$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningActionGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "object_manipulation_msgs/GraspPlanningGoal.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspPlanningActionGoal_ { 00025 typedef GraspPlanningActionGoal_<ContainerAllocator> Type; 00026 00027 GraspPlanningActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 GraspPlanningActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> _goal_type; 00048 ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "bd86cee38f37732db5c86d633be95d66"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 GraspPlanningGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: object_manipulation_msgs/GraspPlanningGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 # Requests that grasp planning be performed on the object to be grasped\n\ 00107 # returns a list of grasps to be tested and executed\n\ 00108 \n\ 00109 # the arm being used\n\ 00110 string arm_name\n\ 00111 \n\ 00112 # the object to be grasped\n\ 00113 GraspableObject target\n\ 00114 \n\ 00115 # the name that the target object has in the collision environment\n\ 00116 # can be left empty if no name is available\n\ 00117 string collision_object_name\n\ 00118 \n\ 00119 # the name that the support surface (e.g. table) has in the collision map\n\ 00120 # can be left empty if no name is available\n\ 00121 string collision_support_surface_name\n\ 00122 \n\ 00123 # an optional list of grasps to be evaluated by the planner\n\ 00124 Grasp[] grasps_to_evaluate\n\ 00125 \n\ 00126 # an optional list of obstacles that we have semantic information about\n\ 00127 # and that can be moved in the course of grasping\n\ 00128 GraspableObject[] movable_obstacles\n\ 00129 \n\ 00130 \n\ 00131 ================================================================================\n\ 00132 MSG: object_manipulation_msgs/GraspableObject\n\ 00133 # an object that the object_manipulator can work on\n\ 00134 \n\ 00135 # a graspable object can be represented in multiple ways. This message\n\ 00136 # can contain all of them. Which one is actually used is up to the receiver\n\ 00137 # of this message. When adding new representations, one must be careful that\n\ 00138 # they have reasonable lightweight defaults indicating that that particular\n\ 00139 # representation is not available.\n\ 00140 \n\ 00141 # the tf frame to be used as a reference frame when combining information from\n\ 00142 # the different representations below\n\ 00143 string reference_frame_id\n\ 00144 \n\ 00145 # potential recognition results from a database of models\n\ 00146 # all poses are relative to the object reference pose\n\ 00147 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00148 \n\ 00149 # the point cloud itself\n\ 00150 sensor_msgs/PointCloud cluster\n\ 00151 \n\ 00152 # a region of a PointCloud2 of interest\n\ 00153 object_manipulation_msgs/SceneRegion region\n\ 00154 \n\ 00155 # the name that this object has in the collision environment\n\ 00156 string collision_name\n\ 00157 ================================================================================\n\ 00158 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00159 # Informs that a specific model from the Model Database has been \n\ 00160 # identified at a certain location\n\ 00161 \n\ 00162 # the database id of the model\n\ 00163 int32 model_id\n\ 00164 \n\ 00165 # the pose that it can be found in\n\ 00166 geometry_msgs/PoseStamped pose\n\ 00167 \n\ 00168 # a measure of the confidence level in this detection result\n\ 00169 float32 confidence\n\ 00170 \n\ 00171 # the name of the object detector that generated this detection result\n\ 00172 string detector_name\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: geometry_msgs/PoseStamped\n\ 00176 # A Pose with reference coordinate frame and timestamp\n\ 00177 Header header\n\ 00178 Pose pose\n\ 00179 \n\ 00180 ================================================================================\n\ 00181 MSG: geometry_msgs/Pose\n\ 00182 # A representation of pose in free space, composed of postion and orientation. \n\ 00183 Point position\n\ 00184 Quaternion orientation\n\ 00185 \n\ 00186 ================================================================================\n\ 00187 MSG: geometry_msgs/Point\n\ 00188 # This contains the position of a point in free space\n\ 00189 float64 x\n\ 00190 float64 y\n\ 00191 float64 z\n\ 00192 \n\ 00193 ================================================================================\n\ 00194 MSG: geometry_msgs/Quaternion\n\ 00195 # This represents an orientation in free space in quaternion form.\n\ 00196 \n\ 00197 float64 x\n\ 00198 float64 y\n\ 00199 float64 z\n\ 00200 float64 w\n\ 00201 \n\ 00202 ================================================================================\n\ 00203 MSG: sensor_msgs/PointCloud\n\ 00204 # This message holds a collection of 3d points, plus optional additional\n\ 00205 # information about each point.\n\ 00206 \n\ 00207 # Time of sensor data acquisition, coordinate frame ID.\n\ 00208 Header header\n\ 00209 \n\ 00210 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00211 # in the frame given in the header.\n\ 00212 geometry_msgs/Point32[] points\n\ 00213 \n\ 00214 # Each channel should have the same number of elements as points array,\n\ 00215 # and the data in each channel should correspond 1:1 with each point.\n\ 00216 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00217 ChannelFloat32[] channels\n\ 00218 \n\ 00219 ================================================================================\n\ 00220 MSG: geometry_msgs/Point32\n\ 00221 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00222 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00223 # \n\ 00224 # This recommendation is to promote interoperability. \n\ 00225 #\n\ 00226 # This message is designed to take up less space when sending\n\ 00227 # lots of points at once, as in the case of a PointCloud. \n\ 00228 \n\ 00229 float32 x\n\ 00230 float32 y\n\ 00231 float32 z\n\ 00232 ================================================================================\n\ 00233 MSG: sensor_msgs/ChannelFloat32\n\ 00234 # This message is used by the PointCloud message to hold optional data\n\ 00235 # associated with each point in the cloud. The length of the values\n\ 00236 # array should be the same as the length of the points array in the\n\ 00237 # PointCloud, and each value should be associated with the corresponding\n\ 00238 # point.\n\ 00239 \n\ 00240 # Channel names in existing practice include:\n\ 00241 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00242 # This is opposite to usual conventions but remains for\n\ 00243 # historical reasons. The newer PointCloud2 message has no\n\ 00244 # such problem.\n\ 00245 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00246 # (R,G,B) values packed into the least significant 24 bits,\n\ 00247 # in order.\n\ 00248 # \"intensity\" - laser or pixel intensity.\n\ 00249 # \"distance\"\n\ 00250 \n\ 00251 # The channel name should give semantics of the channel (e.g.\n\ 00252 # \"intensity\" instead of \"value\").\n\ 00253 string name\n\ 00254 \n\ 00255 # The values array should be 1-1 with the elements of the associated\n\ 00256 # PointCloud.\n\ 00257 float32[] values\n\ 00258 \n\ 00259 ================================================================================\n\ 00260 MSG: object_manipulation_msgs/SceneRegion\n\ 00261 # Point cloud\n\ 00262 sensor_msgs/PointCloud2 cloud\n\ 00263 \n\ 00264 # Indices for the region of interest\n\ 00265 int32[] mask\n\ 00266 \n\ 00267 # One of the corresponding 2D images, if applicable\n\ 00268 sensor_msgs/Image image\n\ 00269 \n\ 00270 # The disparity image, if applicable\n\ 00271 sensor_msgs/Image disparity_image\n\ 00272 \n\ 00273 # Camera info for the camera that took the image\n\ 00274 sensor_msgs/CameraInfo cam_info\n\ 00275 \n\ 00276 # a 3D region of interest for grasp planning\n\ 00277 geometry_msgs/PoseStamped roi_box_pose\n\ 00278 geometry_msgs/Vector3 roi_box_dims\n\ 00279 \n\ 00280 ================================================================================\n\ 00281 MSG: sensor_msgs/PointCloud2\n\ 00282 # This message holds a collection of N-dimensional points, which may\n\ 00283 # contain additional information such as normals, intensity, etc. The\n\ 00284 # point data is stored as a binary blob, its layout described by the\n\ 00285 # contents of the \"fields\" array.\n\ 00286 \n\ 00287 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00288 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00289 # camera depth sensors such as stereo or time-of-flight.\n\ 00290 \n\ 00291 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00292 # points).\n\ 00293 Header header\n\ 00294 \n\ 00295 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00296 # 1 and width is the length of the point cloud.\n\ 00297 uint32 height\n\ 00298 uint32 width\n\ 00299 \n\ 00300 # Describes the channels and their layout in the binary data blob.\n\ 00301 PointField[] fields\n\ 00302 \n\ 00303 bool is_bigendian # Is this data bigendian?\n\ 00304 uint32 point_step # Length of a point in bytes\n\ 00305 uint32 row_step # Length of a row in bytes\n\ 00306 uint8[] data # Actual point data, size is (row_step*height)\n\ 00307 \n\ 00308 bool is_dense # True if there are no invalid points\n\ 00309 \n\ 00310 ================================================================================\n\ 00311 MSG: sensor_msgs/PointField\n\ 00312 # This message holds the description of one point entry in the\n\ 00313 # PointCloud2 message format.\n\ 00314 uint8 INT8 = 1\n\ 00315 uint8 UINT8 = 2\n\ 00316 uint8 INT16 = 3\n\ 00317 uint8 UINT16 = 4\n\ 00318 uint8 INT32 = 5\n\ 00319 uint8 UINT32 = 6\n\ 00320 uint8 FLOAT32 = 7\n\ 00321 uint8 FLOAT64 = 8\n\ 00322 \n\ 00323 string name # Name of field\n\ 00324 uint32 offset # Offset from start of point struct\n\ 00325 uint8 datatype # Datatype enumeration, see above\n\ 00326 uint32 count # How many elements in the field\n\ 00327 \n\ 00328 ================================================================================\n\ 00329 MSG: sensor_msgs/Image\n\ 00330 # This message contains an uncompressed image\n\ 00331 # (0, 0) is at top-left corner of image\n\ 00332 #\n\ 00333 \n\ 00334 Header header # Header timestamp should be acquisition time of image\n\ 00335 # Header frame_id should be optical frame of camera\n\ 00336 # origin of frame should be optical center of cameara\n\ 00337 # +x should point to the right in the image\n\ 00338 # +y should point down in the image\n\ 00339 # +z should point into to plane of the image\n\ 00340 # If the frame_id here and the frame_id of the CameraInfo\n\ 00341 # message associated with the image conflict\n\ 00342 # the behavior is undefined\n\ 00343 \n\ 00344 uint32 height # image height, that is, number of rows\n\ 00345 uint32 width # image width, that is, number of columns\n\ 00346 \n\ 00347 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00348 # If you want to standardize a new string format, join\n\ 00349 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00350 \n\ 00351 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00352 # taken from the list of strings in src/image_encodings.cpp\n\ 00353 \n\ 00354 uint8 is_bigendian # is this data bigendian?\n\ 00355 uint32 step # Full row length in bytes\n\ 00356 uint8[] data # actual matrix data, size is (step * rows)\n\ 00357 \n\ 00358 ================================================================================\n\ 00359 MSG: sensor_msgs/CameraInfo\n\ 00360 # This message defines meta information for a camera. It should be in a\n\ 00361 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00362 # image topics named:\n\ 00363 #\n\ 00364 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00365 # image - monochrome, distorted\n\ 00366 # image_color - color, distorted\n\ 00367 # image_rect - monochrome, rectified\n\ 00368 # image_rect_color - color, rectified\n\ 00369 #\n\ 00370 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00371 # for producing the four processed image topics from image_raw and\n\ 00372 # camera_info. The meaning of the camera parameters are described in\n\ 00373 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00374 #\n\ 00375 # The image_geometry package provides a user-friendly interface to\n\ 00376 # common operations using this meta information. If you want to, e.g.,\n\ 00377 # project a 3d point into image coordinates, we strongly recommend\n\ 00378 # using image_geometry.\n\ 00379 #\n\ 00380 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00381 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00382 # indicates an uncalibrated camera.\n\ 00383 \n\ 00384 #######################################################################\n\ 00385 # Image acquisition info #\n\ 00386 #######################################################################\n\ 00387 \n\ 00388 # Time of image acquisition, camera coordinate frame ID\n\ 00389 Header header # Header timestamp should be acquisition time of image\n\ 00390 # Header frame_id should be optical frame of camera\n\ 00391 # origin of frame should be optical center of camera\n\ 00392 # +x should point to the right in the image\n\ 00393 # +y should point down in the image\n\ 00394 # +z should point into the plane of the image\n\ 00395 \n\ 00396 \n\ 00397 #######################################################################\n\ 00398 # Calibration Parameters #\n\ 00399 #######################################################################\n\ 00400 # These are fixed during camera calibration. Their values will be the #\n\ 00401 # same in all messages until the camera is recalibrated. Note that #\n\ 00402 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00403 # #\n\ 00404 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00405 # to: #\n\ 00406 # 1. An undistorted image (requires D and K) #\n\ 00407 # 2. A rectified image (requires D, K, R) #\n\ 00408 # The projection matrix P projects 3D points into the rectified image.#\n\ 00409 #######################################################################\n\ 00410 \n\ 00411 # The image dimensions with which the camera was calibrated. Normally\n\ 00412 # this will be the full camera resolution in pixels.\n\ 00413 uint32 height\n\ 00414 uint32 width\n\ 00415 \n\ 00416 # The distortion model used. Supported models are listed in\n\ 00417 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00418 # simple model of radial and tangential distortion - is sufficent.\n\ 00419 string distortion_model\n\ 00420 \n\ 00421 # The distortion parameters, size depending on the distortion model.\n\ 00422 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00423 float64[] D\n\ 00424 \n\ 00425 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00426 # [fx 0 cx]\n\ 00427 # K = [ 0 fy cy]\n\ 00428 # [ 0 0 1]\n\ 00429 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00430 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00431 # (cx, cy).\n\ 00432 float64[9] K # 3x3 row-major matrix\n\ 00433 \n\ 00434 # Rectification matrix (stereo cameras only)\n\ 00435 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00436 # stereo image plane so that epipolar lines in both stereo images are\n\ 00437 # parallel.\n\ 00438 float64[9] R # 3x3 row-major matrix\n\ 00439 \n\ 00440 # Projection/camera matrix\n\ 00441 # [fx' 0 cx' Tx]\n\ 00442 # P = [ 0 fy' cy' Ty]\n\ 00443 # [ 0 0 1 0]\n\ 00444 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00445 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00446 # is the normal camera intrinsic matrix for the rectified image.\n\ 00447 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00448 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00449 # (cx', cy') - these may differ from the values in K.\n\ 00450 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00451 # also have R = the identity and P[1:3,1:3] = K.\n\ 00452 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00453 # position of the optical center of the second camera in the first\n\ 00454 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00455 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00456 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00457 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00458 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00459 # the rectified image is given by:\n\ 00460 # [u v w]' = P * [X Y Z 1]'\n\ 00461 # x = u / w\n\ 00462 # y = v / w\n\ 00463 # This holds for both images of a stereo pair.\n\ 00464 float64[12] P # 3x4 row-major matrix\n\ 00465 \n\ 00466 \n\ 00467 #######################################################################\n\ 00468 # Operational Parameters #\n\ 00469 #######################################################################\n\ 00470 # These define the image region actually captured by the camera #\n\ 00471 # driver. Although they affect the geometry of the output image, they #\n\ 00472 # may be changed freely without recalibrating the camera. #\n\ 00473 #######################################################################\n\ 00474 \n\ 00475 # Binning refers here to any camera setting which combines rectangular\n\ 00476 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00477 # resolution of the output image to\n\ 00478 # (width / binning_x) x (height / binning_y).\n\ 00479 # The default values binning_x = binning_y = 0 is considered the same\n\ 00480 # as binning_x = binning_y = 1 (no subsampling).\n\ 00481 uint32 binning_x\n\ 00482 uint32 binning_y\n\ 00483 \n\ 00484 # Region of interest (subwindow of full camera resolution), given in\n\ 00485 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00486 # always denotes the same window of pixels on the camera sensor,\n\ 00487 # regardless of binning settings.\n\ 00488 # The default setting of roi (all values 0) is considered the same as\n\ 00489 # full resolution (roi.width = width, roi.height = height).\n\ 00490 RegionOfInterest roi\n\ 00491 \n\ 00492 ================================================================================\n\ 00493 MSG: sensor_msgs/RegionOfInterest\n\ 00494 # This message is used to specify a region of interest within an image.\n\ 00495 #\n\ 00496 # When used to specify the ROI setting of the camera when the image was\n\ 00497 # taken, the height and width fields should either match the height and\n\ 00498 # width fields for the associated image; or height = width = 0\n\ 00499 # indicates that the full resolution image was captured.\n\ 00500 \n\ 00501 uint32 x_offset # Leftmost pixel of the ROI\n\ 00502 # (0 if the ROI includes the left edge of the image)\n\ 00503 uint32 y_offset # Topmost pixel of the ROI\n\ 00504 # (0 if the ROI includes the top edge of the image)\n\ 00505 uint32 height # Height of ROI\n\ 00506 uint32 width # Width of ROI\n\ 00507 \n\ 00508 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00509 # ROI in this message. Typically this should be False if the full image\n\ 00510 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00511 # used).\n\ 00512 bool do_rectify\n\ 00513 \n\ 00514 ================================================================================\n\ 00515 MSG: geometry_msgs/Vector3\n\ 00516 # This represents a vector in free space. \n\ 00517 \n\ 00518 float64 x\n\ 00519 float64 y\n\ 00520 float64 z\n\ 00521 ================================================================================\n\ 00522 MSG: object_manipulation_msgs/Grasp\n\ 00523 \n\ 00524 # The internal posture of the hand for the pre-grasp\n\ 00525 # only positions are used\n\ 00526 sensor_msgs/JointState pre_grasp_posture\n\ 00527 \n\ 00528 # The internal posture of the hand for the grasp\n\ 00529 # positions and efforts are used\n\ 00530 sensor_msgs/JointState grasp_posture\n\ 00531 \n\ 00532 # The position of the end-effector for the grasp relative to a reference frame \n\ 00533 # (that is always specified elsewhere, not in this message)\n\ 00534 geometry_msgs/Pose grasp_pose\n\ 00535 \n\ 00536 # The estimated probability of success for this grasp\n\ 00537 float64 success_probability\n\ 00538 \n\ 00539 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00540 bool cluster_rep\n\ 00541 \n\ 00542 # how far the pre-grasp should ideally be away from the grasp\n\ 00543 float32 desired_approach_distance\n\ 00544 \n\ 00545 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00546 # for the grasp not to be rejected\n\ 00547 float32 min_approach_distance\n\ 00548 \n\ 00549 # an optional list of obstacles that we have semantic information about\n\ 00550 # and that we expect might move in the course of executing this grasp\n\ 00551 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00552 # execution, grasp executors will not check for collisions against these objects\n\ 00553 GraspableObject[] moved_obstacles\n\ 00554 \n\ 00555 ================================================================================\n\ 00556 MSG: sensor_msgs/JointState\n\ 00557 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00558 #\n\ 00559 # The state of each joint (revolute or prismatic) is defined by:\n\ 00560 # * the position of the joint (rad or m),\n\ 00561 # * the velocity of the joint (rad/s or m/s) and \n\ 00562 # * the effort that is applied in the joint (Nm or N).\n\ 00563 #\n\ 00564 # Each joint is uniquely identified by its name\n\ 00565 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00566 # in one message have to be recorded at the same time.\n\ 00567 #\n\ 00568 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00569 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00570 # effort associated with them, you can leave the effort array empty. \n\ 00571 #\n\ 00572 # All arrays in this message should have the same size, or be empty.\n\ 00573 # This is the only way to uniquely associate the joint name with the correct\n\ 00574 # states.\n\ 00575 \n\ 00576 \n\ 00577 Header header\n\ 00578 \n\ 00579 string[] name\n\ 00580 float64[] position\n\ 00581 float64[] velocity\n\ 00582 float64[] effort\n\ 00583 \n\ 00584 "; } 00585 public: 00586 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00587 00588 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00589 00590 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00591 { 00592 ros::serialization::OStream stream(write_ptr, 1000000000); 00593 ros::serialization::serialize(stream, header); 00594 ros::serialization::serialize(stream, goal_id); 00595 ros::serialization::serialize(stream, goal); 00596 return stream.getData(); 00597 } 00598 00599 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00600 { 00601 ros::serialization::IStream stream(read_ptr, 1000000000); 00602 ros::serialization::deserialize(stream, header); 00603 ros::serialization::deserialize(stream, goal_id); 00604 ros::serialization::deserialize(stream, goal); 00605 return stream.getData(); 00606 } 00607 00608 ROS_DEPRECATED virtual uint32_t serializationLength() const 00609 { 00610 uint32_t size = 0; 00611 size += ros::serialization::serializationLength(header); 00612 size += ros::serialization::serializationLength(goal_id); 00613 size += ros::serialization::serializationLength(goal); 00614 return size; 00615 } 00616 00617 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > Ptr; 00618 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> const> ConstPtr; 00619 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00620 }; // struct GraspPlanningActionGoal 00621 typedef ::object_manipulation_msgs::GraspPlanningActionGoal_<std::allocator<void> > GraspPlanningActionGoal; 00622 00623 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal> GraspPlanningActionGoalPtr; 00624 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionGoal const> GraspPlanningActionGoalConstPtr; 00625 00626 00627 template<typename ContainerAllocator> 00628 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v) 00629 { 00630 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> >::stream(s, "", v); 00631 return s;} 00632 00633 } // namespace object_manipulation_msgs 00634 00635 namespace ros 00636 { 00637 namespace message_traits 00638 { 00639 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {}; 00640 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> const> : public TrueType {}; 00641 template<class ContainerAllocator> 00642 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > { 00643 static const char* value() 00644 { 00645 return "bd86cee38f37732db5c86d633be95d66"; 00646 } 00647 00648 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 00649 static const uint64_t static_value1 = 0xbd86cee38f37732dULL; 00650 static const uint64_t static_value2 = 0xb5c86d633be95d66ULL; 00651 }; 00652 00653 template<class ContainerAllocator> 00654 struct DataType< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > { 00655 static const char* value() 00656 { 00657 return "object_manipulation_msgs/GraspPlanningActionGoal"; 00658 } 00659 00660 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 00661 }; 00662 00663 template<class ContainerAllocator> 00664 struct Definition< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > { 00665 static const char* value() 00666 { 00667 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00668 \n\ 00669 Header header\n\ 00670 actionlib_msgs/GoalID goal_id\n\ 00671 GraspPlanningGoal goal\n\ 00672 \n\ 00673 ================================================================================\n\ 00674 MSG: std_msgs/Header\n\ 00675 # Standard metadata for higher-level stamped data types.\n\ 00676 # This is generally used to communicate timestamped data \n\ 00677 # in a particular coordinate frame.\n\ 00678 # \n\ 00679 # sequence ID: consecutively increasing ID \n\ 00680 uint32 seq\n\ 00681 #Two-integer timestamp that is expressed as:\n\ 00682 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00683 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00684 # time-handling sugar is provided by the client library\n\ 00685 time stamp\n\ 00686 #Frame this data is associated with\n\ 00687 # 0: no frame\n\ 00688 # 1: global frame\n\ 00689 string frame_id\n\ 00690 \n\ 00691 ================================================================================\n\ 00692 MSG: actionlib_msgs/GoalID\n\ 00693 # The stamp should store the time at which this goal was requested.\n\ 00694 # It is used by an action server when it tries to preempt all\n\ 00695 # goals that were requested before a certain time\n\ 00696 time stamp\n\ 00697 \n\ 00698 # The id provides a way to associate feedback and\n\ 00699 # result message with specific goal requests. The id\n\ 00700 # specified must be unique.\n\ 00701 string id\n\ 00702 \n\ 00703 \n\ 00704 ================================================================================\n\ 00705 MSG: object_manipulation_msgs/GraspPlanningGoal\n\ 00706 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00707 # Requests that grasp planning be performed on the object to be grasped\n\ 00708 # returns a list of grasps to be tested and executed\n\ 00709 \n\ 00710 # the arm being used\n\ 00711 string arm_name\n\ 00712 \n\ 00713 # the object to be grasped\n\ 00714 GraspableObject target\n\ 00715 \n\ 00716 # the name that the target object has in the collision environment\n\ 00717 # can be left empty if no name is available\n\ 00718 string collision_object_name\n\ 00719 \n\ 00720 # the name that the support surface (e.g. table) has in the collision map\n\ 00721 # can be left empty if no name is available\n\ 00722 string collision_support_surface_name\n\ 00723 \n\ 00724 # an optional list of grasps to be evaluated by the planner\n\ 00725 Grasp[] grasps_to_evaluate\n\ 00726 \n\ 00727 # an optional list of obstacles that we have semantic information about\n\ 00728 # and that can be moved in the course of grasping\n\ 00729 GraspableObject[] movable_obstacles\n\ 00730 \n\ 00731 \n\ 00732 ================================================================================\n\ 00733 MSG: object_manipulation_msgs/GraspableObject\n\ 00734 # an object that the object_manipulator can work on\n\ 00735 \n\ 00736 # a graspable object can be represented in multiple ways. This message\n\ 00737 # can contain all of them. Which one is actually used is up to the receiver\n\ 00738 # of this message. When adding new representations, one must be careful that\n\ 00739 # they have reasonable lightweight defaults indicating that that particular\n\ 00740 # representation is not available.\n\ 00741 \n\ 00742 # the tf frame to be used as a reference frame when combining information from\n\ 00743 # the different representations below\n\ 00744 string reference_frame_id\n\ 00745 \n\ 00746 # potential recognition results from a database of models\n\ 00747 # all poses are relative to the object reference pose\n\ 00748 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00749 \n\ 00750 # the point cloud itself\n\ 00751 sensor_msgs/PointCloud cluster\n\ 00752 \n\ 00753 # a region of a PointCloud2 of interest\n\ 00754 object_manipulation_msgs/SceneRegion region\n\ 00755 \n\ 00756 # the name that this object has in the collision environment\n\ 00757 string collision_name\n\ 00758 ================================================================================\n\ 00759 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00760 # Informs that a specific model from the Model Database has been \n\ 00761 # identified at a certain location\n\ 00762 \n\ 00763 # the database id of the model\n\ 00764 int32 model_id\n\ 00765 \n\ 00766 # the pose that it can be found in\n\ 00767 geometry_msgs/PoseStamped pose\n\ 00768 \n\ 00769 # a measure of the confidence level in this detection result\n\ 00770 float32 confidence\n\ 00771 \n\ 00772 # the name of the object detector that generated this detection result\n\ 00773 string detector_name\n\ 00774 \n\ 00775 ================================================================================\n\ 00776 MSG: geometry_msgs/PoseStamped\n\ 00777 # A Pose with reference coordinate frame and timestamp\n\ 00778 Header header\n\ 00779 Pose pose\n\ 00780 \n\ 00781 ================================================================================\n\ 00782 MSG: geometry_msgs/Pose\n\ 00783 # A representation of pose in free space, composed of postion and orientation. \n\ 00784 Point position\n\ 00785 Quaternion orientation\n\ 00786 \n\ 00787 ================================================================================\n\ 00788 MSG: geometry_msgs/Point\n\ 00789 # This contains the position of a point in free space\n\ 00790 float64 x\n\ 00791 float64 y\n\ 00792 float64 z\n\ 00793 \n\ 00794 ================================================================================\n\ 00795 MSG: geometry_msgs/Quaternion\n\ 00796 # This represents an orientation in free space in quaternion form.\n\ 00797 \n\ 00798 float64 x\n\ 00799 float64 y\n\ 00800 float64 z\n\ 00801 float64 w\n\ 00802 \n\ 00803 ================================================================================\n\ 00804 MSG: sensor_msgs/PointCloud\n\ 00805 # This message holds a collection of 3d points, plus optional additional\n\ 00806 # information about each point.\n\ 00807 \n\ 00808 # Time of sensor data acquisition, coordinate frame ID.\n\ 00809 Header header\n\ 00810 \n\ 00811 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00812 # in the frame given in the header.\n\ 00813 geometry_msgs/Point32[] points\n\ 00814 \n\ 00815 # Each channel should have the same number of elements as points array,\n\ 00816 # and the data in each channel should correspond 1:1 with each point.\n\ 00817 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00818 ChannelFloat32[] channels\n\ 00819 \n\ 00820 ================================================================================\n\ 00821 MSG: geometry_msgs/Point32\n\ 00822 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00823 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00824 # \n\ 00825 # This recommendation is to promote interoperability. \n\ 00826 #\n\ 00827 # This message is designed to take up less space when sending\n\ 00828 # lots of points at once, as in the case of a PointCloud. \n\ 00829 \n\ 00830 float32 x\n\ 00831 float32 y\n\ 00832 float32 z\n\ 00833 ================================================================================\n\ 00834 MSG: sensor_msgs/ChannelFloat32\n\ 00835 # This message is used by the PointCloud message to hold optional data\n\ 00836 # associated with each point in the cloud. The length of the values\n\ 00837 # array should be the same as the length of the points array in the\n\ 00838 # PointCloud, and each value should be associated with the corresponding\n\ 00839 # point.\n\ 00840 \n\ 00841 # Channel names in existing practice include:\n\ 00842 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00843 # This is opposite to usual conventions but remains for\n\ 00844 # historical reasons. The newer PointCloud2 message has no\n\ 00845 # such problem.\n\ 00846 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00847 # (R,G,B) values packed into the least significant 24 bits,\n\ 00848 # in order.\n\ 00849 # \"intensity\" - laser or pixel intensity.\n\ 00850 # \"distance\"\n\ 00851 \n\ 00852 # The channel name should give semantics of the channel (e.g.\n\ 00853 # \"intensity\" instead of \"value\").\n\ 00854 string name\n\ 00855 \n\ 00856 # The values array should be 1-1 with the elements of the associated\n\ 00857 # PointCloud.\n\ 00858 float32[] values\n\ 00859 \n\ 00860 ================================================================================\n\ 00861 MSG: object_manipulation_msgs/SceneRegion\n\ 00862 # Point cloud\n\ 00863 sensor_msgs/PointCloud2 cloud\n\ 00864 \n\ 00865 # Indices for the region of interest\n\ 00866 int32[] mask\n\ 00867 \n\ 00868 # One of the corresponding 2D images, if applicable\n\ 00869 sensor_msgs/Image image\n\ 00870 \n\ 00871 # The disparity image, if applicable\n\ 00872 sensor_msgs/Image disparity_image\n\ 00873 \n\ 00874 # Camera info for the camera that took the image\n\ 00875 sensor_msgs/CameraInfo cam_info\n\ 00876 \n\ 00877 # a 3D region of interest for grasp planning\n\ 00878 geometry_msgs/PoseStamped roi_box_pose\n\ 00879 geometry_msgs/Vector3 roi_box_dims\n\ 00880 \n\ 00881 ================================================================================\n\ 00882 MSG: sensor_msgs/PointCloud2\n\ 00883 # This message holds a collection of N-dimensional points, which may\n\ 00884 # contain additional information such as normals, intensity, etc. The\n\ 00885 # point data is stored as a binary blob, its layout described by the\n\ 00886 # contents of the \"fields\" array.\n\ 00887 \n\ 00888 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00889 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00890 # camera depth sensors such as stereo or time-of-flight.\n\ 00891 \n\ 00892 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00893 # points).\n\ 00894 Header header\n\ 00895 \n\ 00896 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00897 # 1 and width is the length of the point cloud.\n\ 00898 uint32 height\n\ 00899 uint32 width\n\ 00900 \n\ 00901 # Describes the channels and their layout in the binary data blob.\n\ 00902 PointField[] fields\n\ 00903 \n\ 00904 bool is_bigendian # Is this data bigendian?\n\ 00905 uint32 point_step # Length of a point in bytes\n\ 00906 uint32 row_step # Length of a row in bytes\n\ 00907 uint8[] data # Actual point data, size is (row_step*height)\n\ 00908 \n\ 00909 bool is_dense # True if there are no invalid points\n\ 00910 \n\ 00911 ================================================================================\n\ 00912 MSG: sensor_msgs/PointField\n\ 00913 # This message holds the description of one point entry in the\n\ 00914 # PointCloud2 message format.\n\ 00915 uint8 INT8 = 1\n\ 00916 uint8 UINT8 = 2\n\ 00917 uint8 INT16 = 3\n\ 00918 uint8 UINT16 = 4\n\ 00919 uint8 INT32 = 5\n\ 00920 uint8 UINT32 = 6\n\ 00921 uint8 FLOAT32 = 7\n\ 00922 uint8 FLOAT64 = 8\n\ 00923 \n\ 00924 string name # Name of field\n\ 00925 uint32 offset # Offset from start of point struct\n\ 00926 uint8 datatype # Datatype enumeration, see above\n\ 00927 uint32 count # How many elements in the field\n\ 00928 \n\ 00929 ================================================================================\n\ 00930 MSG: sensor_msgs/Image\n\ 00931 # This message contains an uncompressed image\n\ 00932 # (0, 0) is at top-left corner of image\n\ 00933 #\n\ 00934 \n\ 00935 Header header # Header timestamp should be acquisition time of image\n\ 00936 # Header frame_id should be optical frame of camera\n\ 00937 # origin of frame should be optical center of cameara\n\ 00938 # +x should point to the right in the image\n\ 00939 # +y should point down in the image\n\ 00940 # +z should point into to plane of the image\n\ 00941 # If the frame_id here and the frame_id of the CameraInfo\n\ 00942 # message associated with the image conflict\n\ 00943 # the behavior is undefined\n\ 00944 \n\ 00945 uint32 height # image height, that is, number of rows\n\ 00946 uint32 width # image width, that is, number of columns\n\ 00947 \n\ 00948 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00949 # If you want to standardize a new string format, join\n\ 00950 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00951 \n\ 00952 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00953 # taken from the list of strings in src/image_encodings.cpp\n\ 00954 \n\ 00955 uint8 is_bigendian # is this data bigendian?\n\ 00956 uint32 step # Full row length in bytes\n\ 00957 uint8[] data # actual matrix data, size is (step * rows)\n\ 00958 \n\ 00959 ================================================================================\n\ 00960 MSG: sensor_msgs/CameraInfo\n\ 00961 # This message defines meta information for a camera. It should be in a\n\ 00962 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00963 # image topics named:\n\ 00964 #\n\ 00965 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00966 # image - monochrome, distorted\n\ 00967 # image_color - color, distorted\n\ 00968 # image_rect - monochrome, rectified\n\ 00969 # image_rect_color - color, rectified\n\ 00970 #\n\ 00971 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00972 # for producing the four processed image topics from image_raw and\n\ 00973 # camera_info. The meaning of the camera parameters are described in\n\ 00974 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00975 #\n\ 00976 # The image_geometry package provides a user-friendly interface to\n\ 00977 # common operations using this meta information. If you want to, e.g.,\n\ 00978 # project a 3d point into image coordinates, we strongly recommend\n\ 00979 # using image_geometry.\n\ 00980 #\n\ 00981 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00982 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00983 # indicates an uncalibrated camera.\n\ 00984 \n\ 00985 #######################################################################\n\ 00986 # Image acquisition info #\n\ 00987 #######################################################################\n\ 00988 \n\ 00989 # Time of image acquisition, camera coordinate frame ID\n\ 00990 Header header # Header timestamp should be acquisition time of image\n\ 00991 # Header frame_id should be optical frame of camera\n\ 00992 # origin of frame should be optical center of camera\n\ 00993 # +x should point to the right in the image\n\ 00994 # +y should point down in the image\n\ 00995 # +z should point into the plane of the image\n\ 00996 \n\ 00997 \n\ 00998 #######################################################################\n\ 00999 # Calibration Parameters #\n\ 01000 #######################################################################\n\ 01001 # These are fixed during camera calibration. Their values will be the #\n\ 01002 # same in all messages until the camera is recalibrated. Note that #\n\ 01003 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01004 # #\n\ 01005 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01006 # to: #\n\ 01007 # 1. An undistorted image (requires D and K) #\n\ 01008 # 2. A rectified image (requires D, K, R) #\n\ 01009 # The projection matrix P projects 3D points into the rectified image.#\n\ 01010 #######################################################################\n\ 01011 \n\ 01012 # The image dimensions with which the camera was calibrated. Normally\n\ 01013 # this will be the full camera resolution in pixels.\n\ 01014 uint32 height\n\ 01015 uint32 width\n\ 01016 \n\ 01017 # The distortion model used. Supported models are listed in\n\ 01018 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01019 # simple model of radial and tangential distortion - is sufficent.\n\ 01020 string distortion_model\n\ 01021 \n\ 01022 # The distortion parameters, size depending on the distortion model.\n\ 01023 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01024 float64[] D\n\ 01025 \n\ 01026 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01027 # [fx 0 cx]\n\ 01028 # K = [ 0 fy cy]\n\ 01029 # [ 0 0 1]\n\ 01030 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01031 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01032 # (cx, cy).\n\ 01033 float64[9] K # 3x3 row-major matrix\n\ 01034 \n\ 01035 # Rectification matrix (stereo cameras only)\n\ 01036 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01037 # stereo image plane so that epipolar lines in both stereo images are\n\ 01038 # parallel.\n\ 01039 float64[9] R # 3x3 row-major matrix\n\ 01040 \n\ 01041 # Projection/camera matrix\n\ 01042 # [fx' 0 cx' Tx]\n\ 01043 # P = [ 0 fy' cy' Ty]\n\ 01044 # [ 0 0 1 0]\n\ 01045 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01046 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01047 # is the normal camera intrinsic matrix for the rectified image.\n\ 01048 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01049 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01050 # (cx', cy') - these may differ from the values in K.\n\ 01051 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01052 # also have R = the identity and P[1:3,1:3] = K.\n\ 01053 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01054 # position of the optical center of the second camera in the first\n\ 01055 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01056 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01057 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01058 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01059 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01060 # the rectified image is given by:\n\ 01061 # [u v w]' = P * [X Y Z 1]'\n\ 01062 # x = u / w\n\ 01063 # y = v / w\n\ 01064 # This holds for both images of a stereo pair.\n\ 01065 float64[12] P # 3x4 row-major matrix\n\ 01066 \n\ 01067 \n\ 01068 #######################################################################\n\ 01069 # Operational Parameters #\n\ 01070 #######################################################################\n\ 01071 # These define the image region actually captured by the camera #\n\ 01072 # driver. Although they affect the geometry of the output image, they #\n\ 01073 # may be changed freely without recalibrating the camera. #\n\ 01074 #######################################################################\n\ 01075 \n\ 01076 # Binning refers here to any camera setting which combines rectangular\n\ 01077 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01078 # resolution of the output image to\n\ 01079 # (width / binning_x) x (height / binning_y).\n\ 01080 # The default values binning_x = binning_y = 0 is considered the same\n\ 01081 # as binning_x = binning_y = 1 (no subsampling).\n\ 01082 uint32 binning_x\n\ 01083 uint32 binning_y\n\ 01084 \n\ 01085 # Region of interest (subwindow of full camera resolution), given in\n\ 01086 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01087 # always denotes the same window of pixels on the camera sensor,\n\ 01088 # regardless of binning settings.\n\ 01089 # The default setting of roi (all values 0) is considered the same as\n\ 01090 # full resolution (roi.width = width, roi.height = height).\n\ 01091 RegionOfInterest roi\n\ 01092 \n\ 01093 ================================================================================\n\ 01094 MSG: sensor_msgs/RegionOfInterest\n\ 01095 # This message is used to specify a region of interest within an image.\n\ 01096 #\n\ 01097 # When used to specify the ROI setting of the camera when the image was\n\ 01098 # taken, the height and width fields should either match the height and\n\ 01099 # width fields for the associated image; or height = width = 0\n\ 01100 # indicates that the full resolution image was captured.\n\ 01101 \n\ 01102 uint32 x_offset # Leftmost pixel of the ROI\n\ 01103 # (0 if the ROI includes the left edge of the image)\n\ 01104 uint32 y_offset # Topmost pixel of the ROI\n\ 01105 # (0 if the ROI includes the top edge of the image)\n\ 01106 uint32 height # Height of ROI\n\ 01107 uint32 width # Width of ROI\n\ 01108 \n\ 01109 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01110 # ROI in this message. Typically this should be False if the full image\n\ 01111 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01112 # used).\n\ 01113 bool do_rectify\n\ 01114 \n\ 01115 ================================================================================\n\ 01116 MSG: geometry_msgs/Vector3\n\ 01117 # This represents a vector in free space. \n\ 01118 \n\ 01119 float64 x\n\ 01120 float64 y\n\ 01121 float64 z\n\ 01122 ================================================================================\n\ 01123 MSG: object_manipulation_msgs/Grasp\n\ 01124 \n\ 01125 # The internal posture of the hand for the pre-grasp\n\ 01126 # only positions are used\n\ 01127 sensor_msgs/JointState pre_grasp_posture\n\ 01128 \n\ 01129 # The internal posture of the hand for the grasp\n\ 01130 # positions and efforts are used\n\ 01131 sensor_msgs/JointState grasp_posture\n\ 01132 \n\ 01133 # The position of the end-effector for the grasp relative to a reference frame \n\ 01134 # (that is always specified elsewhere, not in this message)\n\ 01135 geometry_msgs/Pose grasp_pose\n\ 01136 \n\ 01137 # The estimated probability of success for this grasp\n\ 01138 float64 success_probability\n\ 01139 \n\ 01140 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01141 bool cluster_rep\n\ 01142 \n\ 01143 # how far the pre-grasp should ideally be away from the grasp\n\ 01144 float32 desired_approach_distance\n\ 01145 \n\ 01146 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01147 # for the grasp not to be rejected\n\ 01148 float32 min_approach_distance\n\ 01149 \n\ 01150 # an optional list of obstacles that we have semantic information about\n\ 01151 # and that we expect might move in the course of executing this grasp\n\ 01152 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01153 # execution, grasp executors will not check for collisions against these objects\n\ 01154 GraspableObject[] moved_obstacles\n\ 01155 \n\ 01156 ================================================================================\n\ 01157 MSG: sensor_msgs/JointState\n\ 01158 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01159 #\n\ 01160 # The state of each joint (revolute or prismatic) is defined by:\n\ 01161 # * the position of the joint (rad or m),\n\ 01162 # * the velocity of the joint (rad/s or m/s) and \n\ 01163 # * the effort that is applied in the joint (Nm or N).\n\ 01164 #\n\ 01165 # Each joint is uniquely identified by its name\n\ 01166 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01167 # in one message have to be recorded at the same time.\n\ 01168 #\n\ 01169 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01170 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01171 # effort associated with them, you can leave the effort array empty. \n\ 01172 #\n\ 01173 # All arrays in this message should have the same size, or be empty.\n\ 01174 # This is the only way to uniquely associate the joint name with the correct\n\ 01175 # states.\n\ 01176 \n\ 01177 \n\ 01178 Header header\n\ 01179 \n\ 01180 string[] name\n\ 01181 float64[] position\n\ 01182 float64[] velocity\n\ 01183 float64[] effort\n\ 01184 \n\ 01185 "; 01186 } 01187 01188 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> &) { return value(); } 01189 }; 01190 01191 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {}; 01192 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > : public TrueType {}; 01193 } // namespace message_traits 01194 } // namespace ros 01195 01196 namespace ros 01197 { 01198 namespace serialization 01199 { 01200 01201 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > 01202 { 01203 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01204 { 01205 stream.next(m.header); 01206 stream.next(m.goal_id); 01207 stream.next(m.goal); 01208 } 01209 01210 ROS_DECLARE_ALLINONE_SERIALIZER; 01211 }; // struct GraspPlanningActionGoal_ 01212 } // namespace serialization 01213 } // namespace ros 01214 01215 namespace ros 01216 { 01217 namespace message_operations 01218 { 01219 01220 template<class ContainerAllocator> 01221 struct Printer< ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> > 01222 { 01223 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningActionGoal_<ContainerAllocator> & v) 01224 { 01225 s << indent << "header: "; 01226 s << std::endl; 01227 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01228 s << indent << "goal_id: "; 01229 s << std::endl; 01230 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 01231 s << indent << "goal: "; 01232 s << std::endl; 01233 Printer< ::object_manipulation_msgs::GraspPlanningGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 01234 } 01235 }; 01236 01237 01238 } // namespace message_operations 01239 } // namespace ros 01240 01241 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONGOAL_H 01242