00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspPlanningActionGoal.h"
00018 #include "object_manipulation_msgs/GraspPlanningActionResult.h"
00019 #include "object_manipulation_msgs/GraspPlanningActionFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspPlanningAction_ {
00025 typedef GraspPlanningAction_<ContainerAllocator> Type;
00026
00027 GraspPlanningAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 GraspPlanningAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "633fe6f10f37f6a935a5aa9ae19f25c5"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 GraspPlanningActionGoal action_goal\n\
00069 GraspPlanningActionResult action_result\n\
00070 GraspPlanningActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: object_manipulation_msgs/GraspPlanningActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 GraspPlanningGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: object_manipulation_msgs/GraspPlanningGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 # Requests that grasp planning be performed on the object to be grasped\n\
00115 # returns a list of grasps to be tested and executed\n\
00116 \n\
00117 # the arm being used\n\
00118 string arm_name\n\
00119 \n\
00120 # the object to be grasped\n\
00121 GraspableObject target\n\
00122 \n\
00123 # the name that the target object has in the collision environment\n\
00124 # can be left empty if no name is available\n\
00125 string collision_object_name\n\
00126 \n\
00127 # the name that the support surface (e.g. table) has in the collision map\n\
00128 # can be left empty if no name is available\n\
00129 string collision_support_surface_name\n\
00130 \n\
00131 # an optional list of grasps to be evaluated by the planner\n\
00132 Grasp[] grasps_to_evaluate\n\
00133 \n\
00134 # an optional list of obstacles that we have semantic information about\n\
00135 # and that can be moved in the course of grasping\n\
00136 GraspableObject[] movable_obstacles\n\
00137 \n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: object_manipulation_msgs/GraspableObject\n\
00141 # an object that the object_manipulator can work on\n\
00142 \n\
00143 # a graspable object can be represented in multiple ways. This message\n\
00144 # can contain all of them. Which one is actually used is up to the receiver\n\
00145 # of this message. When adding new representations, one must be careful that\n\
00146 # they have reasonable lightweight defaults indicating that that particular\n\
00147 # representation is not available.\n\
00148 \n\
00149 # the tf frame to be used as a reference frame when combining information from\n\
00150 # the different representations below\n\
00151 string reference_frame_id\n\
00152 \n\
00153 # potential recognition results from a database of models\n\
00154 # all poses are relative to the object reference pose\n\
00155 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00156 \n\
00157 # the point cloud itself\n\
00158 sensor_msgs/PointCloud cluster\n\
00159 \n\
00160 # a region of a PointCloud2 of interest\n\
00161 object_manipulation_msgs/SceneRegion region\n\
00162 \n\
00163 # the name that this object has in the collision environment\n\
00164 string collision_name\n\
00165 ================================================================================\n\
00166 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00167 # Informs that a specific model from the Model Database has been \n\
00168 # identified at a certain location\n\
00169 \n\
00170 # the database id of the model\n\
00171 int32 model_id\n\
00172 \n\
00173 # the pose that it can be found in\n\
00174 geometry_msgs/PoseStamped pose\n\
00175 \n\
00176 # a measure of the confidence level in this detection result\n\
00177 float32 confidence\n\
00178 \n\
00179 # the name of the object detector that generated this detection result\n\
00180 string detector_name\n\
00181 \n\
00182 ================================================================================\n\
00183 MSG: geometry_msgs/PoseStamped\n\
00184 # A Pose with reference coordinate frame and timestamp\n\
00185 Header header\n\
00186 Pose pose\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: geometry_msgs/Pose\n\
00190 # A representation of pose in free space, composed of postion and orientation. \n\
00191 Point position\n\
00192 Quaternion orientation\n\
00193 \n\
00194 ================================================================================\n\
00195 MSG: geometry_msgs/Point\n\
00196 # This contains the position of a point in free space\n\
00197 float64 x\n\
00198 float64 y\n\
00199 float64 z\n\
00200 \n\
00201 ================================================================================\n\
00202 MSG: geometry_msgs/Quaternion\n\
00203 # This represents an orientation in free space in quaternion form.\n\
00204 \n\
00205 float64 x\n\
00206 float64 y\n\
00207 float64 z\n\
00208 float64 w\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: sensor_msgs/PointCloud\n\
00212 # This message holds a collection of 3d points, plus optional additional\n\
00213 # information about each point.\n\
00214 \n\
00215 # Time of sensor data acquisition, coordinate frame ID.\n\
00216 Header header\n\
00217 \n\
00218 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00219 # in the frame given in the header.\n\
00220 geometry_msgs/Point32[] points\n\
00221 \n\
00222 # Each channel should have the same number of elements as points array,\n\
00223 # and the data in each channel should correspond 1:1 with each point.\n\
00224 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00225 ChannelFloat32[] channels\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: geometry_msgs/Point32\n\
00229 # This contains the position of a point in free space(with 32 bits of precision).\n\
00230 # It is recommeded to use Point wherever possible instead of Point32. \n\
00231 # \n\
00232 # This recommendation is to promote interoperability. \n\
00233 #\n\
00234 # This message is designed to take up less space when sending\n\
00235 # lots of points at once, as in the case of a PointCloud. \n\
00236 \n\
00237 float32 x\n\
00238 float32 y\n\
00239 float32 z\n\
00240 ================================================================================\n\
00241 MSG: sensor_msgs/ChannelFloat32\n\
00242 # This message is used by the PointCloud message to hold optional data\n\
00243 # associated with each point in the cloud. The length of the values\n\
00244 # array should be the same as the length of the points array in the\n\
00245 # PointCloud, and each value should be associated with the corresponding\n\
00246 # point.\n\
00247 \n\
00248 # Channel names in existing practice include:\n\
00249 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00250 # This is opposite to usual conventions but remains for\n\
00251 # historical reasons. The newer PointCloud2 message has no\n\
00252 # such problem.\n\
00253 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00254 # (R,G,B) values packed into the least significant 24 bits,\n\
00255 # in order.\n\
00256 # \"intensity\" - laser or pixel intensity.\n\
00257 # \"distance\"\n\
00258 \n\
00259 # The channel name should give semantics of the channel (e.g.\n\
00260 # \"intensity\" instead of \"value\").\n\
00261 string name\n\
00262 \n\
00263 # The values array should be 1-1 with the elements of the associated\n\
00264 # PointCloud.\n\
00265 float32[] values\n\
00266 \n\
00267 ================================================================================\n\
00268 MSG: object_manipulation_msgs/SceneRegion\n\
00269 # Point cloud\n\
00270 sensor_msgs/PointCloud2 cloud\n\
00271 \n\
00272 # Indices for the region of interest\n\
00273 int32[] mask\n\
00274 \n\
00275 # One of the corresponding 2D images, if applicable\n\
00276 sensor_msgs/Image image\n\
00277 \n\
00278 # The disparity image, if applicable\n\
00279 sensor_msgs/Image disparity_image\n\
00280 \n\
00281 # Camera info for the camera that took the image\n\
00282 sensor_msgs/CameraInfo cam_info\n\
00283 \n\
00284 # a 3D region of interest for grasp planning\n\
00285 geometry_msgs/PoseStamped roi_box_pose\n\
00286 geometry_msgs/Vector3 roi_box_dims\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: sensor_msgs/PointCloud2\n\
00290 # This message holds a collection of N-dimensional points, which may\n\
00291 # contain additional information such as normals, intensity, etc. The\n\
00292 # point data is stored as a binary blob, its layout described by the\n\
00293 # contents of the \"fields\" array.\n\
00294 \n\
00295 # The point cloud data may be organized 2d (image-like) or 1d\n\
00296 # (unordered). Point clouds organized as 2d images may be produced by\n\
00297 # camera depth sensors such as stereo or time-of-flight.\n\
00298 \n\
00299 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00300 # points).\n\
00301 Header header\n\
00302 \n\
00303 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00304 # 1 and width is the length of the point cloud.\n\
00305 uint32 height\n\
00306 uint32 width\n\
00307 \n\
00308 # Describes the channels and their layout in the binary data blob.\n\
00309 PointField[] fields\n\
00310 \n\
00311 bool is_bigendian # Is this data bigendian?\n\
00312 uint32 point_step # Length of a point in bytes\n\
00313 uint32 row_step # Length of a row in bytes\n\
00314 uint8[] data # Actual point data, size is (row_step*height)\n\
00315 \n\
00316 bool is_dense # True if there are no invalid points\n\
00317 \n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/PointField\n\
00320 # This message holds the description of one point entry in the\n\
00321 # PointCloud2 message format.\n\
00322 uint8 INT8 = 1\n\
00323 uint8 UINT8 = 2\n\
00324 uint8 INT16 = 3\n\
00325 uint8 UINT16 = 4\n\
00326 uint8 INT32 = 5\n\
00327 uint8 UINT32 = 6\n\
00328 uint8 FLOAT32 = 7\n\
00329 uint8 FLOAT64 = 8\n\
00330 \n\
00331 string name # Name of field\n\
00332 uint32 offset # Offset from start of point struct\n\
00333 uint8 datatype # Datatype enumeration, see above\n\
00334 uint32 count # How many elements in the field\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/Image\n\
00338 # This message contains an uncompressed image\n\
00339 # (0, 0) is at top-left corner of image\n\
00340 #\n\
00341 \n\
00342 Header header # Header timestamp should be acquisition time of image\n\
00343 # Header frame_id should be optical frame of camera\n\
00344 # origin of frame should be optical center of cameara\n\
00345 # +x should point to the right in the image\n\
00346 # +y should point down in the image\n\
00347 # +z should point into to plane of the image\n\
00348 # If the frame_id here and the frame_id of the CameraInfo\n\
00349 # message associated with the image conflict\n\
00350 # the behavior is undefined\n\
00351 \n\
00352 uint32 height # image height, that is, number of rows\n\
00353 uint32 width # image width, that is, number of columns\n\
00354 \n\
00355 # The legal values for encoding are in file src/image_encodings.cpp\n\
00356 # If you want to standardize a new string format, join\n\
00357 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00358 \n\
00359 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00360 # taken from the list of strings in src/image_encodings.cpp\n\
00361 \n\
00362 uint8 is_bigendian # is this data bigendian?\n\
00363 uint32 step # Full row length in bytes\n\
00364 uint8[] data # actual matrix data, size is (step * rows)\n\
00365 \n\
00366 ================================================================================\n\
00367 MSG: sensor_msgs/CameraInfo\n\
00368 # This message defines meta information for a camera. It should be in a\n\
00369 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00370 # image topics named:\n\
00371 #\n\
00372 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00373 # image - monochrome, distorted\n\
00374 # image_color - color, distorted\n\
00375 # image_rect - monochrome, rectified\n\
00376 # image_rect_color - color, rectified\n\
00377 #\n\
00378 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00379 # for producing the four processed image topics from image_raw and\n\
00380 # camera_info. The meaning of the camera parameters are described in\n\
00381 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00382 #\n\
00383 # The image_geometry package provides a user-friendly interface to\n\
00384 # common operations using this meta information. If you want to, e.g.,\n\
00385 # project a 3d point into image coordinates, we strongly recommend\n\
00386 # using image_geometry.\n\
00387 #\n\
00388 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00389 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00390 # indicates an uncalibrated camera.\n\
00391 \n\
00392 #######################################################################\n\
00393 # Image acquisition info #\n\
00394 #######################################################################\n\
00395 \n\
00396 # Time of image acquisition, camera coordinate frame ID\n\
00397 Header header # Header timestamp should be acquisition time of image\n\
00398 # Header frame_id should be optical frame of camera\n\
00399 # origin of frame should be optical center of camera\n\
00400 # +x should point to the right in the image\n\
00401 # +y should point down in the image\n\
00402 # +z should point into the plane of the image\n\
00403 \n\
00404 \n\
00405 #######################################################################\n\
00406 # Calibration Parameters #\n\
00407 #######################################################################\n\
00408 # These are fixed during camera calibration. Their values will be the #\n\
00409 # same in all messages until the camera is recalibrated. Note that #\n\
00410 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00411 # #\n\
00412 # The internal parameters can be used to warp a raw (distorted) image #\n\
00413 # to: #\n\
00414 # 1. An undistorted image (requires D and K) #\n\
00415 # 2. A rectified image (requires D, K, R) #\n\
00416 # The projection matrix P projects 3D points into the rectified image.#\n\
00417 #######################################################################\n\
00418 \n\
00419 # The image dimensions with which the camera was calibrated. Normally\n\
00420 # this will be the full camera resolution in pixels.\n\
00421 uint32 height\n\
00422 uint32 width\n\
00423 \n\
00424 # The distortion model used. Supported models are listed in\n\
00425 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00426 # simple model of radial and tangential distortion - is sufficent.\n\
00427 string distortion_model\n\
00428 \n\
00429 # The distortion parameters, size depending on the distortion model.\n\
00430 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00431 float64[] D\n\
00432 \n\
00433 # Intrinsic camera matrix for the raw (distorted) images.\n\
00434 # [fx 0 cx]\n\
00435 # K = [ 0 fy cy]\n\
00436 # [ 0 0 1]\n\
00437 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00438 # coordinates using the focal lengths (fx, fy) and principal point\n\
00439 # (cx, cy).\n\
00440 float64[9] K # 3x3 row-major matrix\n\
00441 \n\
00442 # Rectification matrix (stereo cameras only)\n\
00443 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00444 # stereo image plane so that epipolar lines in both stereo images are\n\
00445 # parallel.\n\
00446 float64[9] R # 3x3 row-major matrix\n\
00447 \n\
00448 # Projection/camera matrix\n\
00449 # [fx' 0 cx' Tx]\n\
00450 # P = [ 0 fy' cy' Ty]\n\
00451 # [ 0 0 1 0]\n\
00452 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00453 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00454 # is the normal camera intrinsic matrix for the rectified image.\n\
00455 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00456 # coordinates using the focal lengths (fx', fy') and principal point\n\
00457 # (cx', cy') - these may differ from the values in K.\n\
00458 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00459 # also have R = the identity and P[1:3,1:3] = K.\n\
00460 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00461 # position of the optical center of the second camera in the first\n\
00462 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00463 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00464 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00465 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00466 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00467 # the rectified image is given by:\n\
00468 # [u v w]' = P * [X Y Z 1]'\n\
00469 # x = u / w\n\
00470 # y = v / w\n\
00471 # This holds for both images of a stereo pair.\n\
00472 float64[12] P # 3x4 row-major matrix\n\
00473 \n\
00474 \n\
00475 #######################################################################\n\
00476 # Operational Parameters #\n\
00477 #######################################################################\n\
00478 # These define the image region actually captured by the camera #\n\
00479 # driver. Although they affect the geometry of the output image, they #\n\
00480 # may be changed freely without recalibrating the camera. #\n\
00481 #######################################################################\n\
00482 \n\
00483 # Binning refers here to any camera setting which combines rectangular\n\
00484 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00485 # resolution of the output image to\n\
00486 # (width / binning_x) x (height / binning_y).\n\
00487 # The default values binning_x = binning_y = 0 is considered the same\n\
00488 # as binning_x = binning_y = 1 (no subsampling).\n\
00489 uint32 binning_x\n\
00490 uint32 binning_y\n\
00491 \n\
00492 # Region of interest (subwindow of full camera resolution), given in\n\
00493 # full resolution (unbinned) image coordinates. A particular ROI\n\
00494 # always denotes the same window of pixels on the camera sensor,\n\
00495 # regardless of binning settings.\n\
00496 # The default setting of roi (all values 0) is considered the same as\n\
00497 # full resolution (roi.width = width, roi.height = height).\n\
00498 RegionOfInterest roi\n\
00499 \n\
00500 ================================================================================\n\
00501 MSG: sensor_msgs/RegionOfInterest\n\
00502 # This message is used to specify a region of interest within an image.\n\
00503 #\n\
00504 # When used to specify the ROI setting of the camera when the image was\n\
00505 # taken, the height and width fields should either match the height and\n\
00506 # width fields for the associated image; or height = width = 0\n\
00507 # indicates that the full resolution image was captured.\n\
00508 \n\
00509 uint32 x_offset # Leftmost pixel of the ROI\n\
00510 # (0 if the ROI includes the left edge of the image)\n\
00511 uint32 y_offset # Topmost pixel of the ROI\n\
00512 # (0 if the ROI includes the top edge of the image)\n\
00513 uint32 height # Height of ROI\n\
00514 uint32 width # Width of ROI\n\
00515 \n\
00516 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00517 # ROI in this message. Typically this should be False if the full image\n\
00518 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00519 # used).\n\
00520 bool do_rectify\n\
00521 \n\
00522 ================================================================================\n\
00523 MSG: geometry_msgs/Vector3\n\
00524 # This represents a vector in free space. \n\
00525 \n\
00526 float64 x\n\
00527 float64 y\n\
00528 float64 z\n\
00529 ================================================================================\n\
00530 MSG: object_manipulation_msgs/Grasp\n\
00531 \n\
00532 # The internal posture of the hand for the pre-grasp\n\
00533 # only positions are used\n\
00534 sensor_msgs/JointState pre_grasp_posture\n\
00535 \n\
00536 # The internal posture of the hand for the grasp\n\
00537 # positions and efforts are used\n\
00538 sensor_msgs/JointState grasp_posture\n\
00539 \n\
00540 # The position of the end-effector for the grasp relative to a reference frame \n\
00541 # (that is always specified elsewhere, not in this message)\n\
00542 geometry_msgs/Pose grasp_pose\n\
00543 \n\
00544 # The estimated probability of success for this grasp\n\
00545 float64 success_probability\n\
00546 \n\
00547 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00548 bool cluster_rep\n\
00549 \n\
00550 # how far the pre-grasp should ideally be away from the grasp\n\
00551 float32 desired_approach_distance\n\
00552 \n\
00553 # how much distance between pre-grasp and grasp must actually be feasible \n\
00554 # for the grasp not to be rejected\n\
00555 float32 min_approach_distance\n\
00556 \n\
00557 # an optional list of obstacles that we have semantic information about\n\
00558 # and that we expect might move in the course of executing this grasp\n\
00559 # the grasp planner is expected to make sure they move in an OK way; during\n\
00560 # execution, grasp executors will not check for collisions against these objects\n\
00561 GraspableObject[] moved_obstacles\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: sensor_msgs/JointState\n\
00565 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00566 #\n\
00567 # The state of each joint (revolute or prismatic) is defined by:\n\
00568 # * the position of the joint (rad or m),\n\
00569 # * the velocity of the joint (rad/s or m/s) and \n\
00570 # * the effort that is applied in the joint (Nm or N).\n\
00571 #\n\
00572 # Each joint is uniquely identified by its name\n\
00573 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00574 # in one message have to be recorded at the same time.\n\
00575 #\n\
00576 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00577 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00578 # effort associated with them, you can leave the effort array empty. \n\
00579 #\n\
00580 # All arrays in this message should have the same size, or be empty.\n\
00581 # This is the only way to uniquely associate the joint name with the correct\n\
00582 # states.\n\
00583 \n\
00584 \n\
00585 Header header\n\
00586 \n\
00587 string[] name\n\
00588 float64[] position\n\
00589 float64[] velocity\n\
00590 float64[] effort\n\
00591 \n\
00592 ================================================================================\n\
00593 MSG: object_manipulation_msgs/GraspPlanningActionResult\n\
00594 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00595 \n\
00596 Header header\n\
00597 actionlib_msgs/GoalStatus status\n\
00598 GraspPlanningResult result\n\
00599 \n\
00600 ================================================================================\n\
00601 MSG: actionlib_msgs/GoalStatus\n\
00602 GoalID goal_id\n\
00603 uint8 status\n\
00604 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00605 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00606 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00607 # and has since completed its execution (Terminal State)\n\
00608 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00609 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00610 # to some failure (Terminal State)\n\
00611 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00612 # because the goal was unattainable or invalid (Terminal State)\n\
00613 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00614 # and has not yet completed execution\n\
00615 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00616 # but the action server has not yet confirmed that the goal is canceled\n\
00617 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00618 # and was successfully cancelled (Terminal State)\n\
00619 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00620 # sent over the wire by an action server\n\
00621 \n\
00622 #Allow for the user to associate a string with GoalStatus for debugging\n\
00623 string text\n\
00624 \n\
00625 \n\
00626 ================================================================================\n\
00627 MSG: object_manipulation_msgs/GraspPlanningResult\n\
00628 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00629 \n\
00630 # the list of planned grasps\n\
00631 Grasp[] grasps\n\
00632 \n\
00633 # whether an error occurred\n\
00634 GraspPlanningErrorCode error_code\n\
00635 \n\
00636 \n\
00637 ================================================================================\n\
00638 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
00639 # Error codes for grasp and place planning\n\
00640 \n\
00641 # plan completed as expected\n\
00642 int32 SUCCESS = 0\n\
00643 \n\
00644 # tf error encountered while transforming\n\
00645 int32 TF_ERROR = 1 \n\
00646 \n\
00647 # some other error\n\
00648 int32 OTHER_ERROR = 2\n\
00649 \n\
00650 # the actual value of this error code\n\
00651 int32 value\n\
00652 ================================================================================\n\
00653 MSG: object_manipulation_msgs/GraspPlanningActionFeedback\n\
00654 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00655 \n\
00656 Header header\n\
00657 actionlib_msgs/GoalStatus status\n\
00658 GraspPlanningFeedback feedback\n\
00659 \n\
00660 ================================================================================\n\
00661 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\
00662 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00663 \n\
00664 # grasps planned so far\n\
00665 Grasp[] grasps\n\
00666 \n\
00667 \n\
00668 \n\
00669 "; }
00670 public:
00671 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00672
00673 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00674
00675 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00676 {
00677 ros::serialization::OStream stream(write_ptr, 1000000000);
00678 ros::serialization::serialize(stream, action_goal);
00679 ros::serialization::serialize(stream, action_result);
00680 ros::serialization::serialize(stream, action_feedback);
00681 return stream.getData();
00682 }
00683
00684 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00685 {
00686 ros::serialization::IStream stream(read_ptr, 1000000000);
00687 ros::serialization::deserialize(stream, action_goal);
00688 ros::serialization::deserialize(stream, action_result);
00689 ros::serialization::deserialize(stream, action_feedback);
00690 return stream.getData();
00691 }
00692
00693 ROS_DEPRECATED virtual uint32_t serializationLength() const
00694 {
00695 uint32_t size = 0;
00696 size += ros::serialization::serializationLength(action_goal);
00697 size += ros::serialization::serializationLength(action_result);
00698 size += ros::serialization::serializationLength(action_feedback);
00699 return size;
00700 }
00701
00702 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > Ptr;
00703 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> const> ConstPtr;
00704 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00705 };
00706 typedef ::object_manipulation_msgs::GraspPlanningAction_<std::allocator<void> > GraspPlanningAction;
00707
00708 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction> GraspPlanningActionPtr;
00709 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction const> GraspPlanningActionConstPtr;
00710
00711
00712 template<typename ContainerAllocator>
00713 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> & v)
00714 {
00715 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> >::stream(s, "", v);
00716 return s;}
00717
00718 }
00719
00720 namespace ros
00721 {
00722 namespace message_traits
00723 {
00724 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > : public TrueType {};
00725 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> const> : public TrueType {};
00726 template<class ContainerAllocator>
00727 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > {
00728 static const char* value()
00729 {
00730 return "633fe6f10f37f6a935a5aa9ae19f25c5";
00731 }
00732
00733 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); }
00734 static const uint64_t static_value1 = 0x633fe6f10f37f6a9ULL;
00735 static const uint64_t static_value2 = 0x35a5aa9ae19f25c5ULL;
00736 };
00737
00738 template<class ContainerAllocator>
00739 struct DataType< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > {
00740 static const char* value()
00741 {
00742 return "object_manipulation_msgs/GraspPlanningAction";
00743 }
00744
00745 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); }
00746 };
00747
00748 template<class ContainerAllocator>
00749 struct Definition< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > {
00750 static const char* value()
00751 {
00752 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00753 \n\
00754 GraspPlanningActionGoal action_goal\n\
00755 GraspPlanningActionResult action_result\n\
00756 GraspPlanningActionFeedback action_feedback\n\
00757 \n\
00758 ================================================================================\n\
00759 MSG: object_manipulation_msgs/GraspPlanningActionGoal\n\
00760 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00761 \n\
00762 Header header\n\
00763 actionlib_msgs/GoalID goal_id\n\
00764 GraspPlanningGoal goal\n\
00765 \n\
00766 ================================================================================\n\
00767 MSG: std_msgs/Header\n\
00768 # Standard metadata for higher-level stamped data types.\n\
00769 # This is generally used to communicate timestamped data \n\
00770 # in a particular coordinate frame.\n\
00771 # \n\
00772 # sequence ID: consecutively increasing ID \n\
00773 uint32 seq\n\
00774 #Two-integer timestamp that is expressed as:\n\
00775 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00776 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00777 # time-handling sugar is provided by the client library\n\
00778 time stamp\n\
00779 #Frame this data is associated with\n\
00780 # 0: no frame\n\
00781 # 1: global frame\n\
00782 string frame_id\n\
00783 \n\
00784 ================================================================================\n\
00785 MSG: actionlib_msgs/GoalID\n\
00786 # The stamp should store the time at which this goal was requested.\n\
00787 # It is used by an action server when it tries to preempt all\n\
00788 # goals that were requested before a certain time\n\
00789 time stamp\n\
00790 \n\
00791 # The id provides a way to associate feedback and\n\
00792 # result message with specific goal requests. The id\n\
00793 # specified must be unique.\n\
00794 string id\n\
00795 \n\
00796 \n\
00797 ================================================================================\n\
00798 MSG: object_manipulation_msgs/GraspPlanningGoal\n\
00799 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00800 # Requests that grasp planning be performed on the object to be grasped\n\
00801 # returns a list of grasps to be tested and executed\n\
00802 \n\
00803 # the arm being used\n\
00804 string arm_name\n\
00805 \n\
00806 # the object to be grasped\n\
00807 GraspableObject target\n\
00808 \n\
00809 # the name that the target object has in the collision environment\n\
00810 # can be left empty if no name is available\n\
00811 string collision_object_name\n\
00812 \n\
00813 # the name that the support surface (e.g. table) has in the collision map\n\
00814 # can be left empty if no name is available\n\
00815 string collision_support_surface_name\n\
00816 \n\
00817 # an optional list of grasps to be evaluated by the planner\n\
00818 Grasp[] grasps_to_evaluate\n\
00819 \n\
00820 # an optional list of obstacles that we have semantic information about\n\
00821 # and that can be moved in the course of grasping\n\
00822 GraspableObject[] movable_obstacles\n\
00823 \n\
00824 \n\
00825 ================================================================================\n\
00826 MSG: object_manipulation_msgs/GraspableObject\n\
00827 # an object that the object_manipulator can work on\n\
00828 \n\
00829 # a graspable object can be represented in multiple ways. This message\n\
00830 # can contain all of them. Which one is actually used is up to the receiver\n\
00831 # of this message. When adding new representations, one must be careful that\n\
00832 # they have reasonable lightweight defaults indicating that that particular\n\
00833 # representation is not available.\n\
00834 \n\
00835 # the tf frame to be used as a reference frame when combining information from\n\
00836 # the different representations below\n\
00837 string reference_frame_id\n\
00838 \n\
00839 # potential recognition results from a database of models\n\
00840 # all poses are relative to the object reference pose\n\
00841 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00842 \n\
00843 # the point cloud itself\n\
00844 sensor_msgs/PointCloud cluster\n\
00845 \n\
00846 # a region of a PointCloud2 of interest\n\
00847 object_manipulation_msgs/SceneRegion region\n\
00848 \n\
00849 # the name that this object has in the collision environment\n\
00850 string collision_name\n\
00851 ================================================================================\n\
00852 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00853 # Informs that a specific model from the Model Database has been \n\
00854 # identified at a certain location\n\
00855 \n\
00856 # the database id of the model\n\
00857 int32 model_id\n\
00858 \n\
00859 # the pose that it can be found in\n\
00860 geometry_msgs/PoseStamped pose\n\
00861 \n\
00862 # a measure of the confidence level in this detection result\n\
00863 float32 confidence\n\
00864 \n\
00865 # the name of the object detector that generated this detection result\n\
00866 string detector_name\n\
00867 \n\
00868 ================================================================================\n\
00869 MSG: geometry_msgs/PoseStamped\n\
00870 # A Pose with reference coordinate frame and timestamp\n\
00871 Header header\n\
00872 Pose pose\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: geometry_msgs/Pose\n\
00876 # A representation of pose in free space, composed of postion and orientation. \n\
00877 Point position\n\
00878 Quaternion orientation\n\
00879 \n\
00880 ================================================================================\n\
00881 MSG: geometry_msgs/Point\n\
00882 # This contains the position of a point in free space\n\
00883 float64 x\n\
00884 float64 y\n\
00885 float64 z\n\
00886 \n\
00887 ================================================================================\n\
00888 MSG: geometry_msgs/Quaternion\n\
00889 # This represents an orientation in free space in quaternion form.\n\
00890 \n\
00891 float64 x\n\
00892 float64 y\n\
00893 float64 z\n\
00894 float64 w\n\
00895 \n\
00896 ================================================================================\n\
00897 MSG: sensor_msgs/PointCloud\n\
00898 # This message holds a collection of 3d points, plus optional additional\n\
00899 # information about each point.\n\
00900 \n\
00901 # Time of sensor data acquisition, coordinate frame ID.\n\
00902 Header header\n\
00903 \n\
00904 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00905 # in the frame given in the header.\n\
00906 geometry_msgs/Point32[] points\n\
00907 \n\
00908 # Each channel should have the same number of elements as points array,\n\
00909 # and the data in each channel should correspond 1:1 with each point.\n\
00910 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00911 ChannelFloat32[] channels\n\
00912 \n\
00913 ================================================================================\n\
00914 MSG: geometry_msgs/Point32\n\
00915 # This contains the position of a point in free space(with 32 bits of precision).\n\
00916 # It is recommeded to use Point wherever possible instead of Point32. \n\
00917 # \n\
00918 # This recommendation is to promote interoperability. \n\
00919 #\n\
00920 # This message is designed to take up less space when sending\n\
00921 # lots of points at once, as in the case of a PointCloud. \n\
00922 \n\
00923 float32 x\n\
00924 float32 y\n\
00925 float32 z\n\
00926 ================================================================================\n\
00927 MSG: sensor_msgs/ChannelFloat32\n\
00928 # This message is used by the PointCloud message to hold optional data\n\
00929 # associated with each point in the cloud. The length of the values\n\
00930 # array should be the same as the length of the points array in the\n\
00931 # PointCloud, and each value should be associated with the corresponding\n\
00932 # point.\n\
00933 \n\
00934 # Channel names in existing practice include:\n\
00935 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00936 # This is opposite to usual conventions but remains for\n\
00937 # historical reasons. The newer PointCloud2 message has no\n\
00938 # such problem.\n\
00939 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00940 # (R,G,B) values packed into the least significant 24 bits,\n\
00941 # in order.\n\
00942 # \"intensity\" - laser or pixel intensity.\n\
00943 # \"distance\"\n\
00944 \n\
00945 # The channel name should give semantics of the channel (e.g.\n\
00946 # \"intensity\" instead of \"value\").\n\
00947 string name\n\
00948 \n\
00949 # The values array should be 1-1 with the elements of the associated\n\
00950 # PointCloud.\n\
00951 float32[] values\n\
00952 \n\
00953 ================================================================================\n\
00954 MSG: object_manipulation_msgs/SceneRegion\n\
00955 # Point cloud\n\
00956 sensor_msgs/PointCloud2 cloud\n\
00957 \n\
00958 # Indices for the region of interest\n\
00959 int32[] mask\n\
00960 \n\
00961 # One of the corresponding 2D images, if applicable\n\
00962 sensor_msgs/Image image\n\
00963 \n\
00964 # The disparity image, if applicable\n\
00965 sensor_msgs/Image disparity_image\n\
00966 \n\
00967 # Camera info for the camera that took the image\n\
00968 sensor_msgs/CameraInfo cam_info\n\
00969 \n\
00970 # a 3D region of interest for grasp planning\n\
00971 geometry_msgs/PoseStamped roi_box_pose\n\
00972 geometry_msgs/Vector3 roi_box_dims\n\
00973 \n\
00974 ================================================================================\n\
00975 MSG: sensor_msgs/PointCloud2\n\
00976 # This message holds a collection of N-dimensional points, which may\n\
00977 # contain additional information such as normals, intensity, etc. The\n\
00978 # point data is stored as a binary blob, its layout described by the\n\
00979 # contents of the \"fields\" array.\n\
00980 \n\
00981 # The point cloud data may be organized 2d (image-like) or 1d\n\
00982 # (unordered). Point clouds organized as 2d images may be produced by\n\
00983 # camera depth sensors such as stereo or time-of-flight.\n\
00984 \n\
00985 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00986 # points).\n\
00987 Header header\n\
00988 \n\
00989 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00990 # 1 and width is the length of the point cloud.\n\
00991 uint32 height\n\
00992 uint32 width\n\
00993 \n\
00994 # Describes the channels and their layout in the binary data blob.\n\
00995 PointField[] fields\n\
00996 \n\
00997 bool is_bigendian # Is this data bigendian?\n\
00998 uint32 point_step # Length of a point in bytes\n\
00999 uint32 row_step # Length of a row in bytes\n\
01000 uint8[] data # Actual point data, size is (row_step*height)\n\
01001 \n\
01002 bool is_dense # True if there are no invalid points\n\
01003 \n\
01004 ================================================================================\n\
01005 MSG: sensor_msgs/PointField\n\
01006 # This message holds the description of one point entry in the\n\
01007 # PointCloud2 message format.\n\
01008 uint8 INT8 = 1\n\
01009 uint8 UINT8 = 2\n\
01010 uint8 INT16 = 3\n\
01011 uint8 UINT16 = 4\n\
01012 uint8 INT32 = 5\n\
01013 uint8 UINT32 = 6\n\
01014 uint8 FLOAT32 = 7\n\
01015 uint8 FLOAT64 = 8\n\
01016 \n\
01017 string name # Name of field\n\
01018 uint32 offset # Offset from start of point struct\n\
01019 uint8 datatype # Datatype enumeration, see above\n\
01020 uint32 count # How many elements in the field\n\
01021 \n\
01022 ================================================================================\n\
01023 MSG: sensor_msgs/Image\n\
01024 # This message contains an uncompressed image\n\
01025 # (0, 0) is at top-left corner of image\n\
01026 #\n\
01027 \n\
01028 Header header # Header timestamp should be acquisition time of image\n\
01029 # Header frame_id should be optical frame of camera\n\
01030 # origin of frame should be optical center of cameara\n\
01031 # +x should point to the right in the image\n\
01032 # +y should point down in the image\n\
01033 # +z should point into to plane of the image\n\
01034 # If the frame_id here and the frame_id of the CameraInfo\n\
01035 # message associated with the image conflict\n\
01036 # the behavior is undefined\n\
01037 \n\
01038 uint32 height # image height, that is, number of rows\n\
01039 uint32 width # image width, that is, number of columns\n\
01040 \n\
01041 # The legal values for encoding are in file src/image_encodings.cpp\n\
01042 # If you want to standardize a new string format, join\n\
01043 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01044 \n\
01045 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01046 # taken from the list of strings in src/image_encodings.cpp\n\
01047 \n\
01048 uint8 is_bigendian # is this data bigendian?\n\
01049 uint32 step # Full row length in bytes\n\
01050 uint8[] data # actual matrix data, size is (step * rows)\n\
01051 \n\
01052 ================================================================================\n\
01053 MSG: sensor_msgs/CameraInfo\n\
01054 # This message defines meta information for a camera. It should be in a\n\
01055 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01056 # image topics named:\n\
01057 #\n\
01058 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01059 # image - monochrome, distorted\n\
01060 # image_color - color, distorted\n\
01061 # image_rect - monochrome, rectified\n\
01062 # image_rect_color - color, rectified\n\
01063 #\n\
01064 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01065 # for producing the four processed image topics from image_raw and\n\
01066 # camera_info. The meaning of the camera parameters are described in\n\
01067 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01068 #\n\
01069 # The image_geometry package provides a user-friendly interface to\n\
01070 # common operations using this meta information. If you want to, e.g.,\n\
01071 # project a 3d point into image coordinates, we strongly recommend\n\
01072 # using image_geometry.\n\
01073 #\n\
01074 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01075 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01076 # indicates an uncalibrated camera.\n\
01077 \n\
01078 #######################################################################\n\
01079 # Image acquisition info #\n\
01080 #######################################################################\n\
01081 \n\
01082 # Time of image acquisition, camera coordinate frame ID\n\
01083 Header header # Header timestamp should be acquisition time of image\n\
01084 # Header frame_id should be optical frame of camera\n\
01085 # origin of frame should be optical center of camera\n\
01086 # +x should point to the right in the image\n\
01087 # +y should point down in the image\n\
01088 # +z should point into the plane of the image\n\
01089 \n\
01090 \n\
01091 #######################################################################\n\
01092 # Calibration Parameters #\n\
01093 #######################################################################\n\
01094 # These are fixed during camera calibration. Their values will be the #\n\
01095 # same in all messages until the camera is recalibrated. Note that #\n\
01096 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01097 # #\n\
01098 # The internal parameters can be used to warp a raw (distorted) image #\n\
01099 # to: #\n\
01100 # 1. An undistorted image (requires D and K) #\n\
01101 # 2. A rectified image (requires D, K, R) #\n\
01102 # The projection matrix P projects 3D points into the rectified image.#\n\
01103 #######################################################################\n\
01104 \n\
01105 # The image dimensions with which the camera was calibrated. Normally\n\
01106 # this will be the full camera resolution in pixels.\n\
01107 uint32 height\n\
01108 uint32 width\n\
01109 \n\
01110 # The distortion model used. Supported models are listed in\n\
01111 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01112 # simple model of radial and tangential distortion - is sufficent.\n\
01113 string distortion_model\n\
01114 \n\
01115 # The distortion parameters, size depending on the distortion model.\n\
01116 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01117 float64[] D\n\
01118 \n\
01119 # Intrinsic camera matrix for the raw (distorted) images.\n\
01120 # [fx 0 cx]\n\
01121 # K = [ 0 fy cy]\n\
01122 # [ 0 0 1]\n\
01123 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01124 # coordinates using the focal lengths (fx, fy) and principal point\n\
01125 # (cx, cy).\n\
01126 float64[9] K # 3x3 row-major matrix\n\
01127 \n\
01128 # Rectification matrix (stereo cameras only)\n\
01129 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01130 # stereo image plane so that epipolar lines in both stereo images are\n\
01131 # parallel.\n\
01132 float64[9] R # 3x3 row-major matrix\n\
01133 \n\
01134 # Projection/camera matrix\n\
01135 # [fx' 0 cx' Tx]\n\
01136 # P = [ 0 fy' cy' Ty]\n\
01137 # [ 0 0 1 0]\n\
01138 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01139 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01140 # is the normal camera intrinsic matrix for the rectified image.\n\
01141 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01142 # coordinates using the focal lengths (fx', fy') and principal point\n\
01143 # (cx', cy') - these may differ from the values in K.\n\
01144 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01145 # also have R = the identity and P[1:3,1:3] = K.\n\
01146 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01147 # position of the optical center of the second camera in the first\n\
01148 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01149 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01150 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01151 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01152 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01153 # the rectified image is given by:\n\
01154 # [u v w]' = P * [X Y Z 1]'\n\
01155 # x = u / w\n\
01156 # y = v / w\n\
01157 # This holds for both images of a stereo pair.\n\
01158 float64[12] P # 3x4 row-major matrix\n\
01159 \n\
01160 \n\
01161 #######################################################################\n\
01162 # Operational Parameters #\n\
01163 #######################################################################\n\
01164 # These define the image region actually captured by the camera #\n\
01165 # driver. Although they affect the geometry of the output image, they #\n\
01166 # may be changed freely without recalibrating the camera. #\n\
01167 #######################################################################\n\
01168 \n\
01169 # Binning refers here to any camera setting which combines rectangular\n\
01170 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01171 # resolution of the output image to\n\
01172 # (width / binning_x) x (height / binning_y).\n\
01173 # The default values binning_x = binning_y = 0 is considered the same\n\
01174 # as binning_x = binning_y = 1 (no subsampling).\n\
01175 uint32 binning_x\n\
01176 uint32 binning_y\n\
01177 \n\
01178 # Region of interest (subwindow of full camera resolution), given in\n\
01179 # full resolution (unbinned) image coordinates. A particular ROI\n\
01180 # always denotes the same window of pixels on the camera sensor,\n\
01181 # regardless of binning settings.\n\
01182 # The default setting of roi (all values 0) is considered the same as\n\
01183 # full resolution (roi.width = width, roi.height = height).\n\
01184 RegionOfInterest roi\n\
01185 \n\
01186 ================================================================================\n\
01187 MSG: sensor_msgs/RegionOfInterest\n\
01188 # This message is used to specify a region of interest within an image.\n\
01189 #\n\
01190 # When used to specify the ROI setting of the camera when the image was\n\
01191 # taken, the height and width fields should either match the height and\n\
01192 # width fields for the associated image; or height = width = 0\n\
01193 # indicates that the full resolution image was captured.\n\
01194 \n\
01195 uint32 x_offset # Leftmost pixel of the ROI\n\
01196 # (0 if the ROI includes the left edge of the image)\n\
01197 uint32 y_offset # Topmost pixel of the ROI\n\
01198 # (0 if the ROI includes the top edge of the image)\n\
01199 uint32 height # Height of ROI\n\
01200 uint32 width # Width of ROI\n\
01201 \n\
01202 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01203 # ROI in this message. Typically this should be False if the full image\n\
01204 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01205 # used).\n\
01206 bool do_rectify\n\
01207 \n\
01208 ================================================================================\n\
01209 MSG: geometry_msgs/Vector3\n\
01210 # This represents a vector in free space. \n\
01211 \n\
01212 float64 x\n\
01213 float64 y\n\
01214 float64 z\n\
01215 ================================================================================\n\
01216 MSG: object_manipulation_msgs/Grasp\n\
01217 \n\
01218 # The internal posture of the hand for the pre-grasp\n\
01219 # only positions are used\n\
01220 sensor_msgs/JointState pre_grasp_posture\n\
01221 \n\
01222 # The internal posture of the hand for the grasp\n\
01223 # positions and efforts are used\n\
01224 sensor_msgs/JointState grasp_posture\n\
01225 \n\
01226 # The position of the end-effector for the grasp relative to a reference frame \n\
01227 # (that is always specified elsewhere, not in this message)\n\
01228 geometry_msgs/Pose grasp_pose\n\
01229 \n\
01230 # The estimated probability of success for this grasp\n\
01231 float64 success_probability\n\
01232 \n\
01233 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01234 bool cluster_rep\n\
01235 \n\
01236 # how far the pre-grasp should ideally be away from the grasp\n\
01237 float32 desired_approach_distance\n\
01238 \n\
01239 # how much distance between pre-grasp and grasp must actually be feasible \n\
01240 # for the grasp not to be rejected\n\
01241 float32 min_approach_distance\n\
01242 \n\
01243 # an optional list of obstacles that we have semantic information about\n\
01244 # and that we expect might move in the course of executing this grasp\n\
01245 # the grasp planner is expected to make sure they move in an OK way; during\n\
01246 # execution, grasp executors will not check for collisions against these objects\n\
01247 GraspableObject[] moved_obstacles\n\
01248 \n\
01249 ================================================================================\n\
01250 MSG: sensor_msgs/JointState\n\
01251 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01252 #\n\
01253 # The state of each joint (revolute or prismatic) is defined by:\n\
01254 # * the position of the joint (rad or m),\n\
01255 # * the velocity of the joint (rad/s or m/s) and \n\
01256 # * the effort that is applied in the joint (Nm or N).\n\
01257 #\n\
01258 # Each joint is uniquely identified by its name\n\
01259 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01260 # in one message have to be recorded at the same time.\n\
01261 #\n\
01262 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01263 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01264 # effort associated with them, you can leave the effort array empty. \n\
01265 #\n\
01266 # All arrays in this message should have the same size, or be empty.\n\
01267 # This is the only way to uniquely associate the joint name with the correct\n\
01268 # states.\n\
01269 \n\
01270 \n\
01271 Header header\n\
01272 \n\
01273 string[] name\n\
01274 float64[] position\n\
01275 float64[] velocity\n\
01276 float64[] effort\n\
01277 \n\
01278 ================================================================================\n\
01279 MSG: object_manipulation_msgs/GraspPlanningActionResult\n\
01280 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01281 \n\
01282 Header header\n\
01283 actionlib_msgs/GoalStatus status\n\
01284 GraspPlanningResult result\n\
01285 \n\
01286 ================================================================================\n\
01287 MSG: actionlib_msgs/GoalStatus\n\
01288 GoalID goal_id\n\
01289 uint8 status\n\
01290 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01291 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01292 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01293 # and has since completed its execution (Terminal State)\n\
01294 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01295 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01296 # to some failure (Terminal State)\n\
01297 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01298 # because the goal was unattainable or invalid (Terminal State)\n\
01299 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01300 # and has not yet completed execution\n\
01301 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01302 # but the action server has not yet confirmed that the goal is canceled\n\
01303 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01304 # and was successfully cancelled (Terminal State)\n\
01305 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01306 # sent over the wire by an action server\n\
01307 \n\
01308 #Allow for the user to associate a string with GoalStatus for debugging\n\
01309 string text\n\
01310 \n\
01311 \n\
01312 ================================================================================\n\
01313 MSG: object_manipulation_msgs/GraspPlanningResult\n\
01314 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01315 \n\
01316 # the list of planned grasps\n\
01317 Grasp[] grasps\n\
01318 \n\
01319 # whether an error occurred\n\
01320 GraspPlanningErrorCode error_code\n\
01321 \n\
01322 \n\
01323 ================================================================================\n\
01324 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\
01325 # Error codes for grasp and place planning\n\
01326 \n\
01327 # plan completed as expected\n\
01328 int32 SUCCESS = 0\n\
01329 \n\
01330 # tf error encountered while transforming\n\
01331 int32 TF_ERROR = 1 \n\
01332 \n\
01333 # some other error\n\
01334 int32 OTHER_ERROR = 2\n\
01335 \n\
01336 # the actual value of this error code\n\
01337 int32 value\n\
01338 ================================================================================\n\
01339 MSG: object_manipulation_msgs/GraspPlanningActionFeedback\n\
01340 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01341 \n\
01342 Header header\n\
01343 actionlib_msgs/GoalStatus status\n\
01344 GraspPlanningFeedback feedback\n\
01345 \n\
01346 ================================================================================\n\
01347 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\
01348 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01349 \n\
01350 # grasps planned so far\n\
01351 Grasp[] grasps\n\
01352 \n\
01353 \n\
01354 \n\
01355 ";
01356 }
01357
01358 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); }
01359 };
01360
01361 }
01362 }
01363
01364 namespace ros
01365 {
01366 namespace serialization
01367 {
01368
01369 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> >
01370 {
01371 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01372 {
01373 stream.next(m.action_goal);
01374 stream.next(m.action_result);
01375 stream.next(m.action_feedback);
01376 }
01377
01378 ROS_DECLARE_ALLINONE_SERIALIZER;
01379 };
01380 }
01381 }
01382
01383 namespace ros
01384 {
01385 namespace message_operations
01386 {
01387
01388 template<class ContainerAllocator>
01389 struct Printer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> >
01390 {
01391 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> & v)
01392 {
01393 s << indent << "action_goal: ";
01394 s << std::endl;
01395 Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01396 s << indent << "action_result: ";
01397 s << std::endl;
01398 Printer< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01399 s << indent << "action_feedback: ";
01400 s << std::endl;
01401 Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01402 }
01403 };
01404
01405
01406 }
01407 }
01408
01409 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H
01410