$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningAction.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspPlanningActionGoal.h" 00018 #include "object_manipulation_msgs/GraspPlanningActionResult.h" 00019 #include "object_manipulation_msgs/GraspPlanningActionFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspPlanningAction_ { 00025 typedef GraspPlanningAction_<ContainerAllocator> Type; 00026 00027 GraspPlanningAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 GraspPlanningAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "633fe6f10f37f6a935a5aa9ae19f25c5"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 GraspPlanningActionGoal action_goal\n\ 00069 GraspPlanningActionResult action_result\n\ 00070 GraspPlanningActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_manipulation_msgs/GraspPlanningActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 GraspPlanningGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_manipulation_msgs/GraspPlanningGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 # Requests that grasp planning be performed on the object to be grasped\n\ 00115 # returns a list of grasps to be tested and executed\n\ 00116 \n\ 00117 # the arm being used\n\ 00118 string arm_name\n\ 00119 \n\ 00120 # the object to be grasped\n\ 00121 GraspableObject target\n\ 00122 \n\ 00123 # the name that the target object has in the collision environment\n\ 00124 # can be left empty if no name is available\n\ 00125 string collision_object_name\n\ 00126 \n\ 00127 # the name that the support surface (e.g. table) has in the collision map\n\ 00128 # can be left empty if no name is available\n\ 00129 string collision_support_surface_name\n\ 00130 \n\ 00131 # an optional list of grasps to be evaluated by the planner\n\ 00132 Grasp[] grasps_to_evaluate\n\ 00133 \n\ 00134 # an optional list of obstacles that we have semantic information about\n\ 00135 # and that can be moved in the course of grasping\n\ 00136 GraspableObject[] movable_obstacles\n\ 00137 \n\ 00138 \n\ 00139 ================================================================================\n\ 00140 MSG: object_manipulation_msgs/GraspableObject\n\ 00141 # an object that the object_manipulator can work on\n\ 00142 \n\ 00143 # a graspable object can be represented in multiple ways. This message\n\ 00144 # can contain all of them. Which one is actually used is up to the receiver\n\ 00145 # of this message. When adding new representations, one must be careful that\n\ 00146 # they have reasonable lightweight defaults indicating that that particular\n\ 00147 # representation is not available.\n\ 00148 \n\ 00149 # the tf frame to be used as a reference frame when combining information from\n\ 00150 # the different representations below\n\ 00151 string reference_frame_id\n\ 00152 \n\ 00153 # potential recognition results from a database of models\n\ 00154 # all poses are relative to the object reference pose\n\ 00155 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00156 \n\ 00157 # the point cloud itself\n\ 00158 sensor_msgs/PointCloud cluster\n\ 00159 \n\ 00160 # a region of a PointCloud2 of interest\n\ 00161 object_manipulation_msgs/SceneRegion region\n\ 00162 \n\ 00163 # the name that this object has in the collision environment\n\ 00164 string collision_name\n\ 00165 ================================================================================\n\ 00166 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00167 # Informs that a specific model from the Model Database has been \n\ 00168 # identified at a certain location\n\ 00169 \n\ 00170 # the database id of the model\n\ 00171 int32 model_id\n\ 00172 \n\ 00173 # the pose that it can be found in\n\ 00174 geometry_msgs/PoseStamped pose\n\ 00175 \n\ 00176 # a measure of the confidence level in this detection result\n\ 00177 float32 confidence\n\ 00178 \n\ 00179 # the name of the object detector that generated this detection result\n\ 00180 string detector_name\n\ 00181 \n\ 00182 ================================================================================\n\ 00183 MSG: geometry_msgs/PoseStamped\n\ 00184 # A Pose with reference coordinate frame and timestamp\n\ 00185 Header header\n\ 00186 Pose pose\n\ 00187 \n\ 00188 ================================================================================\n\ 00189 MSG: geometry_msgs/Pose\n\ 00190 # A representation of pose in free space, composed of postion and orientation. \n\ 00191 Point position\n\ 00192 Quaternion orientation\n\ 00193 \n\ 00194 ================================================================================\n\ 00195 MSG: geometry_msgs/Point\n\ 00196 # This contains the position of a point in free space\n\ 00197 float64 x\n\ 00198 float64 y\n\ 00199 float64 z\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: geometry_msgs/Quaternion\n\ 00203 # This represents an orientation in free space in quaternion form.\n\ 00204 \n\ 00205 float64 x\n\ 00206 float64 y\n\ 00207 float64 z\n\ 00208 float64 w\n\ 00209 \n\ 00210 ================================================================================\n\ 00211 MSG: sensor_msgs/PointCloud\n\ 00212 # This message holds a collection of 3d points, plus optional additional\n\ 00213 # information about each point.\n\ 00214 \n\ 00215 # Time of sensor data acquisition, coordinate frame ID.\n\ 00216 Header header\n\ 00217 \n\ 00218 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00219 # in the frame given in the header.\n\ 00220 geometry_msgs/Point32[] points\n\ 00221 \n\ 00222 # Each channel should have the same number of elements as points array,\n\ 00223 # and the data in each channel should correspond 1:1 with each point.\n\ 00224 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00225 ChannelFloat32[] channels\n\ 00226 \n\ 00227 ================================================================================\n\ 00228 MSG: geometry_msgs/Point32\n\ 00229 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00230 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00231 # \n\ 00232 # This recommendation is to promote interoperability. \n\ 00233 #\n\ 00234 # This message is designed to take up less space when sending\n\ 00235 # lots of points at once, as in the case of a PointCloud. \n\ 00236 \n\ 00237 float32 x\n\ 00238 float32 y\n\ 00239 float32 z\n\ 00240 ================================================================================\n\ 00241 MSG: sensor_msgs/ChannelFloat32\n\ 00242 # This message is used by the PointCloud message to hold optional data\n\ 00243 # associated with each point in the cloud. The length of the values\n\ 00244 # array should be the same as the length of the points array in the\n\ 00245 # PointCloud, and each value should be associated with the corresponding\n\ 00246 # point.\n\ 00247 \n\ 00248 # Channel names in existing practice include:\n\ 00249 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00250 # This is opposite to usual conventions but remains for\n\ 00251 # historical reasons. The newer PointCloud2 message has no\n\ 00252 # such problem.\n\ 00253 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00254 # (R,G,B) values packed into the least significant 24 bits,\n\ 00255 # in order.\n\ 00256 # \"intensity\" - laser or pixel intensity.\n\ 00257 # \"distance\"\n\ 00258 \n\ 00259 # The channel name should give semantics of the channel (e.g.\n\ 00260 # \"intensity\" instead of \"value\").\n\ 00261 string name\n\ 00262 \n\ 00263 # The values array should be 1-1 with the elements of the associated\n\ 00264 # PointCloud.\n\ 00265 float32[] values\n\ 00266 \n\ 00267 ================================================================================\n\ 00268 MSG: object_manipulation_msgs/SceneRegion\n\ 00269 # Point cloud\n\ 00270 sensor_msgs/PointCloud2 cloud\n\ 00271 \n\ 00272 # Indices for the region of interest\n\ 00273 int32[] mask\n\ 00274 \n\ 00275 # One of the corresponding 2D images, if applicable\n\ 00276 sensor_msgs/Image image\n\ 00277 \n\ 00278 # The disparity image, if applicable\n\ 00279 sensor_msgs/Image disparity_image\n\ 00280 \n\ 00281 # Camera info for the camera that took the image\n\ 00282 sensor_msgs/CameraInfo cam_info\n\ 00283 \n\ 00284 # a 3D region of interest for grasp planning\n\ 00285 geometry_msgs/PoseStamped roi_box_pose\n\ 00286 geometry_msgs/Vector3 roi_box_dims\n\ 00287 \n\ 00288 ================================================================================\n\ 00289 MSG: sensor_msgs/PointCloud2\n\ 00290 # This message holds a collection of N-dimensional points, which may\n\ 00291 # contain additional information such as normals, intensity, etc. The\n\ 00292 # point data is stored as a binary blob, its layout described by the\n\ 00293 # contents of the \"fields\" array.\n\ 00294 \n\ 00295 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00296 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00297 # camera depth sensors such as stereo or time-of-flight.\n\ 00298 \n\ 00299 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00300 # points).\n\ 00301 Header header\n\ 00302 \n\ 00303 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00304 # 1 and width is the length of the point cloud.\n\ 00305 uint32 height\n\ 00306 uint32 width\n\ 00307 \n\ 00308 # Describes the channels and their layout in the binary data blob.\n\ 00309 PointField[] fields\n\ 00310 \n\ 00311 bool is_bigendian # Is this data bigendian?\n\ 00312 uint32 point_step # Length of a point in bytes\n\ 00313 uint32 row_step # Length of a row in bytes\n\ 00314 uint8[] data # Actual point data, size is (row_step*height)\n\ 00315 \n\ 00316 bool is_dense # True if there are no invalid points\n\ 00317 \n\ 00318 ================================================================================\n\ 00319 MSG: sensor_msgs/PointField\n\ 00320 # This message holds the description of one point entry in the\n\ 00321 # PointCloud2 message format.\n\ 00322 uint8 INT8 = 1\n\ 00323 uint8 UINT8 = 2\n\ 00324 uint8 INT16 = 3\n\ 00325 uint8 UINT16 = 4\n\ 00326 uint8 INT32 = 5\n\ 00327 uint8 UINT32 = 6\n\ 00328 uint8 FLOAT32 = 7\n\ 00329 uint8 FLOAT64 = 8\n\ 00330 \n\ 00331 string name # Name of field\n\ 00332 uint32 offset # Offset from start of point struct\n\ 00333 uint8 datatype # Datatype enumeration, see above\n\ 00334 uint32 count # How many elements in the field\n\ 00335 \n\ 00336 ================================================================================\n\ 00337 MSG: sensor_msgs/Image\n\ 00338 # This message contains an uncompressed image\n\ 00339 # (0, 0) is at top-left corner of image\n\ 00340 #\n\ 00341 \n\ 00342 Header header # Header timestamp should be acquisition time of image\n\ 00343 # Header frame_id should be optical frame of camera\n\ 00344 # origin of frame should be optical center of cameara\n\ 00345 # +x should point to the right in the image\n\ 00346 # +y should point down in the image\n\ 00347 # +z should point into to plane of the image\n\ 00348 # If the frame_id here and the frame_id of the CameraInfo\n\ 00349 # message associated with the image conflict\n\ 00350 # the behavior is undefined\n\ 00351 \n\ 00352 uint32 height # image height, that is, number of rows\n\ 00353 uint32 width # image width, that is, number of columns\n\ 00354 \n\ 00355 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00356 # If you want to standardize a new string format, join\n\ 00357 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00358 \n\ 00359 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00360 # taken from the list of strings in src/image_encodings.cpp\n\ 00361 \n\ 00362 uint8 is_bigendian # is this data bigendian?\n\ 00363 uint32 step # Full row length in bytes\n\ 00364 uint8[] data # actual matrix data, size is (step * rows)\n\ 00365 \n\ 00366 ================================================================================\n\ 00367 MSG: sensor_msgs/CameraInfo\n\ 00368 # This message defines meta information for a camera. It should be in a\n\ 00369 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00370 # image topics named:\n\ 00371 #\n\ 00372 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00373 # image - monochrome, distorted\n\ 00374 # image_color - color, distorted\n\ 00375 # image_rect - monochrome, rectified\n\ 00376 # image_rect_color - color, rectified\n\ 00377 #\n\ 00378 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00379 # for producing the four processed image topics from image_raw and\n\ 00380 # camera_info. The meaning of the camera parameters are described in\n\ 00381 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00382 #\n\ 00383 # The image_geometry package provides a user-friendly interface to\n\ 00384 # common operations using this meta information. If you want to, e.g.,\n\ 00385 # project a 3d point into image coordinates, we strongly recommend\n\ 00386 # using image_geometry.\n\ 00387 #\n\ 00388 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00389 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00390 # indicates an uncalibrated camera.\n\ 00391 \n\ 00392 #######################################################################\n\ 00393 # Image acquisition info #\n\ 00394 #######################################################################\n\ 00395 \n\ 00396 # Time of image acquisition, camera coordinate frame ID\n\ 00397 Header header # Header timestamp should be acquisition time of image\n\ 00398 # Header frame_id should be optical frame of camera\n\ 00399 # origin of frame should be optical center of camera\n\ 00400 # +x should point to the right in the image\n\ 00401 # +y should point down in the image\n\ 00402 # +z should point into the plane of the image\n\ 00403 \n\ 00404 \n\ 00405 #######################################################################\n\ 00406 # Calibration Parameters #\n\ 00407 #######################################################################\n\ 00408 # These are fixed during camera calibration. Their values will be the #\n\ 00409 # same in all messages until the camera is recalibrated. Note that #\n\ 00410 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00411 # #\n\ 00412 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00413 # to: #\n\ 00414 # 1. An undistorted image (requires D and K) #\n\ 00415 # 2. A rectified image (requires D, K, R) #\n\ 00416 # The projection matrix P projects 3D points into the rectified image.#\n\ 00417 #######################################################################\n\ 00418 \n\ 00419 # The image dimensions with which the camera was calibrated. Normally\n\ 00420 # this will be the full camera resolution in pixels.\n\ 00421 uint32 height\n\ 00422 uint32 width\n\ 00423 \n\ 00424 # The distortion model used. Supported models are listed in\n\ 00425 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00426 # simple model of radial and tangential distortion - is sufficent.\n\ 00427 string distortion_model\n\ 00428 \n\ 00429 # The distortion parameters, size depending on the distortion model.\n\ 00430 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00431 float64[] D\n\ 00432 \n\ 00433 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00434 # [fx 0 cx]\n\ 00435 # K = [ 0 fy cy]\n\ 00436 # [ 0 0 1]\n\ 00437 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00438 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00439 # (cx, cy).\n\ 00440 float64[9] K # 3x3 row-major matrix\n\ 00441 \n\ 00442 # Rectification matrix (stereo cameras only)\n\ 00443 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00444 # stereo image plane so that epipolar lines in both stereo images are\n\ 00445 # parallel.\n\ 00446 float64[9] R # 3x3 row-major matrix\n\ 00447 \n\ 00448 # Projection/camera matrix\n\ 00449 # [fx' 0 cx' Tx]\n\ 00450 # P = [ 0 fy' cy' Ty]\n\ 00451 # [ 0 0 1 0]\n\ 00452 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00453 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00454 # is the normal camera intrinsic matrix for the rectified image.\n\ 00455 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00456 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00457 # (cx', cy') - these may differ from the values in K.\n\ 00458 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00459 # also have R = the identity and P[1:3,1:3] = K.\n\ 00460 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00461 # position of the optical center of the second camera in the first\n\ 00462 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00463 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00464 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00465 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00466 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00467 # the rectified image is given by:\n\ 00468 # [u v w]' = P * [X Y Z 1]'\n\ 00469 # x = u / w\n\ 00470 # y = v / w\n\ 00471 # This holds for both images of a stereo pair.\n\ 00472 float64[12] P # 3x4 row-major matrix\n\ 00473 \n\ 00474 \n\ 00475 #######################################################################\n\ 00476 # Operational Parameters #\n\ 00477 #######################################################################\n\ 00478 # These define the image region actually captured by the camera #\n\ 00479 # driver. Although they affect the geometry of the output image, they #\n\ 00480 # may be changed freely without recalibrating the camera. #\n\ 00481 #######################################################################\n\ 00482 \n\ 00483 # Binning refers here to any camera setting which combines rectangular\n\ 00484 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00485 # resolution of the output image to\n\ 00486 # (width / binning_x) x (height / binning_y).\n\ 00487 # The default values binning_x = binning_y = 0 is considered the same\n\ 00488 # as binning_x = binning_y = 1 (no subsampling).\n\ 00489 uint32 binning_x\n\ 00490 uint32 binning_y\n\ 00491 \n\ 00492 # Region of interest (subwindow of full camera resolution), given in\n\ 00493 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00494 # always denotes the same window of pixels on the camera sensor,\n\ 00495 # regardless of binning settings.\n\ 00496 # The default setting of roi (all values 0) is considered the same as\n\ 00497 # full resolution (roi.width = width, roi.height = height).\n\ 00498 RegionOfInterest roi\n\ 00499 \n\ 00500 ================================================================================\n\ 00501 MSG: sensor_msgs/RegionOfInterest\n\ 00502 # This message is used to specify a region of interest within an image.\n\ 00503 #\n\ 00504 # When used to specify the ROI setting of the camera when the image was\n\ 00505 # taken, the height and width fields should either match the height and\n\ 00506 # width fields for the associated image; or height = width = 0\n\ 00507 # indicates that the full resolution image was captured.\n\ 00508 \n\ 00509 uint32 x_offset # Leftmost pixel of the ROI\n\ 00510 # (0 if the ROI includes the left edge of the image)\n\ 00511 uint32 y_offset # Topmost pixel of the ROI\n\ 00512 # (0 if the ROI includes the top edge of the image)\n\ 00513 uint32 height # Height of ROI\n\ 00514 uint32 width # Width of ROI\n\ 00515 \n\ 00516 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00517 # ROI in this message. Typically this should be False if the full image\n\ 00518 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00519 # used).\n\ 00520 bool do_rectify\n\ 00521 \n\ 00522 ================================================================================\n\ 00523 MSG: geometry_msgs/Vector3\n\ 00524 # This represents a vector in free space. \n\ 00525 \n\ 00526 float64 x\n\ 00527 float64 y\n\ 00528 float64 z\n\ 00529 ================================================================================\n\ 00530 MSG: object_manipulation_msgs/Grasp\n\ 00531 \n\ 00532 # The internal posture of the hand for the pre-grasp\n\ 00533 # only positions are used\n\ 00534 sensor_msgs/JointState pre_grasp_posture\n\ 00535 \n\ 00536 # The internal posture of the hand for the grasp\n\ 00537 # positions and efforts are used\n\ 00538 sensor_msgs/JointState grasp_posture\n\ 00539 \n\ 00540 # The position of the end-effector for the grasp relative to a reference frame \n\ 00541 # (that is always specified elsewhere, not in this message)\n\ 00542 geometry_msgs/Pose grasp_pose\n\ 00543 \n\ 00544 # The estimated probability of success for this grasp\n\ 00545 float64 success_probability\n\ 00546 \n\ 00547 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00548 bool cluster_rep\n\ 00549 \n\ 00550 # how far the pre-grasp should ideally be away from the grasp\n\ 00551 float32 desired_approach_distance\n\ 00552 \n\ 00553 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00554 # for the grasp not to be rejected\n\ 00555 float32 min_approach_distance\n\ 00556 \n\ 00557 # an optional list of obstacles that we have semantic information about\n\ 00558 # and that we expect might move in the course of executing this grasp\n\ 00559 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00560 # execution, grasp executors will not check for collisions against these objects\n\ 00561 GraspableObject[] moved_obstacles\n\ 00562 \n\ 00563 ================================================================================\n\ 00564 MSG: sensor_msgs/JointState\n\ 00565 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00566 #\n\ 00567 # The state of each joint (revolute or prismatic) is defined by:\n\ 00568 # * the position of the joint (rad or m),\n\ 00569 # * the velocity of the joint (rad/s or m/s) and \n\ 00570 # * the effort that is applied in the joint (Nm or N).\n\ 00571 #\n\ 00572 # Each joint is uniquely identified by its name\n\ 00573 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00574 # in one message have to be recorded at the same time.\n\ 00575 #\n\ 00576 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00577 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00578 # effort associated with them, you can leave the effort array empty. \n\ 00579 #\n\ 00580 # All arrays in this message should have the same size, or be empty.\n\ 00581 # This is the only way to uniquely associate the joint name with the correct\n\ 00582 # states.\n\ 00583 \n\ 00584 \n\ 00585 Header header\n\ 00586 \n\ 00587 string[] name\n\ 00588 float64[] position\n\ 00589 float64[] velocity\n\ 00590 float64[] effort\n\ 00591 \n\ 00592 ================================================================================\n\ 00593 MSG: object_manipulation_msgs/GraspPlanningActionResult\n\ 00594 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00595 \n\ 00596 Header header\n\ 00597 actionlib_msgs/GoalStatus status\n\ 00598 GraspPlanningResult result\n\ 00599 \n\ 00600 ================================================================================\n\ 00601 MSG: actionlib_msgs/GoalStatus\n\ 00602 GoalID goal_id\n\ 00603 uint8 status\n\ 00604 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00605 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00606 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00607 # and has since completed its execution (Terminal State)\n\ 00608 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00609 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00610 # to some failure (Terminal State)\n\ 00611 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00612 # because the goal was unattainable or invalid (Terminal State)\n\ 00613 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00614 # and has not yet completed execution\n\ 00615 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00616 # but the action server has not yet confirmed that the goal is canceled\n\ 00617 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00618 # and was successfully cancelled (Terminal State)\n\ 00619 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00620 # sent over the wire by an action server\n\ 00621 \n\ 00622 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00623 string text\n\ 00624 \n\ 00625 \n\ 00626 ================================================================================\n\ 00627 MSG: object_manipulation_msgs/GraspPlanningResult\n\ 00628 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00629 \n\ 00630 # the list of planned grasps\n\ 00631 Grasp[] grasps\n\ 00632 \n\ 00633 # whether an error occurred\n\ 00634 GraspPlanningErrorCode error_code\n\ 00635 \n\ 00636 \n\ 00637 ================================================================================\n\ 00638 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00639 # Error codes for grasp and place planning\n\ 00640 \n\ 00641 # plan completed as expected\n\ 00642 int32 SUCCESS = 0\n\ 00643 \n\ 00644 # tf error encountered while transforming\n\ 00645 int32 TF_ERROR = 1 \n\ 00646 \n\ 00647 # some other error\n\ 00648 int32 OTHER_ERROR = 2\n\ 00649 \n\ 00650 # the actual value of this error code\n\ 00651 int32 value\n\ 00652 ================================================================================\n\ 00653 MSG: object_manipulation_msgs/GraspPlanningActionFeedback\n\ 00654 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00655 \n\ 00656 Header header\n\ 00657 actionlib_msgs/GoalStatus status\n\ 00658 GraspPlanningFeedback feedback\n\ 00659 \n\ 00660 ================================================================================\n\ 00661 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\ 00662 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00663 \n\ 00664 # grasps planned so far\n\ 00665 Grasp[] grasps\n\ 00666 \n\ 00667 \n\ 00668 \n\ 00669 "; } 00670 public: 00671 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00672 00673 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00674 00675 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00676 { 00677 ros::serialization::OStream stream(write_ptr, 1000000000); 00678 ros::serialization::serialize(stream, action_goal); 00679 ros::serialization::serialize(stream, action_result); 00680 ros::serialization::serialize(stream, action_feedback); 00681 return stream.getData(); 00682 } 00683 00684 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00685 { 00686 ros::serialization::IStream stream(read_ptr, 1000000000); 00687 ros::serialization::deserialize(stream, action_goal); 00688 ros::serialization::deserialize(stream, action_result); 00689 ros::serialization::deserialize(stream, action_feedback); 00690 return stream.getData(); 00691 } 00692 00693 ROS_DEPRECATED virtual uint32_t serializationLength() const 00694 { 00695 uint32_t size = 0; 00696 size += ros::serialization::serializationLength(action_goal); 00697 size += ros::serialization::serializationLength(action_result); 00698 size += ros::serialization::serializationLength(action_feedback); 00699 return size; 00700 } 00701 00702 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > Ptr; 00703 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> const> ConstPtr; 00704 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00705 }; // struct GraspPlanningAction 00706 typedef ::object_manipulation_msgs::GraspPlanningAction_<std::allocator<void> > GraspPlanningAction; 00707 00708 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction> GraspPlanningActionPtr; 00709 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningAction const> GraspPlanningActionConstPtr; 00710 00711 00712 template<typename ContainerAllocator> 00713 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> & v) 00714 { 00715 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> >::stream(s, "", v); 00716 return s;} 00717 00718 } // namespace object_manipulation_msgs 00719 00720 namespace ros 00721 { 00722 namespace message_traits 00723 { 00724 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > : public TrueType {}; 00725 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> const> : public TrueType {}; 00726 template<class ContainerAllocator> 00727 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > { 00728 static const char* value() 00729 { 00730 return "633fe6f10f37f6a935a5aa9ae19f25c5"; 00731 } 00732 00733 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); } 00734 static const uint64_t static_value1 = 0x633fe6f10f37f6a9ULL; 00735 static const uint64_t static_value2 = 0x35a5aa9ae19f25c5ULL; 00736 }; 00737 00738 template<class ContainerAllocator> 00739 struct DataType< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > { 00740 static const char* value() 00741 { 00742 return "object_manipulation_msgs/GraspPlanningAction"; 00743 } 00744 00745 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); } 00746 }; 00747 00748 template<class ContainerAllocator> 00749 struct Definition< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > { 00750 static const char* value() 00751 { 00752 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00753 \n\ 00754 GraspPlanningActionGoal action_goal\n\ 00755 GraspPlanningActionResult action_result\n\ 00756 GraspPlanningActionFeedback action_feedback\n\ 00757 \n\ 00758 ================================================================================\n\ 00759 MSG: object_manipulation_msgs/GraspPlanningActionGoal\n\ 00760 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00761 \n\ 00762 Header header\n\ 00763 actionlib_msgs/GoalID goal_id\n\ 00764 GraspPlanningGoal goal\n\ 00765 \n\ 00766 ================================================================================\n\ 00767 MSG: std_msgs/Header\n\ 00768 # Standard metadata for higher-level stamped data types.\n\ 00769 # This is generally used to communicate timestamped data \n\ 00770 # in a particular coordinate frame.\n\ 00771 # \n\ 00772 # sequence ID: consecutively increasing ID \n\ 00773 uint32 seq\n\ 00774 #Two-integer timestamp that is expressed as:\n\ 00775 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00776 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00777 # time-handling sugar is provided by the client library\n\ 00778 time stamp\n\ 00779 #Frame this data is associated with\n\ 00780 # 0: no frame\n\ 00781 # 1: global frame\n\ 00782 string frame_id\n\ 00783 \n\ 00784 ================================================================================\n\ 00785 MSG: actionlib_msgs/GoalID\n\ 00786 # The stamp should store the time at which this goal was requested.\n\ 00787 # It is used by an action server when it tries to preempt all\n\ 00788 # goals that were requested before a certain time\n\ 00789 time stamp\n\ 00790 \n\ 00791 # The id provides a way to associate feedback and\n\ 00792 # result message with specific goal requests. The id\n\ 00793 # specified must be unique.\n\ 00794 string id\n\ 00795 \n\ 00796 \n\ 00797 ================================================================================\n\ 00798 MSG: object_manipulation_msgs/GraspPlanningGoal\n\ 00799 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00800 # Requests that grasp planning be performed on the object to be grasped\n\ 00801 # returns a list of grasps to be tested and executed\n\ 00802 \n\ 00803 # the arm being used\n\ 00804 string arm_name\n\ 00805 \n\ 00806 # the object to be grasped\n\ 00807 GraspableObject target\n\ 00808 \n\ 00809 # the name that the target object has in the collision environment\n\ 00810 # can be left empty if no name is available\n\ 00811 string collision_object_name\n\ 00812 \n\ 00813 # the name that the support surface (e.g. table) has in the collision map\n\ 00814 # can be left empty if no name is available\n\ 00815 string collision_support_surface_name\n\ 00816 \n\ 00817 # an optional list of grasps to be evaluated by the planner\n\ 00818 Grasp[] grasps_to_evaluate\n\ 00819 \n\ 00820 # an optional list of obstacles that we have semantic information about\n\ 00821 # and that can be moved in the course of grasping\n\ 00822 GraspableObject[] movable_obstacles\n\ 00823 \n\ 00824 \n\ 00825 ================================================================================\n\ 00826 MSG: object_manipulation_msgs/GraspableObject\n\ 00827 # an object that the object_manipulator can work on\n\ 00828 \n\ 00829 # a graspable object can be represented in multiple ways. This message\n\ 00830 # can contain all of them. Which one is actually used is up to the receiver\n\ 00831 # of this message. When adding new representations, one must be careful that\n\ 00832 # they have reasonable lightweight defaults indicating that that particular\n\ 00833 # representation is not available.\n\ 00834 \n\ 00835 # the tf frame to be used as a reference frame when combining information from\n\ 00836 # the different representations below\n\ 00837 string reference_frame_id\n\ 00838 \n\ 00839 # potential recognition results from a database of models\n\ 00840 # all poses are relative to the object reference pose\n\ 00841 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00842 \n\ 00843 # the point cloud itself\n\ 00844 sensor_msgs/PointCloud cluster\n\ 00845 \n\ 00846 # a region of a PointCloud2 of interest\n\ 00847 object_manipulation_msgs/SceneRegion region\n\ 00848 \n\ 00849 # the name that this object has in the collision environment\n\ 00850 string collision_name\n\ 00851 ================================================================================\n\ 00852 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00853 # Informs that a specific model from the Model Database has been \n\ 00854 # identified at a certain location\n\ 00855 \n\ 00856 # the database id of the model\n\ 00857 int32 model_id\n\ 00858 \n\ 00859 # the pose that it can be found in\n\ 00860 geometry_msgs/PoseStamped pose\n\ 00861 \n\ 00862 # a measure of the confidence level in this detection result\n\ 00863 float32 confidence\n\ 00864 \n\ 00865 # the name of the object detector that generated this detection result\n\ 00866 string detector_name\n\ 00867 \n\ 00868 ================================================================================\n\ 00869 MSG: geometry_msgs/PoseStamped\n\ 00870 # A Pose with reference coordinate frame and timestamp\n\ 00871 Header header\n\ 00872 Pose pose\n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: geometry_msgs/Pose\n\ 00876 # A representation of pose in free space, composed of postion and orientation. \n\ 00877 Point position\n\ 00878 Quaternion orientation\n\ 00879 \n\ 00880 ================================================================================\n\ 00881 MSG: geometry_msgs/Point\n\ 00882 # This contains the position of a point in free space\n\ 00883 float64 x\n\ 00884 float64 y\n\ 00885 float64 z\n\ 00886 \n\ 00887 ================================================================================\n\ 00888 MSG: geometry_msgs/Quaternion\n\ 00889 # This represents an orientation in free space in quaternion form.\n\ 00890 \n\ 00891 float64 x\n\ 00892 float64 y\n\ 00893 float64 z\n\ 00894 float64 w\n\ 00895 \n\ 00896 ================================================================================\n\ 00897 MSG: sensor_msgs/PointCloud\n\ 00898 # This message holds a collection of 3d points, plus optional additional\n\ 00899 # information about each point.\n\ 00900 \n\ 00901 # Time of sensor data acquisition, coordinate frame ID.\n\ 00902 Header header\n\ 00903 \n\ 00904 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00905 # in the frame given in the header.\n\ 00906 geometry_msgs/Point32[] points\n\ 00907 \n\ 00908 # Each channel should have the same number of elements as points array,\n\ 00909 # and the data in each channel should correspond 1:1 with each point.\n\ 00910 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00911 ChannelFloat32[] channels\n\ 00912 \n\ 00913 ================================================================================\n\ 00914 MSG: geometry_msgs/Point32\n\ 00915 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00916 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00917 # \n\ 00918 # This recommendation is to promote interoperability. \n\ 00919 #\n\ 00920 # This message is designed to take up less space when sending\n\ 00921 # lots of points at once, as in the case of a PointCloud. \n\ 00922 \n\ 00923 float32 x\n\ 00924 float32 y\n\ 00925 float32 z\n\ 00926 ================================================================================\n\ 00927 MSG: sensor_msgs/ChannelFloat32\n\ 00928 # This message is used by the PointCloud message to hold optional data\n\ 00929 # associated with each point in the cloud. The length of the values\n\ 00930 # array should be the same as the length of the points array in the\n\ 00931 # PointCloud, and each value should be associated with the corresponding\n\ 00932 # point.\n\ 00933 \n\ 00934 # Channel names in existing practice include:\n\ 00935 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00936 # This is opposite to usual conventions but remains for\n\ 00937 # historical reasons. The newer PointCloud2 message has no\n\ 00938 # such problem.\n\ 00939 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00940 # (R,G,B) values packed into the least significant 24 bits,\n\ 00941 # in order.\n\ 00942 # \"intensity\" - laser or pixel intensity.\n\ 00943 # \"distance\"\n\ 00944 \n\ 00945 # The channel name should give semantics of the channel (e.g.\n\ 00946 # \"intensity\" instead of \"value\").\n\ 00947 string name\n\ 00948 \n\ 00949 # The values array should be 1-1 with the elements of the associated\n\ 00950 # PointCloud.\n\ 00951 float32[] values\n\ 00952 \n\ 00953 ================================================================================\n\ 00954 MSG: object_manipulation_msgs/SceneRegion\n\ 00955 # Point cloud\n\ 00956 sensor_msgs/PointCloud2 cloud\n\ 00957 \n\ 00958 # Indices for the region of interest\n\ 00959 int32[] mask\n\ 00960 \n\ 00961 # One of the corresponding 2D images, if applicable\n\ 00962 sensor_msgs/Image image\n\ 00963 \n\ 00964 # The disparity image, if applicable\n\ 00965 sensor_msgs/Image disparity_image\n\ 00966 \n\ 00967 # Camera info for the camera that took the image\n\ 00968 sensor_msgs/CameraInfo cam_info\n\ 00969 \n\ 00970 # a 3D region of interest for grasp planning\n\ 00971 geometry_msgs/PoseStamped roi_box_pose\n\ 00972 geometry_msgs/Vector3 roi_box_dims\n\ 00973 \n\ 00974 ================================================================================\n\ 00975 MSG: sensor_msgs/PointCloud2\n\ 00976 # This message holds a collection of N-dimensional points, which may\n\ 00977 # contain additional information such as normals, intensity, etc. The\n\ 00978 # point data is stored as a binary blob, its layout described by the\n\ 00979 # contents of the \"fields\" array.\n\ 00980 \n\ 00981 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00982 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00983 # camera depth sensors such as stereo or time-of-flight.\n\ 00984 \n\ 00985 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00986 # points).\n\ 00987 Header header\n\ 00988 \n\ 00989 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00990 # 1 and width is the length of the point cloud.\n\ 00991 uint32 height\n\ 00992 uint32 width\n\ 00993 \n\ 00994 # Describes the channels and their layout in the binary data blob.\n\ 00995 PointField[] fields\n\ 00996 \n\ 00997 bool is_bigendian # Is this data bigendian?\n\ 00998 uint32 point_step # Length of a point in bytes\n\ 00999 uint32 row_step # Length of a row in bytes\n\ 01000 uint8[] data # Actual point data, size is (row_step*height)\n\ 01001 \n\ 01002 bool is_dense # True if there are no invalid points\n\ 01003 \n\ 01004 ================================================================================\n\ 01005 MSG: sensor_msgs/PointField\n\ 01006 # This message holds the description of one point entry in the\n\ 01007 # PointCloud2 message format.\n\ 01008 uint8 INT8 = 1\n\ 01009 uint8 UINT8 = 2\n\ 01010 uint8 INT16 = 3\n\ 01011 uint8 UINT16 = 4\n\ 01012 uint8 INT32 = 5\n\ 01013 uint8 UINT32 = 6\n\ 01014 uint8 FLOAT32 = 7\n\ 01015 uint8 FLOAT64 = 8\n\ 01016 \n\ 01017 string name # Name of field\n\ 01018 uint32 offset # Offset from start of point struct\n\ 01019 uint8 datatype # Datatype enumeration, see above\n\ 01020 uint32 count # How many elements in the field\n\ 01021 \n\ 01022 ================================================================================\n\ 01023 MSG: sensor_msgs/Image\n\ 01024 # This message contains an uncompressed image\n\ 01025 # (0, 0) is at top-left corner of image\n\ 01026 #\n\ 01027 \n\ 01028 Header header # Header timestamp should be acquisition time of image\n\ 01029 # Header frame_id should be optical frame of camera\n\ 01030 # origin of frame should be optical center of cameara\n\ 01031 # +x should point to the right in the image\n\ 01032 # +y should point down in the image\n\ 01033 # +z should point into to plane of the image\n\ 01034 # If the frame_id here and the frame_id of the CameraInfo\n\ 01035 # message associated with the image conflict\n\ 01036 # the behavior is undefined\n\ 01037 \n\ 01038 uint32 height # image height, that is, number of rows\n\ 01039 uint32 width # image width, that is, number of columns\n\ 01040 \n\ 01041 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01042 # If you want to standardize a new string format, join\n\ 01043 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01044 \n\ 01045 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01046 # taken from the list of strings in src/image_encodings.cpp\n\ 01047 \n\ 01048 uint8 is_bigendian # is this data bigendian?\n\ 01049 uint32 step # Full row length in bytes\n\ 01050 uint8[] data # actual matrix data, size is (step * rows)\n\ 01051 \n\ 01052 ================================================================================\n\ 01053 MSG: sensor_msgs/CameraInfo\n\ 01054 # This message defines meta information for a camera. It should be in a\n\ 01055 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01056 # image topics named:\n\ 01057 #\n\ 01058 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01059 # image - monochrome, distorted\n\ 01060 # image_color - color, distorted\n\ 01061 # image_rect - monochrome, rectified\n\ 01062 # image_rect_color - color, rectified\n\ 01063 #\n\ 01064 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01065 # for producing the four processed image topics from image_raw and\n\ 01066 # camera_info. The meaning of the camera parameters are described in\n\ 01067 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01068 #\n\ 01069 # The image_geometry package provides a user-friendly interface to\n\ 01070 # common operations using this meta information. If you want to, e.g.,\n\ 01071 # project a 3d point into image coordinates, we strongly recommend\n\ 01072 # using image_geometry.\n\ 01073 #\n\ 01074 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01075 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01076 # indicates an uncalibrated camera.\n\ 01077 \n\ 01078 #######################################################################\n\ 01079 # Image acquisition info #\n\ 01080 #######################################################################\n\ 01081 \n\ 01082 # Time of image acquisition, camera coordinate frame ID\n\ 01083 Header header # Header timestamp should be acquisition time of image\n\ 01084 # Header frame_id should be optical frame of camera\n\ 01085 # origin of frame should be optical center of camera\n\ 01086 # +x should point to the right in the image\n\ 01087 # +y should point down in the image\n\ 01088 # +z should point into the plane of the image\n\ 01089 \n\ 01090 \n\ 01091 #######################################################################\n\ 01092 # Calibration Parameters #\n\ 01093 #######################################################################\n\ 01094 # These are fixed during camera calibration. Their values will be the #\n\ 01095 # same in all messages until the camera is recalibrated. Note that #\n\ 01096 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01097 # #\n\ 01098 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01099 # to: #\n\ 01100 # 1. An undistorted image (requires D and K) #\n\ 01101 # 2. A rectified image (requires D, K, R) #\n\ 01102 # The projection matrix P projects 3D points into the rectified image.#\n\ 01103 #######################################################################\n\ 01104 \n\ 01105 # The image dimensions with which the camera was calibrated. Normally\n\ 01106 # this will be the full camera resolution in pixels.\n\ 01107 uint32 height\n\ 01108 uint32 width\n\ 01109 \n\ 01110 # The distortion model used. Supported models are listed in\n\ 01111 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01112 # simple model of radial and tangential distortion - is sufficent.\n\ 01113 string distortion_model\n\ 01114 \n\ 01115 # The distortion parameters, size depending on the distortion model.\n\ 01116 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01117 float64[] D\n\ 01118 \n\ 01119 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01120 # [fx 0 cx]\n\ 01121 # K = [ 0 fy cy]\n\ 01122 # [ 0 0 1]\n\ 01123 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01124 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01125 # (cx, cy).\n\ 01126 float64[9] K # 3x3 row-major matrix\n\ 01127 \n\ 01128 # Rectification matrix (stereo cameras only)\n\ 01129 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01130 # stereo image plane so that epipolar lines in both stereo images are\n\ 01131 # parallel.\n\ 01132 float64[9] R # 3x3 row-major matrix\n\ 01133 \n\ 01134 # Projection/camera matrix\n\ 01135 # [fx' 0 cx' Tx]\n\ 01136 # P = [ 0 fy' cy' Ty]\n\ 01137 # [ 0 0 1 0]\n\ 01138 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01139 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01140 # is the normal camera intrinsic matrix for the rectified image.\n\ 01141 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01142 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01143 # (cx', cy') - these may differ from the values in K.\n\ 01144 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01145 # also have R = the identity and P[1:3,1:3] = K.\n\ 01146 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01147 # position of the optical center of the second camera in the first\n\ 01148 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01149 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01150 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01151 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01152 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01153 # the rectified image is given by:\n\ 01154 # [u v w]' = P * [X Y Z 1]'\n\ 01155 # x = u / w\n\ 01156 # y = v / w\n\ 01157 # This holds for both images of a stereo pair.\n\ 01158 float64[12] P # 3x4 row-major matrix\n\ 01159 \n\ 01160 \n\ 01161 #######################################################################\n\ 01162 # Operational Parameters #\n\ 01163 #######################################################################\n\ 01164 # These define the image region actually captured by the camera #\n\ 01165 # driver. Although they affect the geometry of the output image, they #\n\ 01166 # may be changed freely without recalibrating the camera. #\n\ 01167 #######################################################################\n\ 01168 \n\ 01169 # Binning refers here to any camera setting which combines rectangular\n\ 01170 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01171 # resolution of the output image to\n\ 01172 # (width / binning_x) x (height / binning_y).\n\ 01173 # The default values binning_x = binning_y = 0 is considered the same\n\ 01174 # as binning_x = binning_y = 1 (no subsampling).\n\ 01175 uint32 binning_x\n\ 01176 uint32 binning_y\n\ 01177 \n\ 01178 # Region of interest (subwindow of full camera resolution), given in\n\ 01179 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01180 # always denotes the same window of pixels on the camera sensor,\n\ 01181 # regardless of binning settings.\n\ 01182 # The default setting of roi (all values 0) is considered the same as\n\ 01183 # full resolution (roi.width = width, roi.height = height).\n\ 01184 RegionOfInterest roi\n\ 01185 \n\ 01186 ================================================================================\n\ 01187 MSG: sensor_msgs/RegionOfInterest\n\ 01188 # This message is used to specify a region of interest within an image.\n\ 01189 #\n\ 01190 # When used to specify the ROI setting of the camera when the image was\n\ 01191 # taken, the height and width fields should either match the height and\n\ 01192 # width fields for the associated image; or height = width = 0\n\ 01193 # indicates that the full resolution image was captured.\n\ 01194 \n\ 01195 uint32 x_offset # Leftmost pixel of the ROI\n\ 01196 # (0 if the ROI includes the left edge of the image)\n\ 01197 uint32 y_offset # Topmost pixel of the ROI\n\ 01198 # (0 if the ROI includes the top edge of the image)\n\ 01199 uint32 height # Height of ROI\n\ 01200 uint32 width # Width of ROI\n\ 01201 \n\ 01202 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01203 # ROI in this message. Typically this should be False if the full image\n\ 01204 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01205 # used).\n\ 01206 bool do_rectify\n\ 01207 \n\ 01208 ================================================================================\n\ 01209 MSG: geometry_msgs/Vector3\n\ 01210 # This represents a vector in free space. \n\ 01211 \n\ 01212 float64 x\n\ 01213 float64 y\n\ 01214 float64 z\n\ 01215 ================================================================================\n\ 01216 MSG: object_manipulation_msgs/Grasp\n\ 01217 \n\ 01218 # The internal posture of the hand for the pre-grasp\n\ 01219 # only positions are used\n\ 01220 sensor_msgs/JointState pre_grasp_posture\n\ 01221 \n\ 01222 # The internal posture of the hand for the grasp\n\ 01223 # positions and efforts are used\n\ 01224 sensor_msgs/JointState grasp_posture\n\ 01225 \n\ 01226 # The position of the end-effector for the grasp relative to a reference frame \n\ 01227 # (that is always specified elsewhere, not in this message)\n\ 01228 geometry_msgs/Pose grasp_pose\n\ 01229 \n\ 01230 # The estimated probability of success for this grasp\n\ 01231 float64 success_probability\n\ 01232 \n\ 01233 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01234 bool cluster_rep\n\ 01235 \n\ 01236 # how far the pre-grasp should ideally be away from the grasp\n\ 01237 float32 desired_approach_distance\n\ 01238 \n\ 01239 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01240 # for the grasp not to be rejected\n\ 01241 float32 min_approach_distance\n\ 01242 \n\ 01243 # an optional list of obstacles that we have semantic information about\n\ 01244 # and that we expect might move in the course of executing this grasp\n\ 01245 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01246 # execution, grasp executors will not check for collisions against these objects\n\ 01247 GraspableObject[] moved_obstacles\n\ 01248 \n\ 01249 ================================================================================\n\ 01250 MSG: sensor_msgs/JointState\n\ 01251 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01252 #\n\ 01253 # The state of each joint (revolute or prismatic) is defined by:\n\ 01254 # * the position of the joint (rad or m),\n\ 01255 # * the velocity of the joint (rad/s or m/s) and \n\ 01256 # * the effort that is applied in the joint (Nm or N).\n\ 01257 #\n\ 01258 # Each joint is uniquely identified by its name\n\ 01259 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01260 # in one message have to be recorded at the same time.\n\ 01261 #\n\ 01262 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01263 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01264 # effort associated with them, you can leave the effort array empty. \n\ 01265 #\n\ 01266 # All arrays in this message should have the same size, or be empty.\n\ 01267 # This is the only way to uniquely associate the joint name with the correct\n\ 01268 # states.\n\ 01269 \n\ 01270 \n\ 01271 Header header\n\ 01272 \n\ 01273 string[] name\n\ 01274 float64[] position\n\ 01275 float64[] velocity\n\ 01276 float64[] effort\n\ 01277 \n\ 01278 ================================================================================\n\ 01279 MSG: object_manipulation_msgs/GraspPlanningActionResult\n\ 01280 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01281 \n\ 01282 Header header\n\ 01283 actionlib_msgs/GoalStatus status\n\ 01284 GraspPlanningResult result\n\ 01285 \n\ 01286 ================================================================================\n\ 01287 MSG: actionlib_msgs/GoalStatus\n\ 01288 GoalID goal_id\n\ 01289 uint8 status\n\ 01290 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01291 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01292 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01293 # and has since completed its execution (Terminal State)\n\ 01294 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01295 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01296 # to some failure (Terminal State)\n\ 01297 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01298 # because the goal was unattainable or invalid (Terminal State)\n\ 01299 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01300 # and has not yet completed execution\n\ 01301 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01302 # but the action server has not yet confirmed that the goal is canceled\n\ 01303 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01304 # and was successfully cancelled (Terminal State)\n\ 01305 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01306 # sent over the wire by an action server\n\ 01307 \n\ 01308 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01309 string text\n\ 01310 \n\ 01311 \n\ 01312 ================================================================================\n\ 01313 MSG: object_manipulation_msgs/GraspPlanningResult\n\ 01314 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01315 \n\ 01316 # the list of planned grasps\n\ 01317 Grasp[] grasps\n\ 01318 \n\ 01319 # whether an error occurred\n\ 01320 GraspPlanningErrorCode error_code\n\ 01321 \n\ 01322 \n\ 01323 ================================================================================\n\ 01324 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01325 # Error codes for grasp and place planning\n\ 01326 \n\ 01327 # plan completed as expected\n\ 01328 int32 SUCCESS = 0\n\ 01329 \n\ 01330 # tf error encountered while transforming\n\ 01331 int32 TF_ERROR = 1 \n\ 01332 \n\ 01333 # some other error\n\ 01334 int32 OTHER_ERROR = 2\n\ 01335 \n\ 01336 # the actual value of this error code\n\ 01337 int32 value\n\ 01338 ================================================================================\n\ 01339 MSG: object_manipulation_msgs/GraspPlanningActionFeedback\n\ 01340 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01341 \n\ 01342 Header header\n\ 01343 actionlib_msgs/GoalStatus status\n\ 01344 GraspPlanningFeedback feedback\n\ 01345 \n\ 01346 ================================================================================\n\ 01347 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\ 01348 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01349 \n\ 01350 # grasps planned so far\n\ 01351 Grasp[] grasps\n\ 01352 \n\ 01353 \n\ 01354 \n\ 01355 "; 01356 } 01357 01358 static const char* value(const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> &) { return value(); } 01359 }; 01360 01361 } // namespace message_traits 01362 } // namespace ros 01363 01364 namespace ros 01365 { 01366 namespace serialization 01367 { 01368 01369 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > 01370 { 01371 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01372 { 01373 stream.next(m.action_goal); 01374 stream.next(m.action_result); 01375 stream.next(m.action_feedback); 01376 } 01377 01378 ROS_DECLARE_ALLINONE_SERIALIZER; 01379 }; // struct GraspPlanningAction_ 01380 } // namespace serialization 01381 } // namespace ros 01382 01383 namespace ros 01384 { 01385 namespace message_operations 01386 { 01387 01388 template<class ContainerAllocator> 01389 struct Printer< ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> > 01390 { 01391 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningAction_<ContainerAllocator> & v) 01392 { 01393 s << indent << "action_goal: "; 01394 s << std::endl; 01395 Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01396 s << indent << "action_result: "; 01397 s << std::endl; 01398 Printer< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01399 s << indent << "action_feedback: "; 01400 s << std::endl; 01401 Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01402 } 01403 }; 01404 01405 01406 } // namespace message_operations 01407 } // namespace ros 01408 01409 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTION_H 01410