorted\n\ 00936 # image_color - color, distorted\n\ 00937 # image_rect - monochrome, rectified\n\ 00938 # image_rect_color - color, rectified\n\ 00939 #\n\ 00940 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00941 # for producing the four processed image topics from image_raw and\n\ 00942 # camera_info. The meaning of the camera parameters are described in\n\ 00943 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00944 #\n\ 00945 # The image_geometry package provides a user-friendly interface to\n\ 00946 # common operations using this meta information. If you want to, e.g.,\n\ 00947 # project a 3d point into image coordinates, we strongly recommend\n\ 00948 # using image_geometry.\n\ 00949 #\n\ 00950 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00951 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00952 # indicates an uncalibrated camera.\n\ 00953 \n\ 00954 #######################################################################\n\ 00955 # Image acquisition info #\n\ 00956 #######################################################################\n\ 00957 \n\ 00958 # Time of image acquisition, camera coordinate frame ID\n\ 00959 Header header # Header timestamp should be acquisition time of image\n\ 00960 # Header frame_id should be optical frame of camera\n\ 00961 # origin of frame should be optical center of camera\n\ 00962 # +x should point to the right in the image\n\ 00963 # +y should point down in the image\n\ 00964 # +z should point into the plane of the image\n\ 00965 \n\ 00966 \n\ 00967 #######################################################################\n\ 00968 # Calibration Parameters #\n\ 00969 #######################################################################\n\ 00970 # These are fixed during camera calibration. Their values will be the #\n\ 00971 # same in all messages until the camera is recalibrated. Note that #\n\ 00972 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00973 # #\n\ 00974 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00975 # to: #\n\ 00976 # 1. An undistorted image (requires D and K) #\n\ 00977 # 2. A rectified image (requires D, K, R) #\n\ 00978 # The projection matrix P projects 3D points into the rectified image.#\n\ 00979 #######################################################################\n\ 00980 \n\ 00981 # The image dimensions with which the camera was calibrated. Normally\n\ 00982 # this will be the full camera resolution in pixels.\n\ 00983 uint32 height\n\ 00984 uint32 width\n\ 00985 \n\ 00986 # The distortion model used. Supported models are listed in\n\ 00987 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00988 # simple model of radial and tangential distortion - is sufficent.\n\ 00989 string distortion_model\n\ 00990 \n\ 00991 # The distortion parameters, size depending on the distortion model.\n\ 00992 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00993 float64[] D\n\ 00994 \n\ 00995 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00996 # [fx 0 cx]\n\ 00997 # K = [ 0 fy cy]\n\ 00998 # [ 0 0 1]\n\ 00999 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01000 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01001 # (cx, cy).\n\ 01002 float64[9] K # 3x3 row-major matrix\n\ 01003 \n\ 01004 # Rectification matrix (stereo cameras only)\n\ 01005 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01006 # stereo image plane so that epipolar lines in both stereo images are\n\ 01007 # parallel.\n\ 01008 float64[9] R # 3x3 row-major matrix\n\ 01009 \n\ 01010 # Projection/camera matrix\n\ 01011 # [fx' 0 cx' Tx]\n\ 01012 # P = [ 0 fy' cy' Ty]\n\ 01013 # [ 0 0 1 0]\n\ 01014 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01015 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01016 # is the normal camera intrinsic matrix for the rectified image.\n\ 01017 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01018 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01019 # (cx', cy') - these may differ from the values in K.\n\ 01020 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01021 # also have R = the identity and P[1:3,1:3] = K.\n\ 01022 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01023 # position of the optical center of the second camera in the first\n\ 01024 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01025 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01026 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01027 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01028 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01029 # the rectified image is given by:\n\ 01030 # [u v w]' = P * [X Y Z 1]'\n\ 01031 # x = u / w\n\ 01032 # y = v / w\n\ 01033 # This holds for both images of a stereo pair.\n\ 01034 float64[12] P # 3x4 row-major matrix\n\ 01035 \n\ 01036 \n\ 01037 #######################################################################\n\ 01038 # Operational Parameters #\n\ 01039 #######################################################################\n\ 01040 # These define the image region actually captured by the camera #\n\ 01041 # driver. Although they affect the geometry of the output image, they #\n\ 01042 # may be changed freely without recalibrating the camera. #\n\ 01043 #######################################################################\n\ 01044 \n\ 01045 # Binning refers here to any camera setting which combines rectangular\n\ 01046 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01047 # resolution of the output image to\n\ 01048 # (width / binning_x) x (height / binning_y).\n\ 01049 # The default values binning_x = binning_y = 0 is considered the same\n\ 01050 # as binning_x = binning_y = 1 (no subsampling).\n\ 01051 uint32 binning_x\n\ 01052 uint32 binning_y\n\ 01053 \n\ 01054 # Region of interest (subwindow of full camera resolution), given in\n\ 01055 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01056 # always denotes the same window of pixels on the camera sensor,\n\ 01057 # regardless of binning settings.\n\ 01058 # The default setting of roi (all values 0) is considered the same as\n\ 01059 # full resolution (roi.width = width, roi.height = height).\n\ 01060 RegionOfInterest roi\n\ 01061 \n\ 01062 ================================================================================\n\ 01063 MSG: sensor_msgs/RegionOfInterest\n\ 01064 # This message is used to specify a region of interest within an image.\n\ 01065 #\n\ 01066 # When used to specify the ROI setting of the camera when the image was\n\ 01067 # taken, the height and width fields should either match the height and\n\ 01068 # width fields for the associated image; or height = width = 0\n\ 01069 # indicates that the full resolution image was captured.\n\ 01070 \n\ 01071 uint32 x_offset # Leftmost pixel of the ROI\n\ 01072 # (0 if the ROI includes the left edge of the image)\n\ 01073 uint32 y_offset # Topmost pixel of the ROI\n\ 01074 # (0 if the ROI includes the top edge of the image)\n\ 01075 uint32 height # Height of ROI\n\ 01076 uint32 width # Width of ROI\n\ 01077 \n\ 01078 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01079 # ROI in this message. Typically this should be False if the full image\n\ 01080 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01081 # used).\n\ 01082 bool do_rectify\n\ 01083 \n\ 01084 ================================================================================\n\ 01085 MSG: geometry_msgs/Vector3\n\ 01086 # This represents a vector in free space. \n\ 01087 \n\ 01088 float64 x\n\ 01089 float64 y\n\ 01090 float64 z\n\ 01091 "; 01092 } 01093 01094 static const char* value(const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> &) { return value(); } 01095 }; 01096 01097 } // namespace message_traits 01098 } // namespace ros 01099 01100 namespace ros 01101 { 01102 namespace serialization 01103 { 01104 01105 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > 01106 { 01107 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01108 { 01109 stream.next(m.grasps); 01110 } 01111 01112 ROS_DECLARE_ALLINONE_SERIALIZER; 01113 }; // struct GraspPlanningFeedback_ 01114 } // namespace serialization 01115 } // namespace ros 01116 01117 namespace ros 01118 { 01119 namespace message_operations 01120 { 01121 01122 template<class ContainerAllocator> 01123 struct Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> > 01124 { 01125 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> & v) 01126 { 01127 s << indent << "grasps[]" << std::endl; 01128 for (size_t i = 0; i < v.grasps.size(); ++i) 01129 { 01130 s << indent << " grasps[" << i << "]: "; 01131 s << std::endl; 01132 s << indent; 01133 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasps[i]); 01134 } 01135 } 01136 }; 01137 01138 01139 } // namespace message_operations 01140 } // namespace ros 01141 01142 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGFEEDBACK_H 01143