00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/GraspPlanningGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspPlanningActionGoal_ {
00025 typedef GraspPlanningActionGoal_<ContainerAllocator> Type;
00026
00027 GraspPlanningActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 GraspPlanningActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> goal;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningActionGoal"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "bd86cee38f37732db5c86d633be95d66"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalID goal_id\n\
00070 GraspPlanningGoal goal\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalID\n\
00092 # The stamp should store the time at which this goal was requested.\n\
00093 # It is used by an action server when it tries to preempt all\n\
00094 # goals that were requested before a certain time\n\
00095 time stamp\n\
00096 \n\
00097 # The id provides a way to associate feedback and\n\
00098 # result message with specific goal requests. The id\n\
00099 # specified must be unique.\n\
00100 string id\n\
00101 \n\
00102 \n\
00103 ================================================================================\n\
00104 MSG: object_manipulation_msgs/GraspPlanningGoal\n\
00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00106 # Requests that grasp planning be performed on the object to be grasped\n\
00107 # returns a list of grasps to be tested and executed\n\
00108 \n\
00109 # the arm being used\n\
00110 string arm_name\n\
00111 \n\
00112 # the object to be grasped\n\
00113 GraspableObject target\n\
00114 \n\
00115 # the name that the target object has in the collision environment\n\
00116 # can be left empty if no name is available\n\
00117 string collision_object_name\n\
00118 \n\
00119 # the name that the support surface (e.g. table) has in the collision map\n\
00120 # can be left empty if no name is available\n\
00121 string collision_support_surface_name\n\
00122 \n\
00123 # an optional list of grasps to be evaluated by the planner\n\
00124 Grasp[] grasps_to_evaluate\n\
00125 \n\
00126 # an optional list of obstacles that we have semantic information about\n\
00127 # and that can be moved in the course of grasping\n\
00128 GraspableObject[] movable_obstacles\n\
00129 \n\
00130 \n\
00131 ================================================================================\n\
00132 MSG: object_manipulation_msgs/GraspableObject\n\
00133 # an object that the object_manipulator can work on\n\
00134 \n\
00135 # a graspable object can be represented in multiple ways. This message\n\
00136 # can contain all of them. Which one is actually used is up to the receiver\n\
00137 # of this message. When adding new representations, one must be careful that\n\
00138 # they have reasonable lightweight defaults indicating that that particular\n\
00139 # representation is not available.\n\
00140 \n\
00141 # the tf frame to be used as a reference frame when combining information from\n\
00142 # the different representations below\n\
00143 string reference_frame_id\n\
00144 \n\
00145 # potential recognition results from a database of models\n\
00146 # all poses are relative to the object reference pose\n\
00147 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00148 \n\
00149 # the point cloud itself\n\
00150 sensor_msgs/PointCloud cluster\n\
00151 \n\
00152 # a region of a PointCloud2 of interest\n\
00153 object_manipulation_msgs/SceneRegion region\n\
00154 \n\
00155 # the name that this object has in the collision environment\n\
00156 string collision_name\n\
00157 ================================================================================\n\
00158 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00159 # Informs that a specific model from the Model Database has been \n\
00160 # identified at a certain location\n\
00161 \n\
00162 # the database id of the model\n\
00163 int32 model_id\n\
00164 \n\
00165 # the pose that it can be found in\n\
00166 geometry_msgs/PoseStamped pose\n\
00167 \n\
00168 # a measure of the confidence level in this detection result\n\
00169 float32 confidence\n\
00170 \n\
00171 # the name of the object detector that generated this detection result\n\
00172 string detector_name\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: geometry_msgs/PoseStamped\n\
00176 # A Pose with reference coordinate frame and timestamp\n\
00177 Header header\n\
00178 Pose pose\n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: geometry_msgs/Pose\n\
00182 # A representation of pose in free space, composed of postion and orientation. \n\
00183 Point position\n\
00184 Quaternion orientation\n\
00185 \n\
00186 ================================================================================\n\
00187 MSG: geometry_msgs/Point\n\
00188 # This contains the position of a point in free space\n\
00189 float64 x\n\
00190 float64 y\n\
00191 float64 z\n\
00192 \n\
00193 ================================================================================\n\
00194 MSG: geometry_msgs/Quaternion\n\
00195 # This represents an orientation in free space in quaternion form.\n\
00196 \n\
00197 float64 x\n\
00198 float64 y\n\
00199 float64 z\n\
00200 float64 w\n\
00201 \n\
00202 ================================================================================\n\
00203 MSG: sensor_msgs/PointCloud\n\
00204 # This message holds a collection of 3d points, plus optional additional\n\
00205 # information about each point.\n\
00206 \n\
00207 # Time of sensor data acquisition, coordinate frame ID.\n\
00208 Header header\n\
00209 \n\
00210 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00211 # in the frame given in the header.\n\
00212 geometry_msgs/Point32[] points\n\
00213 \n\
00214 # Each channel should have the same number of elements as points array,\n\
00215 # and the data in each channel should correspond 1:1 with each point.\n\
00216 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00217 ChannelFloat32[] channels\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: geometry_msgs/Point32\n\
00221 # This contains the position of a point in free space(with 32 bits of precision).\n\
00222 # It is recommeded to use Point wherever possible instead of Point32. \n\
00223 # \n\
00224 # This recommendation is to promote interoperability. \n\
00225 #\n\
00226 # This message is designed to take up less space when sending\n\
00227 # lots of points at once, as in the case of a PointCloud. \n\
00228 \n\
00229 float32 x\n\
00230 float32 y\n\
00231 float32 z\n\
00232 ================================================================================\n\
00233 MSG: sensor_msgs/ChannelFloat32\n\
00234 # This message is used by the PointCloud message to hold optional data\n\
00235 # associated with each point in the cloud. The length of the values\n\
00236 # array should be the same as the length of the points array in the\n\
00237 # PointCloud, and each value should be associated with the corresponding\n\
00238 # point.\n\
00239 \n\
00240 # Channel names in existing practice include:\n\
00241 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00242 # This is opposite to usual conventions but remains for\n\
00243 # historical reasons. The newer PointCloud2 message has no\n\
00244 # such problem.\n\
00245 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00246 # (R,G,B) values packed into the least significant 24 bits,\n\
00247 # in order.\n\
00248 # \"intensity\" - laser or pixel intensity.\n\
00249 # \"distance\"\n\
00250 \n\
00251 # The channel name should give semantics of the channel (e.g.\n\
00252 # \"intensity\" instead of \"value\").\n\
00253 string name\n\
00254 \n\
00255 # The values array should be 1-1 with the elements of the associated\n\
00256 # PointCloud.\n\
00257 float32[] values\n\
00258 \n\
00259 ================================================================================\n\
00260 MSG: object_manipulation_msgs/SceneRegion\n\
00261 # Point cloud\n\
00262 sensor_msgs/PointCloud2 cloud\n\
00263 \n\
00264 # Indices for the region of interest\n\
00265 int32[] mask\n\
00266 \n\
00267 # One of the corresponding 2D images, if applicable\n\
00268 sensor_msgs/Image image\n\
00269 \n\
00270 # The disparity image, if applicable\n\
00271 sensor_msgs/Image disparity_image\n\
00272 \n\
00273 # Camera info for the camera that took the image\n\
00274 sensor_msgs/CameraInfo cam_info\n\
00275 \n\
00276 # a 3D region of interest for grasp planning\n\
00277 geometry_msgs/PoseStamped roi_box_pose\n\
00278 geometry_msgs/Vector3 roi_box_dims\n\
00279 \n\
00280 ================================================================================\n\
00281 MSG: sensor_msgs/PointCloud2\n\
00282 # This message holds a collection of N-dimensional points, which may\n\
00283 # contain additional information such as normals, intensity, etc. The\n\
00284 # point data is stored as a binary blob, its layout described by the\n\
00285 # contents of the \"fields\" array.\n\
00286 \n\
00287 # The point cloud data may be organized 2d (image-like) or 1d\n\
00288 # (unordered). Point clouds organized as 2d images may be produced by\n\
00289 # camera depth sensors such as stereo or time-of-flight.\n\
00290 \n\
00291 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00292 # points).\n\
00293 Header header\n\
00294 \n\
00295 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00296 # 1 and width is the length of the point cloud.\n\
00297 uint32 height\n\
00298 uint32 width\n\
00299 \n\
00300 # Describes the channels and their layout in the binary data blob.\n\
00301 PointField[] fields\n\
00302 \n\
00303 bool is_bigendian # Is this data bigendian?\n\
00304 uint32 point_step # Length of a point in bytes\n\
00305 uint32 row_step # Length of a row in bytes\n\
00306 uint8[] data # Actual point data, size is (row_step*height)\n\
00307 \n\
00308 bool is_dense # True if there are no invalid points\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: sensor_msgs/PointField\n\
00312 # This message holds the description of one point entry in the\n\
00313 # PointCloud2 message format.\n\
00314 uint8 INT8 = 1\n\
00315 uint8 UINT8 = 2\n\
00316 uint8 INT16 = 3\n\
00317 uint8 UINT16 = 4\n\
00318 uint8 INT32 = 5\n\
00319 uint8 UINT32 = 6\n\
00320 uint8 FLOAT32 = 7\n\
00321 uint8 FLOAT64 = 8\n\
00322 \n\
00323 string name # Name of field\n\
00324 uint32 offset # Offset from start of point struct\n\
00325 uint8 datatype # Datatype enumeration, see above\n\
00326 uint32 count # How many elements in the field\n\
00327 \n\
00328 ================================================================================\n\
00329 MSG: sensor_msgs/Image\n\
00330 # This message contains an uncompressed image\n\
00331 # (0, 0) is at top-left corner of image\n\
00332 #\n\
00333 \n\
00334 Header header # Header timestamp should be acquisition time of image\n\
00335 # Header frame_id should be optical frame of camera\n\
00336 # origin of frame should be optical center of cameara\n\
00337 # +x should point to the right in the image\n\
00338 # +y should point down in the image\n\
00339 # +z should point into to plane of the image\n\
00340 # If the frame_id here and the frame_id of the CameraInfo\n\
00341 # message associated with the image conflict\n\
00342 # the behavior is undefined\n\
00343 \n\
00344 uint32 height # image height, that is, number of rows\n\
00345 uint32 width # image width, that is, number of columns\n\
00346 \n\
00347 # The legal values for encoding are in file src/image_encodings.cpp\n\
00348 # If you want to standardize a new string format, join\n\
00349 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00350 \n\
00351 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00352 # taken from the list of strings in src/image_encodings.cpp\n\
00353 \n\
00354 uint8 is_bigendian # is this data bigendian?\n\
00355 uint32 step # Full row length in bytes\n\
00356 uint8[] data # actual matrix data, size is (step * rows)\n\
00357 \n\
00358 ================================================================================\n\
00359 MSG: sensor_msgs/CameraInfo\n\
00360 # This message defines meta information for a camera. It should be in a\n\
00361 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00362 # image topics named:\n\
00363 #\n\
00364 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00365 # image - monochrome, distorted\n\
00366 # image_color - color, distorted\n\
00367 # image_rect - monochrome, rectified\n\
00368 # image_rect_color - color, rectified\n\
00369 #\n\
00370 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00371 # for producing the four processed image topics from image_raw and\n\
00372 # camera_info. The meaning of the camera parameters are described in\n\
00373 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00374 #\n\
00375 # The image_geometry package provides a user-friendly interface to\n\
00376 # common operations using this meta information. If you want to, e.g.,\n\
00377 # project a 3d point into image coordinates, we strongly recommend\n\
00378 # using image_geometry.\n\
00379 #\n\
00380 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00381 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00382 # indicates an uncalibrated camera.\n\
00383 \n\
00384 #######################################################################\n\
00385 # Image acquisition info #\n\
00386 #######################################################################\n\
00387 \n\
00388 # Time of image acquisition, camera coordinate frame ID\n\
00389 Header header # Header timestamp should be acquisition time of image\n\
00390 # Header frame_id should be optical frame of camera\n\
00391 # origin of frame should be optical center of camera\n\
00392 # +x should point to the right in the image\n\
00393 # +y should point down in the image\n\
00394 # +z should point into the plane of the image\n\
00395 \n\
00396 \n\
00397 #######################################################################\n\
00398 # Calibration Parameters #\n\
00399 #######################################################################\n\
00400 # These are fixed during camera calibration. Their values will be the #\n\
00401 # same in all messages until the camera is recalibrated. Note that #\n\
00402 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00403 # #\n\
00404 # The internal parameters can be used to warp a raw (distorted) image #\n\
00405 # to: #\n\
00406 # 1. An undistorted image (requires D and K) #\n\
00407 # 2. A rectified image (requires D, K, R) #\n\
00408 # The projection matrix P projects 3D points into the rectified image.#\n\
00409 #######################################################################\n\
00410 \n\
00411 # The image dimensions with which the camera was calibrated. Normally\n\
00412 # this will be the full camera resolution in pixels.\n\
00413 uint32 height\n\
00414 uint32 width\n\
00415 \n\
00416 # The distortion model used. Supported models are listed in\n\
00417 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00418 # simple model of radial and tangential distortion - is sufficent.\n\
00419 string distortion_model\n\
00420 \n\
00421 # The distortion parameters, size depending on the distortion model.\n\
00422 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00423 float64[] D\n\
00424 \n\
00425 # Intrinsic camera matrix for the raw (distorted) images.\n\
00426 # [fx 0 cx]\n\
00427 # K = [ 0 fy cy]\n\
00428 # [ 0 0 1]\n\
00429 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00430 # coordinates using the focal lengths (fx, fy) and principal point\n\
00431 # (cx, cy).\n\
00432 float64[9] K # 3x3 row-major matrix\n\
00433 \n\
00434 # Rectification matrix (stereo cameras only)\n\
00435 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00436 # stereo image plane so that epipolar lines in both stereo images are\n\
00437 # parallel.\n\
00438 float64[9] R # 3x3 row-major matrix\n\
00439 \n\
00440 # Projection/camera matrix\n\
00441 # [fx' 0 cx' Tx]\n\
00442 # P = [ 0 fy' cy' Ty]\n\
00443 # [ 0 0 1 0]\n\
00444 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00445 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00446 # is the normal camera intrinsic matrix for the rectified image.\n\
00447 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00448 # coordinates using the focal lengths (fx', fy') and principal point\n\
00449 # (cx', cy') - these may differ from the values in K.\n\
00450 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00451 # also have R = the identity and P[1:3,1:3] = K.\n\
00452 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00453 # position of the optical center of the second camera in the first\n\
00454 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00455 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00456 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00457 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00458 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00459 # the rectified image is given by:\n\
00460 # [u v w]' = P * [X Y Z 1]'\n\
00461 # x = u / w\n\
00462 # y = v / w\n\
00463 # This holds for both images of a stereo pair.\n\
00464 float64[12] P # 3x4 row-major matrix\n\
00465 \n\
00466 \n\
00467 #######################################################################\n\
00468 # Operational Parameters #\n\
00469 #######################################################################\n\
00470 # These define the image region actually captured by the camera #\n\
00471 # driver. Although they affect the geometry of the output image, they #\n\
00472 # may be changed freely without recalibrating the camera. #\n\
00473 #######################################################################\n\
00474 \n\
00475 # Binning refers here to any camera setting which combines rectangular\n\
00476 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00477 # resolution of the output image to\n\
00478 # (width / binning_x) x (height / binning_y).\n\
00479 # The default values binning_x = binning_y = 0 is considered the same\n\
00480 # as binning_x = binning_y = 1 (no subsampling).\n\
00481 uint32 binning_x\n\
00482 uint32 binning_y\n\
00483 \n\
00484 # Region of interest (subwindow of full camera resolution), given in\n\
00485 # full resolution (unbinned) image coordinates. A particular ROI\n\
00486 # always denotes the same window of pixels on the camera sensor,\n\
00487 # regardless of binning settings.\n\
00488 # The default setting of roi (all values 0) is considered the same as\n\
00489 # full resolution (roi.width = width, roi.height = height).\n\
00490 RegionOfInterest roi\n\
00491 \n\
00492 ================================================================================\n\
00493 MSG: sensor_msgs/RegionOfInterest\n\
00494 # This message is used to specify a region of interest within an image.\n\
00495 #\n\
00496 # When used to specify the ROI setting of the camera when the image was\n\
00497 # taken, the height and width fields should either match the height and\n\
00498 # width fields for the associated image; or height = width = 0\n\
00499 # indicates that the full resolution image was captured.\n\
00500 \n\
00501 uint32 x_offset # Leftmost pixel of the ROI\n\
00502 # (0 if the ROI includes the left edge of the image)\n\
00503 uint32 y_offset # Topmost pixel of the ROI\n\
00504 # (0 if the ROI includes the top edge of the image)\n\
00505 uint32 height # Height of ROI\n\
00506 uint32 width # Width of ROI\n\
00507 \n\
00508 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00509 # ROI in this message. Typically this should be False if the full image\n\
00510 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00511 # used).\n\
00512 bool do_rectify\n\
00513 \n\
00514 ================================================================================\n\
00515 MSG: geometry_msgs/Vector3\n\
00516 # This represents a vector in free space. \n\
00517 \n\
00518 float64 x\n\
00519 float64 y\n\
00520 float64 z\n\
00521 ================================================================================\n\
00522 MSG: object_manipulation_msgs/Grasp\n\
00523 \n\
00524 # The internal posture of the hand for the pre-grasp\n\
00525 # only positions are used\n\
00526 sensor_msgs/JointState pre_grasp_posture\n\
00527 \n\
00528 # The internal posture of the hand for the grasp\n\
00529 # positions and efforts are used\n\
00530 sensor_msgs/JointState grasp_posture\n\
00531 \n\
00532 # The position of the end-effector for the grasp relative to a reference frame \n\
00533 # (that is always specified elsewhere, not in this message)\n\
00534 geometry_msgs/Pose grasp_pose\n\
00535 \n\
00536 # The estimated probability of success for this grasp\n\
00537 float64 success_probability\n\
00538 \n\
00539 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00540 bool cluster_rep\n\
00541 \n\
00542 # how far the pre-grasp should ideally be away from the grasp\n\
00543 float32 desired_approach_distance\n\
00544 \n\
00545 # how much distance between pre-grasp and grasp must actually be feasible \n\
00546 # for the grasp not to be rejected\n\
00547 float32 min_approach_distance\n\
00548 \n\
00549 # an optional list of obstacles that we have semantic information about\n\
00550 # and that we expect might move in the course of executing this grasp\n\
00551 # the grasp planner is expected to make sure they move in an OK way; during\n\
00552 # execution, grasp executors will not check for collisions against these objects\n\
00553 GraspableObject[] moved_obstacles\n\
00554 \n\
00555 ================================================================================\n\
00556 MSG: sensor_msgs/JointState\n\
00557 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00558 #\n\
00559 # The state of each joint (revolute or prismatic) is defined by:\n\
00560 # * the position of the joint (rad or m),\n\
00561 # * the velocity of the joint (rad/s or m/s) and \n\
00562 # * the effort that is applied in the joint (Nm or N).\n\
00563 #\n\
00564 # Each joint is uniquely identified by its name\n\
00565 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00566 # in one message have to be recorded at the same time.\n\
00567 #\n\
00568 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00569 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00570 # effort associated with them, you can leave the effort array empty. \n\
00571 #\n\
00572 # All arrays in this message should have the same size, or be empty.\n\
00573 # This is the only way to uniquely associate the joint name with the correct\n\
00574 # states.\n\
00575 \n\
00576 \n\
00577 Header header\n\
00578 \n\
00579 string[] name\n\
00580 float64[] position\n\
00581 float64[] velocity\n\
00582 float64[] effort\n\
00583 \n\
00584 "; }
00585 public:
00586 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00587
00588 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00589
00590 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00591 {
00592 ros::serialization::OStream stream(write_ptr, 1000000000);
00593 ros::serialization::serialize(stream, header);
00594 ros::serialization::serialize(stream, goal_id);
00595 ros::serialization::serialize(stream, goal);
00596 return stream.getData();
00597 }
00598
00599 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00600 {
00601 ros::serialization::IStream stream(read_ptr, 1000000000);
00602 ros::serialization::deserialize(stream, header);
00603 ros::serialization::deserialize(stream, goal_id);
00604 ros::serialization::deserialize(stream, goal);
00605 return stream.getData();
00606 }
00607
00608 ROS_DEPRECATED virtual uint32_t serializationLength() const
00609 {
00610 uint32_t size = 0;
00611 size += ros::serialization::serializationLength(header);
00612 size += ros::serialization::serializationLength(goal_id);
00613 size += ros::serialization::serializationLength(goal);
00614 return size;
00615 }
00616
00617 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > Ptr;
00618 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> const> ConstPtr;
00619 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00620 };
00621 typedef ::object_manipulation_msgs::GraspPlanningActionGoal_<std::allocator<void> > GraspPlanningActionGoal;
00622
00623 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal> GraspPlanningActionGoalPtr;
00624 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal const> GraspPlanningActionGoalConstPtr;
00625
00626
00627 template<typename ContainerAllocator>
00628 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v)
00629 {
00630 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >::stream(s, "", v);
00631 return s;}
00632
00633 }
00634
00635 namespace ros
00636 {
00637 namespace message_traits
00638 {
00639 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
00640 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> const> : public TrueType {};
00641 template<class ContainerAllocator>
00642 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00643 static const char* value()
00644 {
00645 return "bd86cee38f37732db5c86d633be95d66";
00646 }
00647
00648 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); }
00649 static const uint64_t static_value1 = 0xbd86cee38f37732dULL;
00650 static const uint64_t static_value2 = 0xb5c86d633be95d66ULL;
00651 };
00652
00653 template<class ContainerAllocator>
00654 struct DataType< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00655 static const char* value()
00656 {
00657 return "object_manipulation_msgs/GraspPlanningActionGoal";
00658 }
00659
00660 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); }
00661 };
00662
00663 template<class ContainerAllocator>
00664 struct Definition< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > {
00665 static const char* value()
00666 {
00667 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00668 \n\
00669 Header header\n\
00670 actionlib_msgs/GoalID goal_id\n\
00671 GraspPlanningGoal goal\n\
00672 \n\
00673 ================================================================================\n\
00674 MSG: std_msgs/Header\n\
00675 # Standard metadata for higher-level stamped data types.\n\
00676 # This is generally used to communicate timestamped data \n\
00677 # in a particular coordinate frame.\n\
00678 # \n\
00679 # sequence ID: consecutively increasing ID \n\
00680 uint32 seq\n\
00681 #Two-integer timestamp that is expressed as:\n\
00682 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00683 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00684 # time-handling sugar is provided by the client library\n\
00685 time stamp\n\
00686 #Frame this data is associated with\n\
00687 # 0: no frame\n\
00688 # 1: global frame\n\
00689 string frame_id\n\
00690 \n\
00691 ================================================================================\n\
00692 MSG: actionlib_msgs/GoalID\n\
00693 # The stamp should store the time at which this goal was requested.\n\
00694 # It is used by an action server when it tries to preempt all\n\
00695 # goals that were requested before a certain time\n\
00696 time stamp\n\
00697 \n\
00698 # The id provides a way to associate feedback and\n\
00699 # result message with specific goal requests. The id\n\
00700 # specified must be unique.\n\
00701 string id\n\
00702 \n\
00703 \n\
00704 ================================================================================\n\
00705 MSG: object_manipulation_msgs/GraspPlanningGoal\n\
00706 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00707 # Requests that grasp planning be performed on the object to be grasped\n\
00708 # returns a list of grasps to be tested and executed\n\
00709 \n\
00710 # the arm being used\n\
00711 string arm_name\n\
00712 \n\
00713 # the object to be grasped\n\
00714 GraspableObject target\n\
00715 \n\
00716 # the name that the target object has in the collision environment\n\
00717 # can be left empty if no name is available\n\
00718 string collision_object_name\n\
00719 \n\
00720 # the name that the support surface (e.g. table) has in the collision map\n\
00721 # can be left empty if no name is available\n\
00722 string collision_support_surface_name\n\
00723 \n\
00724 # an optional list of grasps to be evaluated by the planner\n\
00725 Grasp[] grasps_to_evaluate\n\
00726 \n\
00727 # an optional list of obstacles that we have semantic information about\n\
00728 # and that can be moved in the course of grasping\n\
00729 GraspableObject[] movable_obstacles\n\
00730 \n\
00731 \n\
00732 ================================================================================\n\
00733 MSG: object_manipulation_msgs/GraspableObject\n\
00734 # an object that the object_manipulator can work on\n\
00735 \n\
00736 # a graspable object can be represented in multiple ways. This message\n\
00737 # can contain all of them. Which one is actually used is up to the receiver\n\
00738 # of this message. When adding new representations, one must be careful that\n\
00739 # they have reasonable lightweight defaults indicating that that particular\n\
00740 # representation is not available.\n\
00741 \n\
00742 # the tf frame to be used as a reference frame when combining information from\n\
00743 # the different representations below\n\
00744 string reference_frame_id\n\
00745 \n\
00746 # potential recognition results from a database of models\n\
00747 # all poses are relative to the object reference pose\n\
00748 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00749 \n\
00750 # the point cloud itself\n\
00751 sensor_msgs/PointCloud cluster\n\
00752 \n\
00753 # a region of a PointCloud2 of interest\n\
00754 object_manipulation_msgs/SceneRegion region\n\
00755 \n\
00756 # the name that this object has in the collision environment\n\
00757 string collision_name\n\
00758 ================================================================================\n\
00759 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00760 # Informs that a specific model from the Model Database has been \n\
00761 # identified at a certain location\n\
00762 \n\
00763 # the database id of the model\n\
00764 int32 model_id\n\
00765 \n\
00766 # the pose that it can be found in\n\
00767 geometry_msgs/PoseStamped pose\n\
00768 \n\
00769 # a measure of the confidence level in this detection result\n\
00770 float32 confidence\n\
00771 \n\
00772 # the name of the object detector that generated this detection result\n\
00773 string detector_name\n\
00774 \n\
00775 ================================================================================\n\
00776 MSG: geometry_msgs/PoseStamped\n\
00777 # A Pose with reference coordinate frame and timestamp\n\
00778 Header header\n\
00779 Pose pose\n\
00780 \n\
00781 ================================================================================\n\
00782 MSG: geometry_msgs/Pose\n\
00783 # A representation of pose in free space, composed of postion and orientation. \n\
00784 Point position\n\
00785 Quaternion orientation\n\
00786 \n\
00787 ================================================================================\n\
00788 MSG: geometry_msgs/Point\n\
00789 # This contains the position of a point in free space\n\
00790 float64 x\n\
00791 float64 y\n\
00792 float64 z\n\
00793 \n\
00794 ================================================================================\n\
00795 MSG: geometry_msgs/Quaternion\n\
00796 # This represents an orientation in free space in quaternion form.\n\
00797 \n\
00798 float64 x\n\
00799 float64 y\n\
00800 float64 z\n\
00801 float64 w\n\
00802 \n\
00803 ================================================================================\n\
00804 MSG: sensor_msgs/PointCloud\n\
00805 # This message holds a collection of 3d points, plus optional additional\n\
00806 # information about each point.\n\
00807 \n\
00808 # Time of sensor data acquisition, coordinate frame ID.\n\
00809 Header header\n\
00810 \n\
00811 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00812 # in the frame given in the header.\n\
00813 geometry_msgs/Point32[] points\n\
00814 \n\
00815 # Each channel should have the same number of elements as points array,\n\
00816 # and the data in each channel should correspond 1:1 with each point.\n\
00817 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00818 ChannelFloat32[] channels\n\
00819 \n\
00820 ================================================================================\n\
00821 MSG: geometry_msgs/Point32\n\
00822 # This contains the position of a point in free space(with 32 bits of precision).\n\
00823 # It is recommeded to use Point wherever possible instead of Point32. \n\
00824 # \n\
00825 # This recommendation is to promote interoperability. \n\
00826 #\n\
00827 # This message is designed to take up less space when sending\n\
00828 # lots of points at once, as in the case of a PointCloud. \n\
00829 \n\
00830 float32 x\n\
00831 float32 y\n\
00832 float32 z\n\
00833 ================================================================================\n\
00834 MSG: sensor_msgs/ChannelFloat32\n\
00835 # This message is used by the PointCloud message to hold optional data\n\
00836 # associated with each point in the cloud. The length of the values\n\
00837 # array should be the same as the length of the points array in the\n\
00838 # PointCloud, and each value should be associated with the corresponding\n\
00839 # point.\n\
00840 \n\
00841 # Channel names in existing practice include:\n\
00842 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00843 # This is opposite to usual conventions but remains for\n\
00844 # historical reasons. The newer PointCloud2 message has no\n\
00845 # such problem.\n\
00846 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00847 # (R,G,B) values packed into the least significant 24 bits,\n\
00848 # in order.\n\
00849 # \"intensity\" - laser or pixel intensity.\n\
00850 # \"distance\"\n\
00851 \n\
00852 # The channel name should give semantics of the channel (e.g.\n\
00853 # \"intensity\" instead of \"value\").\n\
00854 string name\n\
00855 \n\
00856 # The values array should be 1-1 with the elements of the associated\n\
00857 # PointCloud.\n\
00858 float32[] values\n\
00859 \n\
00860 ================================================================================\n\
00861 MSG: object_manipulation_msgs/SceneRegion\n\
00862 # Point cloud\n\
00863 sensor_msgs/PointCloud2 cloud\n\
00864 \n\
00865 # Indices for the region of interest\n\
00866 int32[] mask\n\
00867 \n\
00868 # One of the corresponding 2D images, if applicable\n\
00869 sensor_msgs/Image image\n\
00870 \n\
00871 # The disparity image, if applicable\n\
00872 sensor_msgs/Image disparity_image\n\
00873 \n\
00874 # Camera info for the camera that took the image\n\
00875 sensor_msgs/CameraInfo cam_info\n\
00876 \n\
00877 # a 3D region of interest for grasp planning\n\
00878 geometry_msgs/PoseStamped roi_box_pose\n\
00879 geometry_msgs/Vector3 roi_box_dims\n\
00880 \n\
00881 ================================================================================\n\
00882 MSG: sensor_msgs/PointCloud2\n\
00883 # This message holds a collection of N-dimensional points, which may\n\
00884 # contain additional information such as normals, intensity, etc. The\n\
00885 # point data is stored as a binary blob, its layout described by the\n\
00886 # contents of the \"fields\" array.\n\
00887 \n\
00888 # The point cloud data may be organized 2d (image-like) or 1d\n\
00889 # (unordered). Point clouds organized as 2d images may be produced by\n\
00890 # camera depth sensors such as stereo or time-of-flight.\n\
00891 \n\
00892 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00893 # points).\n\
00894 Header header\n\
00895 \n\
00896 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00897 # 1 and width is the length of the point cloud.\n\
00898 uint32 height\n\
00899 uint32 width\n\
00900 \n\
00901 # Describes the channels and their layout in the binary data blob.\n\
00902 PointField[] fields\n\
00903 \n\
00904 bool is_bigendian # Is this data bigendian?\n\
00905 uint32 point_step # Length of a point in bytes\n\
00906 uint32 row_step # Length of a row in bytes\n\
00907 uint8[] data # Actual point data, size is (row_step*height)\n\
00908 \n\
00909 bool is_dense # True if there are no invalid points\n\
00910 \n\
00911 ================================================================================\n\
00912 MSG: sensor_msgs/PointField\n\
00913 # This message holds the description of one point entry in the\n\
00914 # PointCloud2 message format.\n\
00915 uint8 INT8 = 1\n\
00916 uint8 UINT8 = 2\n\
00917 uint8 INT16 = 3\n\
00918 uint8 UINT16 = 4\n\
00919 uint8 INT32 = 5\n\
00920 uint8 UINT32 = 6\n\
00921 uint8 FLOAT32 = 7\n\
00922 uint8 FLOAT64 = 8\n\
00923 \n\
00924 string name # Name of field\n\
00925 uint32 offset # Offset from start of point struct\n\
00926 uint8 datatype # Datatype enumeration, see above\n\
00927 uint32 count # How many elements in the field\n\
00928 \n\
00929 ================================================================================\n\
00930 MSG: sensor_msgs/Image\n\
00931 # This message contains an uncompressed image\n\
00932 # (0, 0) is at top-left corner of image\n\
00933 #\n\
00934 \n\
00935 Header header # Header timestamp should be acquisition time of image\n\
00936 # Header frame_id should be optical frame of camera\n\
00937 # origin of frame should be optical center of cameara\n\
00938 # +x should point to the right in the image\n\
00939 # +y should point down in the image\n\
00940 # +z should point into to plane of the image\n\
00941 # If the frame_id here and the frame_id of the CameraInfo\n\
00942 # message associated with the image conflict\n\
00943 # the behavior is undefined\n\
00944 \n\
00945 uint32 height # image height, that is, number of rows\n\
00946 uint32 width # image width, that is, number of columns\n\
00947 \n\
00948 # The legal values for encoding are in file src/image_encodings.cpp\n\
00949 # If you want to standardize a new string format, join\n\
00950 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00951 \n\
00952 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00953 # taken from the list of strings in src/image_encodings.cpp\n\
00954 \n\
00955 uint8 is_bigendian # is this data bigendian?\n\
00956 uint32 step # Full row length in bytes\n\
00957 uint8[] data # actual matrix data, size is (step * rows)\n\
00958 \n\
00959 ================================================================================\n\
00960 MSG: sensor_msgs/CameraInfo\n\
00961 # This message defines meta information for a camera. It should be in a\n\
00962 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00963 # image topics named:\n\
00964 #\n\
00965 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00966 # image - monochrome, distorted\n\
00967 # image_color - color, distorted\n\
00968 # image_rect - monochrome, rectified\n\
00969 # image_rect_color - color, rectified\n\
00970 #\n\
00971 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00972 # for producing the four processed image topics from image_raw and\n\
00973 # camera_info. The meaning of the camera parameters are described in\n\
00974 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00975 #\n\
00976 # The image_geometry package provides a user-friendly interface to\n\
00977 # common operations using this meta information. If you want to, e.g.,\n\
00978 # project a 3d point into image coordinates, we strongly recommend\n\
00979 # using image_geometry.\n\
00980 #\n\
00981 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00982 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00983 # indicates an uncalibrated camera.\n\
00984 \n\
00985 #######################################################################\n\
00986 # Image acquisition info #\n\
00987 #######################################################################\n\
00988 \n\
00989 # Time of image acquisition, camera coordinate frame ID\n\
00990 Header header # Header timestamp should be acquisition time of image\n\
00991 # Header frame_id should be optical frame of camera\n\
00992 # origin of frame should be optical center of camera\n\
00993 # +x should point to the right in the image\n\
00994 # +y should point down in the image\n\
00995 # +z should point into the plane of the image\n\
00996 \n\
00997 \n\
00998 #######################################################################\n\
00999 # Calibration Parameters #\n\
01000 #######################################################################\n\
01001 # These are fixed during camera calibration. Their values will be the #\n\
01002 # same in all messages until the camera is recalibrated. Note that #\n\
01003 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01004 # #\n\
01005 # The internal parameters can be used to warp a raw (distorted) image #\n\
01006 # to: #\n\
01007 # 1. An undistorted image (requires D and K) #\n\
01008 # 2. A rectified image (requires D, K, R) #\n\
01009 # The projection matrix P projects 3D points into the rectified image.#\n\
01010 #######################################################################\n\
01011 \n\
01012 # The image dimensions with which the camera was calibrated. Normally\n\
01013 # this will be the full camera resolution in pixels.\n\
01014 uint32 height\n\
01015 uint32 width\n\
01016 \n\
01017 # The distortion model used. Supported models are listed in\n\
01018 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01019 # simple model of radial and tangential distortion - is sufficent.\n\
01020 string distortion_model\n\
01021 \n\
01022 # The distortion parameters, size depending on the distortion model.\n\
01023 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01024 float64[] D\n\
01025 \n\
01026 # Intrinsic camera matrix for the raw (distorted) images.\n\
01027 # [fx 0 cx]\n\
01028 # K = [ 0 fy cy]\n\
01029 # [ 0 0 1]\n\
01030 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01031 # coordinates using the focal lengths (fx, fy) and principal point\n\
01032 # (cx, cy).\n\
01033 float64[9] K # 3x3 row-major matrix\n\
01034 \n\
01035 # Rectification matrix (stereo cameras only)\n\
01036 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01037 # stereo image plane so that epipolar lines in both stereo images are\n\
01038 # parallel.\n\
01039 float64[9] R # 3x3 row-major matrix\n\
01040 \n\
01041 # Projection/camera matrix\n\
01042 # [fx' 0 cx' Tx]\n\
01043 # P = [ 0 fy' cy' Ty]\n\
01044 # [ 0 0 1 0]\n\
01045 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01046 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01047 # is the normal camera intrinsic matrix for the rectified image.\n\
01048 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01049 # coordinates using the focal lengths (fx', fy') and principal point\n\
01050 # (cx', cy') - these may differ from the values in K.\n\
01051 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01052 # also have R = the identity and P[1:3,1:3] = K.\n\
01053 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01054 # position of the optical center of the second camera in the first\n\
01055 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01056 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01057 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01058 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01059 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01060 # the rectified image is given by:\n\
01061 # [u v w]' = P * [X Y Z 1]'\n\
01062 # x = u / w\n\
01063 # y = v / w\n\
01064 # This holds for both images of a stereo pair.\n\
01065 float64[12] P # 3x4 row-major matrix\n\
01066 \n\
01067 \n\
01068 #######################################################################\n\
01069 # Operational Parameters #\n\
01070 #######################################################################\n\
01071 # These define the image region actually captured by the camera #\n\
01072 # driver. Although they affect the geometry of the output image, they #\n\
01073 # may be changed freely without recalibrating the camera. #\n\
01074 #######################################################################\n\
01075 \n\
01076 # Binning refers here to any camera setting which combines rectangular\n\
01077 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01078 # resolution of the output image to\n\
01079 # (width / binning_x) x (height / binning_y).\n\
01080 # The default values binning_x = binning_y = 0 is considered the same\n\
01081 # as binning_x = binning_y = 1 (no subsampling).\n\
01082 uint32 binning_x\n\
01083 uint32 binning_y\n\
01084 \n\
01085 # Region of interest (subwindow of full camera resolution), given in\n\
01086 # full resolution (unbinned) image coordinates. A particular ROI\n\
01087 # always denotes the same window of pixels on the camera sensor,\n\
01088 # regardless of binning settings.\n\
01089 # The default setting of roi (all values 0) is considered the same as\n\
01090 # full resolution (roi.width = width, roi.height = height).\n\
01091 RegionOfInterest roi\n\
01092 \n\
01093 ================================================================================\n\
01094 MSG: sensor_msgs/RegionOfInterest\n\
01095 # This message is used to specify a region of interest within an image.\n\
01096 #\n\
01097 # When used to specify the ROI setting of the camera when the image was\n\
01098 # taken, the height and width fields should either match the height and\n\
01099 # width fields for the associated image; or height = width = 0\n\
01100 # indicates that the full resolution image was captured.\n\
01101 \n\
01102 uint32 x_offset # Leftmost pixel of the ROI\n\
01103 # (0 if the ROI includes the left edge of the image)\n\
01104 uint32 y_offset # Topmost pixel of the ROI\n\
01105 # (0 if the ROI includes the top edge of the image)\n\
01106 uint32 height # Height of ROI\n\
01107 uint32 width # Width of ROI\n\
01108 \n\
01109 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01110 # ROI in this message. Typically this should be False if the full image\n\
01111 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01112 # used).\n\
01113 bool do_rectify\n\
01114 \n\
01115 ================================================================================\n\
01116 MSG: geometry_msgs/Vector3\n\
01117 # This represents a vector in free space. \n\
01118 \n\
01119 float64 x\n\
01120 float64 y\n\
01121 float64 z\n\
01122 ================================================================================\n\
01123 MSG: object_manipulation_msgs/Grasp\n\
01124 \n\
01125 # The internal posture of the hand for the pre-grasp\n\
01126 # only positions are used\n\
01127 sensor_msgs/JointState pre_grasp_posture\n\
01128 \n\
01129 # The internal posture of the hand for the grasp\n\
01130 # positions and efforts are used\n\
01131 sensor_msgs/JointState grasp_posture\n\
01132 \n\
01133 # The position of the end-effector for the grasp relative to a reference frame \n\
01134 # (that is always specified elsewhere, not in this message)\n\
01135 geometry_msgs/Pose grasp_pose\n\
01136 \n\
01137 # The estimated probability of success for this grasp\n\
01138 float64 success_probability\n\
01139 \n\
01140 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01141 bool cluster_rep\n\
01142 \n\
01143 # how far the pre-grasp should ideally be away from the grasp\n\
01144 float32 desired_approach_distance\n\
01145 \n\
01146 # how much distance between pre-grasp and grasp must actually be feasible \n\
01147 # for the grasp not to be rejected\n\
01148 float32 min_approach_distance\n\
01149 \n\
01150 # an optional list of obstacles that we have semantic information about\n\
01151 # and that we expect might move in the course of executing this grasp\n\
01152 # the grasp planner is expected to make sure they move in an OK way; during\n\
01153 # execution, grasp executors will not check for collisions against these objects\n\
01154 GraspableObject[] moved_obstacles\n\
01155 \n\
01156 ================================================================================\n\
01157 MSG: sensor_msgs/JointState\n\
01158 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01159 #\n\
01160 # The state of each joint (revolute or prismatic) is defined by:\n\
01161 # * the position of the joint (rad or m),\n\
01162 # * the velocity of the joint (rad/s or m/s) and \n\
01163 # * the effort that is applied in the joint (Nm or N).\n\
01164 #\n\
01165 # Each joint is uniquely identified by its name\n\
01166 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01167 # in one message have to be recorded at the same time.\n\
01168 #\n\
01169 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01170 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01171 # effort associated with them, you can leave the effort array empty. \n\
01172 #\n\
01173 # All arrays in this message should have the same size, or be empty.\n\
01174 # This is the only way to uniquely associate the joint name with the correct\n\
01175 # states.\n\
01176 \n\
01177 \n\
01178 Header header\n\
01179 \n\
01180 string[] name\n\
01181 float64[] position\n\
01182 float64[] velocity\n\
01183 float64[] effort\n\
01184 \n\
01185 ";
01186 }
01187
01188 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); }
01189 };
01190
01191 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
01192 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {};
01193 }
01194 }
01195
01196 namespace ros
01197 {
01198 namespace serialization
01199 {
01200
01201 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >
01202 {
01203 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01204 {
01205 stream.next(m.header);
01206 stream.next(m.goal_id);
01207 stream.next(m.goal);
01208 }
01209
01210 ROS_DECLARE_ALLINONE_SERIALIZER;
01211 };
01212 }
01213 }
01214
01215 namespace ros
01216 {
01217 namespace message_operations
01218 {
01219
01220 template<class ContainerAllocator>
01221 struct Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >
01222 {
01223 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v)
01224 {
01225 s << indent << "header: ";
01226 s << std::endl;
01227 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01228 s << indent << "goal_id: ";
01229 s << std::endl;
01230 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01231 s << indent << "goal: ";
01232 s << std::endl;
01233 Printer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01234 }
01235 };
01236
01237
01238 }
01239 }
01240
01241 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H
01242