$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningActionFeedback.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalStatus.h" 00019 #include "object_manipulation_msgs/GraspPlanningFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspPlanningActionFeedback_ { 00025 typedef GraspPlanningActionFeedback_<ContainerAllocator> Type; 00026 00027 GraspPlanningActionFeedback_() 00028 : header() 00029 , status() 00030 , feedback() 00031 { 00032 } 00033 00034 GraspPlanningActionFeedback_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , status(_alloc) 00037 , feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type; 00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status; 00046 00047 typedef ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> _feedback_type; 00048 ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningActionFeedback"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "8f0cac201a22e6d38c53ae3d096f2dd7"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalStatus status\n\ 00070 GraspPlanningFeedback feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalStatus\n\ 00092 GoalID goal_id\n\ 00093 uint8 status\n\ 00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00097 # and has since completed its execution (Terminal State)\n\ 00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00100 # to some failure (Terminal State)\n\ 00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00102 # because the goal was unattainable or invalid (Terminal State)\n\ 00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00104 # and has not yet completed execution\n\ 00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00106 # but the action server has not yet confirmed that the goal is canceled\n\ 00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00108 # and was successfully cancelled (Terminal State)\n\ 00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00110 # sent over the wire by an action server\n\ 00111 \n\ 00112 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00113 string text\n\ 00114 \n\ 00115 \n\ 00116 ================================================================================\n\ 00117 MSG: actionlib_msgs/GoalID\n\ 00118 # The stamp should store the time at which this goal was requested.\n\ 00119 # It is used by an action server when it tries to preempt all\n\ 00120 # goals that were requested before a certain time\n\ 00121 time stamp\n\ 00122 \n\ 00123 # The id provides a way to associate feedback and\n\ 00124 # result message with specific goal requests. The id\n\ 00125 # specified must be unique.\n\ 00126 string id\n\ 00127 \n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\ 00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00132 \n\ 00133 # grasps planned so far\n\ 00134 Grasp[] grasps\n\ 00135 \n\ 00136 \n\ 00137 \n\ 00138 ================================================================================\n\ 00139 MSG: object_manipulation_msgs/Grasp\n\ 00140 \n\ 00141 # The internal posture of the hand for the pre-grasp\n\ 00142 # only positions are used\n\ 00143 sensor_msgs/JointState pre_grasp_posture\n\ 00144 \n\ 00145 # The internal posture of the hand for the grasp\n\ 00146 # positions and efforts are used\n\ 00147 sensor_msgs/JointState grasp_posture\n\ 00148 \n\ 00149 # The position of the end-effector for the grasp relative to a reference frame \n\ 00150 # (that is always specified elsewhere, not in this message)\n\ 00151 geometry_msgs/Pose grasp_pose\n\ 00152 \n\ 00153 # The estimated probability of success for this grasp\n\ 00154 float64 success_probability\n\ 00155 \n\ 00156 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00157 bool cluster_rep\n\ 00158 \n\ 00159 # how far the pre-grasp should ideally be away from the grasp\n\ 00160 float32 desired_approach_distance\n\ 00161 \n\ 00162 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00163 # for the grasp not to be rejected\n\ 00164 float32 min_approach_distance\n\ 00165 \n\ 00166 # an optional list of obstacles that we have semantic information about\n\ 00167 # and that we expect might move in the course of executing this grasp\n\ 00168 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00169 # execution, grasp executors will not check for collisions against these objects\n\ 00170 GraspableObject[] moved_obstacles\n\ 00171 \n\ 00172 ================================================================================\n\ 00173 MSG: sensor_msgs/JointState\n\ 00174 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00175 #\n\ 00176 # The state of each joint (revolute or prismatic) is defined by:\n\ 00177 # * the position of the joint (rad or m),\n\ 00178 # * the velocity of the joint (rad/s or m/s) and \n\ 00179 # * the effort that is applied in the joint (Nm or N).\n\ 00180 #\n\ 00181 # Each joint is uniquely identified by its name\n\ 00182 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00183 # in one message have to be recorded at the same time.\n\ 00184 #\n\ 00185 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00186 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00187 # effort associated with them, you can leave the effort array empty. \n\ 00188 #\n\ 00189 # All arrays in this message should have the same size, or be empty.\n\ 00190 # This is the only way to uniquely associate the joint name with the correct\n\ 00191 # states.\n\ 00192 \n\ 00193 \n\ 00194 Header header\n\ 00195 \n\ 00196 string[] name\n\ 00197 float64[] position\n\ 00198 float64[] velocity\n\ 00199 float64[] effort\n\ 00200 \n\ 00201 ================================================================================\n\ 00202 MSG: geometry_msgs/Pose\n\ 00203 # A representation of pose in free space, composed of postion and orientation. \n\ 00204 Point position\n\ 00205 Quaternion orientation\n\ 00206 \n\ 00207 ================================================================================\n\ 00208 MSG: geometry_msgs/Point\n\ 00209 # This contains the position of a point in free space\n\ 00210 float64 x\n\ 00211 float64 y\n\ 00212 float64 z\n\ 00213 \n\ 00214 ================================================================================\n\ 00215 MSG: geometry_msgs/Quaternion\n\ 00216 # This represents an orientation in free space in quaternion form.\n\ 00217 \n\ 00218 float64 x\n\ 00219 float64 y\n\ 00220 float64 z\n\ 00221 float64 w\n\ 00222 \n\ 00223 ================================================================================\n\ 00224 MSG: object_manipulation_msgs/GraspableObject\n\ 00225 # an object that the object_manipulator can work on\n\ 00226 \n\ 00227 # a graspable object can be represented in multiple ways. This message\n\ 00228 # can contain all of them. Which one is actually used is up to the receiver\n\ 00229 # of this message. When adding new representations, one must be careful that\n\ 00230 # they have reasonable lightweight defaults indicating that that particular\n\ 00231 # representation is not available.\n\ 00232 \n\ 00233 # the tf frame to be used as a reference frame when combining information from\n\ 00234 # the different representations below\n\ 00235 string reference_frame_id\n\ 00236 \n\ 00237 # potential recognition results from a database of models\n\ 00238 # all poses are relative to the object reference pose\n\ 00239 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00240 \n\ 00241 # the point cloud itself\n\ 00242 sensor_msgs/PointCloud cluster\n\ 00243 \n\ 00244 # a region of a PointCloud2 of interest\n\ 00245 object_manipulation_msgs/SceneRegion region\n\ 00246 \n\ 00247 # the name that this object has in the collision environment\n\ 00248 string collision_name\n\ 00249 ================================================================================\n\ 00250 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00251 # Informs that a specific model from the Model Database has been \n\ 00252 # identified at a certain location\n\ 00253 \n\ 00254 # the database id of the model\n\ 00255 int32 model_id\n\ 00256 \n\ 00257 # the pose that it can be found in\n\ 00258 geometry_msgs/PoseStamped pose\n\ 00259 \n\ 00260 # a measure of the confidence level in this detection result\n\ 00261 float32 confidence\n\ 00262 \n\ 00263 # the name of the object detector that generated this detection result\n\ 00264 string detector_name\n\ 00265 \n\ 00266 ================================================================================\n\ 00267 MSG: geometry_msgs/PoseStamped\n\ 00268 # A Pose with reference coordinate frame and timestamp\n\ 00269 Header header\n\ 00270 Pose pose\n\ 00271 \n\ 00272 ================================================================================\n\ 00273 MSG: sensor_msgs/PointCloud\n\ 00274 # This message holds a collection of 3d points, plus optional additional\n\ 00275 # information about each point.\n\ 00276 \n\ 00277 # Time of sensor data acquisition, coordinate frame ID.\n\ 00278 Header header\n\ 00279 \n\ 00280 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00281 # in the frame given in the header.\n\ 00282 geometry_msgs/Point32[] points\n\ 00283 \n\ 00284 # Each channel should have the same number of elements as points array,\n\ 00285 # and the data in each channel should correspond 1:1 with each point.\n\ 00286 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00287 ChannelFloat32[] channels\n\ 00288 \n\ 00289 ================================================================================\n\ 00290 MSG: geometry_msgs/Point32\n\ 00291 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00292 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00293 # \n\ 00294 # This recommendation is to promote interoperability. \n\ 00295 #\n\ 00296 # This message is designed to take up less space when sending\n\ 00297 # lots of points at once, as in the case of a PointCloud. \n\ 00298 \n\ 00299 float32 x\n\ 00300 float32 y\n\ 00301 float32 z\n\ 00302 ================================================================================\n\ 00303 MSG: sensor_msgs/ChannelFloat32\n\ 00304 # This message is used by the PointCloud message to hold optional data\n\ 00305 # associated with each point in the cloud. The length of the values\n\ 00306 # array should be the same as the length of the points array in the\n\ 00307 # PointCloud, and each value should be associated with the corresponding\n\ 00308 # point.\n\ 00309 \n\ 00310 # Channel names in existing practice include:\n\ 00311 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00312 # This is opposite to usual conventions but remains for\n\ 00313 # historical reasons. The newer PointCloud2 message has no\n\ 00314 # such problem.\n\ 00315 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00316 # (R,G,B) values packed into the least significant 24 bits,\n\ 00317 # in order.\n\ 00318 # \"intensity\" - laser or pixel intensity.\n\ 00319 # \"distance\"\n\ 00320 \n\ 00321 # The channel name should give semantics of the channel (e.g.\n\ 00322 # \"intensity\" instead of \"value\").\n\ 00323 string name\n\ 00324 \n\ 00325 # The values array should be 1-1 with the elements of the associated\n\ 00326 # PointCloud.\n\ 00327 float32[] values\n\ 00328 \n\ 00329 ================================================================================\n\ 00330 MSG: object_manipulation_msgs/SceneRegion\n\ 00331 # Point cloud\n\ 00332 sensor_msgs/PointCloud2 cloud\n\ 00333 \n\ 00334 # Indices for the region of interest\n\ 00335 int32[] mask\n\ 00336 \n\ 00337 # One of the corresponding 2D images, if applicable\n\ 00338 sensor_msgs/Image image\n\ 00339 \n\ 00340 # The disparity image, if applicable\n\ 00341 sensor_msgs/Image disparity_image\n\ 00342 \n\ 00343 # Camera info for the camera that took the image\n\ 00344 sensor_msgs/CameraInfo cam_info\n\ 00345 \n\ 00346 # a 3D region of interest for grasp planning\n\ 00347 geometry_msgs/PoseStamped roi_box_pose\n\ 00348 geometry_msgs/Vector3 roi_box_dims\n\ 00349 \n\ 00350 ================================================================================\n\ 00351 MSG: sensor_msgs/PointCloud2\n\ 00352 # This message holds a collection of N-dimensional points, which may\n\ 00353 # contain additional information such as normals, intensity, etc. The\n\ 00354 # point data is stored as a binary blob, its layout described by the\n\ 00355 # contents of the \"fields\" array.\n\ 00356 \n\ 00357 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00358 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00359 # camera depth sensors such as stereo or time-of-flight.\n\ 00360 \n\ 00361 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00362 # points).\n\ 00363 Header header\n\ 00364 \n\ 00365 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00366 # 1 and width is the length of the point cloud.\n\ 00367 uint32 height\n\ 00368 uint32 width\n\ 00369 \n\ 00370 # Describes the channels and their layout in the binary data blob.\n\ 00371 PointField[] fields\n\ 00372 \n\ 00373 bool is_bigendian # Is this data bigendian?\n\ 00374 uint32 point_step # Length of a point in bytes\n\ 00375 uint32 row_step # Length of a row in bytes\n\ 00376 uint8[] data # Actual point data, size is (row_step*height)\n\ 00377 \n\ 00378 bool is_dense # True if there are no invalid points\n\ 00379 \n\ 00380 ================================================================================\n\ 00381 MSG: sensor_msgs/PointField\n\ 00382 # This message holds the description of one point entry in the\n\ 00383 # PointCloud2 message format.\n\ 00384 uint8 INT8 = 1\n\ 00385 uint8 UINT8 = 2\n\ 00386 uint8 INT16 = 3\n\ 00387 uint8 UINT16 = 4\n\ 00388 uint8 INT32 = 5\n\ 00389 uint8 UINT32 = 6\n\ 00390 uint8 FLOAT32 = 7\n\ 00391 uint8 FLOAT64 = 8\n\ 00392 \n\ 00393 string name # Name of field\n\ 00394 uint32 offset # Offset from start of point struct\n\ 00395 uint8 datatype # Datatype enumeration, see above\n\ 00396 uint32 count # How many elements in the field\n\ 00397 \n\ 00398 ================================================================================\n\ 00399 MSG: sensor_msgs/Image\n\ 00400 # This message contains an uncompressed image\n\ 00401 # (0, 0) is at top-left corner of image\n\ 00402 #\n\ 00403 \n\ 00404 Header header # Header timestamp should be acquisition time of image\n\ 00405 # Header frame_id should be optical frame of camera\n\ 00406 # origin of frame should be optical center of cameara\n\ 00407 # +x should point to the right in the image\n\ 00408 # +y should point down in the image\n\ 00409 # +z should point into to plane of the image\n\ 00410 # If the frame_id here and the frame_id of the CameraInfo\n\ 00411 # message associated with the image conflict\n\ 00412 # the behavior is undefined\n\ 00413 \n\ 00414 uint32 height # image height, that is, number of rows\n\ 00415 uint32 width # image width, that is, number of columns\n\ 00416 \n\ 00417 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00418 # If you want to standardize a new string format, join\n\ 00419 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00420 \n\ 00421 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00422 # taken from the list of strings in src/image_encodings.cpp\n\ 00423 \n\ 00424 uint8 is_bigendian # is this data bigendian?\n\ 00425 uint32 step # Full row length in bytes\n\ 00426 uint8[] data # actual matrix data, size is (step * rows)\n\ 00427 \n\ 00428 ================================================================================\n\ 00429 MSG: sensor_msgs/CameraInfo\n\ 00430 # This message defines meta information for a camera. It should be in a\n\ 00431 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00432 # image topics named:\n\ 00433 #\n\ 00434 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00435 # image - monochrome, distorted\n\ 00436 # image_color - color, distorted\n\ 00437 # image_rect - monochrome, rectified\n\ 00438 # image_rect_color - color, rectified\n\ 00439 #\n\ 00440 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00441 # for producing the four processed image topics from image_raw and\n\ 00442 # camera_info. The meaning of the camera parameters are described in\n\ 00443 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00444 #\n\ 00445 # The image_geometry package provides a user-friendly interface to\n\ 00446 # common operations using this meta information. If you want to, e.g.,\n\ 00447 # project a 3d point into image coordinates, we strongly recommend\n\ 00448 # using image_geometry.\n\ 00449 #\n\ 00450 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00451 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00452 # indicates an uncalibrated camera.\n\ 00453 \n\ 00454 #######################################################################\n\ 00455 # Image acquisition info #\n\ 00456 #######################################################################\n\ 00457 \n\ 00458 # Time of image acquisition, camera coordinate frame ID\n\ 00459 Header header # Header timestamp should be acquisition time of image\n\ 00460 # Header frame_id should be optical frame of camera\n\ 00461 # origin of frame should be optical center of camera\n\ 00462 # +x should point to the right in the image\n\ 00463 # +y should point down in the image\n\ 00464 # +z should point into the plane of the image\n\ 00465 \n\ 00466 \n\ 00467 #######################################################################\n\ 00468 # Calibration Parameters #\n\ 00469 #######################################################################\n\ 00470 # These are fixed during camera calibration. Their values will be the #\n\ 00471 # same in all messages until the camera is recalibrated. Note that #\n\ 00472 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00473 # #\n\ 00474 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00475 # to: #\n\ 00476 # 1. An undistorted image (requires D and K) #\n\ 00477 # 2. A rectified image (requires D, K, R) #\n\ 00478 # The projection matrix P projects 3D points into the rectified image.#\n\ 00479 #######################################################################\n\ 00480 \n\ 00481 # The image dimensions with which the camera was calibrated. Normally\n\ 00482 # this will be the full camera resolution in pixels.\n\ 00483 uint32 height\n\ 00484 uint32 width\n\ 00485 \n\ 00486 # The distortion model used. Supported models are listed in\n\ 00487 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00488 # simple model of radial and tangential distortion - is sufficent.\n\ 00489 string distortion_model\n\ 00490 \n\ 00491 # The distortion parameters, size depending on the distortion model.\n\ 00492 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00493 float64[] D\n\ 00494 \n\ 00495 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00496 # [fx 0 cx]\n\ 00497 # K = [ 0 fy cy]\n\ 00498 # [ 0 0 1]\n\ 00499 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00500 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00501 # (cx, cy).\n\ 00502 float64[9] K # 3x3 row-major matrix\n\ 00503 \n\ 00504 # Rectification matrix (stereo cameras only)\n\ 00505 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00506 # stereo image plane so that epipolar lines in both stereo images are\n\ 00507 # parallel.\n\ 00508 float64[9] R # 3x3 row-major matrix\n\ 00509 \n\ 00510 # Projection/camera matrix\n\ 00511 # [fx' 0 cx' Tx]\n\ 00512 # P = [ 0 fy' cy' Ty]\n\ 00513 # [ 0 0 1 0]\n\ 00514 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00515 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00516 # is the normal camera intrinsic matrix for the rectified image.\n\ 00517 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00518 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00519 # (cx', cy') - these may differ from the values in K.\n\ 00520 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00521 # also have R = the identity and P[1:3,1:3] = K.\n\ 00522 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00523 # position of the optical center of the second camera in the first\n\ 00524 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00525 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00526 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00527 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00528 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00529 # the rectified image is given by:\n\ 00530 # [u v w]' = P * [X Y Z 1]'\n\ 00531 # x = u / w\n\ 00532 # y = v / w\n\ 00533 # This holds for both images of a stereo pair.\n\ 00534 float64[12] P # 3x4 row-major matrix\n\ 00535 \n\ 00536 \n\ 00537 #######################################################################\n\ 00538 # Operational Parameters #\n\ 00539 #######################################################################\n\ 00540 # These define the image region actually captured by the camera #\n\ 00541 # driver. Although they affect the geometry of the output image, they #\n\ 00542 # may be changed freely without recalibrating the camera. #\n\ 00543 #######################################################################\n\ 00544 \n\ 00545 # Binning refers here to any camera setting which combines rectangular\n\ 00546 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00547 # resolution of the output image to\n\ 00548 # (width / binning_x) x (height / binning_y).\n\ 00549 # The default values binning_x = binning_y = 0 is considered the same\n\ 00550 # as binning_x = binning_y = 1 (no subsampling).\n\ 00551 uint32 binning_x\n\ 00552 uint32 binning_y\n\ 00553 \n\ 00554 # Region of interest (subwindow of full camera resolution), given in\n\ 00555 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00556 # always denotes the same window of pixels on the camera sensor,\n\ 00557 # regardless of binning settings.\n\ 00558 # The default setting of roi (all values 0) is considered the same as\n\ 00559 # full resolution (roi.width = width, roi.height = height).\n\ 00560 RegionOfInterest roi\n\ 00561 \n\ 00562 ================================================================================\n\ 00563 MSG: sensor_msgs/RegionOfInterest\n\ 00564 # This message is used to specify a region of interest within an image.\n\ 00565 #\n\ 00566 # When used to specify the ROI setting of the camera when the image was\n\ 00567 # taken, the height and width fields should either match the height and\n\ 00568 # width fields for the associated image; or height = width = 0\n\ 00569 # indicates that the full resolution image was captured.\n\ 00570 \n\ 00571 uint32 x_offset # Leftmost pixel of the ROI\n\ 00572 # (0 if the ROI includes the left edge of the image)\n\ 00573 uint32 y_offset # Topmost pixel of the ROI\n\ 00574 # (0 if the ROI includes the top edge of the image)\n\ 00575 uint32 height # Height of ROI\n\ 00576 uint32 width # Width of ROI\n\ 00577 \n\ 00578 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00579 # ROI in this message. Typically this should be False if the full image\n\ 00580 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00581 # used).\n\ 00582 bool do_rectify\n\ 00583 \n\ 00584 ================================================================================\n\ 00585 MSG: geometry_msgs/Vector3\n\ 00586 # This represents a vector in free space. \n\ 00587 \n\ 00588 float64 x\n\ 00589 float64 y\n\ 00590 float64 z\n\ 00591 "; } 00592 public: 00593 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00594 00595 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00596 00597 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00598 { 00599 ros::serialization::OStream stream(write_ptr, 1000000000); 00600 ros::serialization::serialize(stream, header); 00601 ros::serialization::serialize(stream, status); 00602 ros::serialization::serialize(stream, feedback); 00603 return stream.getData(); 00604 } 00605 00606 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00607 { 00608 ros::serialization::IStream stream(read_ptr, 1000000000); 00609 ros::serialization::deserialize(stream, header); 00610 ros::serialization::deserialize(stream, status); 00611 ros::serialization::deserialize(stream, feedback); 00612 return stream.getData(); 00613 } 00614 00615 ROS_DEPRECATED virtual uint32_t serializationLength() const 00616 { 00617 uint32_t size = 0; 00618 size += ros::serialization::serializationLength(header); 00619 size += ros::serialization::serializationLength(status); 00620 size += ros::serialization::serializationLength(feedback); 00621 return size; 00622 } 00623 00624 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > Ptr; 00625 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> const> ConstPtr; 00626 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00627 }; // struct GraspPlanningActionFeedback 00628 typedef ::object_manipulation_msgs::GraspPlanningActionFeedback_<std::allocator<void> > GraspPlanningActionFeedback; 00629 00630 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback> GraspPlanningActionFeedbackPtr; 00631 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback const> GraspPlanningActionFeedbackConstPtr; 00632 00633 00634 template<typename ContainerAllocator> 00635 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> & v) 00636 { 00637 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >::stream(s, "", v); 00638 return s;} 00639 00640 } // namespace object_manipulation_msgs 00641 00642 namespace ros 00643 { 00644 namespace message_traits 00645 { 00646 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {}; 00647 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> const> : public TrueType {}; 00648 template<class ContainerAllocator> 00649 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > { 00650 static const char* value() 00651 { 00652 return "8f0cac201a22e6d38c53ae3d096f2dd7"; 00653 } 00654 00655 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); } 00656 static const uint64_t static_value1 = 0x8f0cac201a22e6d3ULL; 00657 static const uint64_t static_value2 = 0x8c53ae3d096f2dd7ULL; 00658 }; 00659 00660 template<class ContainerAllocator> 00661 struct DataType< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > { 00662 static const char* value() 00663 { 00664 return "object_manipulation_msgs/GraspPlanningActionFeedback"; 00665 } 00666 00667 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); } 00668 }; 00669 00670 template<class ContainerAllocator> 00671 struct Definition< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > { 00672 static const char* value() 00673 { 00674 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00675 \n\ 00676 Header header\n\ 00677 actionlib_msgs/GoalStatus status\n\ 00678 GraspPlanningFeedback feedback\n\ 00679 \n\ 00680 ================================================================================\n\ 00681 MSG: std_msgs/Header\n\ 00682 # Standard metadata for higher-level stamped data types.\n\ 00683 # This is generally used to communicate timestamped data \n\ 00684 # in a particular coordinate frame.\n\ 00685 # \n\ 00686 # sequence ID: consecutively increasing ID \n\ 00687 uint32 seq\n\ 00688 #Two-integer timestamp that is expressed as:\n\ 00689 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00690 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00691 # time-handling sugar is provided by the client library\n\ 00692 time stamp\n\ 00693 #Frame this data is associated with\n\ 00694 # 0: no frame\n\ 00695 # 1: global frame\n\ 00696 string frame_id\n\ 00697 \n\ 00698 ================================================================================\n\ 00699 MSG: actionlib_msgs/GoalStatus\n\ 00700 GoalID goal_id\n\ 00701 uint8 status\n\ 00702 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00703 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00704 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00705 # and has since completed its execution (Terminal State)\n\ 00706 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00707 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00708 # to some failure (Terminal State)\n\ 00709 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00710 # because the goal was unattainable or invalid (Terminal State)\n\ 00711 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00712 # and has not yet completed execution\n\ 00713 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00714 # but the action server has not yet confirmed that the goal is canceled\n\ 00715 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00716 # and was successfully cancelled (Terminal State)\n\ 00717 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00718 # sent over the wire by an action server\n\ 00719 \n\ 00720 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00721 string text\n\ 00722 \n\ 00723 \n\ 00724 ================================================================================\n\ 00725 MSG: actionlib_msgs/GoalID\n\ 00726 # The stamp should store the time at which this goal was requested.\n\ 00727 # It is used by an action server when it tries to preempt all\n\ 00728 # goals that were requested before a certain time\n\ 00729 time stamp\n\ 00730 \n\ 00731 # The id provides a way to associate feedback and\n\ 00732 # result message with specific goal requests. The id\n\ 00733 # specified must be unique.\n\ 00734 string id\n\ 00735 \n\ 00736 \n\ 00737 ================================================================================\n\ 00738 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\ 00739 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00740 \n\ 00741 # grasps planned so far\n\ 00742 Grasp[] grasps\n\ 00743 \n\ 00744 \n\ 00745 \n\ 00746 ================================================================================\n\ 00747 MSG: object_manipulation_msgs/Grasp\n\ 00748 \n\ 00749 # The internal posture of the hand for the pre-grasp\n\ 00750 # only positions are used\n\ 00751 sensor_msgs/JointState pre_grasp_posture\n\ 00752 \n\ 00753 # The internal posture of the hand for the grasp\n\ 00754 # positions and efforts are used\n\ 00755 sensor_msgs/JointState grasp_posture\n\ 00756 \n\ 00757 # The position of the end-effector for the grasp relative to a reference frame \n\ 00758 # (that is always specified elsewhere, not in this message)\n\ 00759 geometry_msgs/Pose grasp_pose\n\ 00760 \n\ 00761 # The estimated probability of success for this grasp\n\ 00762 float64 success_probability\n\ 00763 \n\ 00764 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00765 bool cluster_rep\n\ 00766 \n\ 00767 # how far the pre-grasp should ideally be away from the grasp\n\ 00768 float32 desired_approach_distance\n\ 00769 \n\ 00770 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00771 # for the grasp not to be rejected\n\ 00772 float32 min_approach_distance\n\ 00773 \n\ 00774 # an optional list of obstacles that we have semantic information about\n\ 00775 # and that we expect might move in the course of executing this grasp\n\ 00776 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00777 # execution, grasp executors will not check for collisions against these objects\n\ 00778 GraspableObject[] moved_obstacles\n\ 00779 \n\ 00780 ================================================================================\n\ 00781 MSG: sensor_msgs/JointState\n\ 00782 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00783 #\n\ 00784 # The state of each joint (revolute or prismatic) is defined by:\n\ 00785 # * the position of the joint (rad or m),\n\ 00786 # * the velocity of the joint (rad/s or m/s) and \n\ 00787 # * the effort that is applied in the joint (Nm or N).\n\ 00788 #\n\ 00789 # Each joint is uniquely identified by its name\n\ 00790 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00791 # in one message have to be recorded at the same time.\n\ 00792 #\n\ 00793 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00794 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00795 # effort associated with them, you can leave the effort array empty. \n\ 00796 #\n\ 00797 # All arrays in this message should have the same size, or be empty.\n\ 00798 # This is the only way to uniquely associate the joint name with the correct\n\ 00799 # states.\n\ 00800 \n\ 00801 \n\ 00802 Header header\n\ 00803 \n\ 00804 string[] name\n\ 00805 float64[] position\n\ 00806 float64[] velocity\n\ 00807 float64[] effort\n\ 00808 \n\ 00809 ================================================================================\n\ 00810 MSG: geometry_msgs/Pose\n\ 00811 # A representation of pose in free space, composed of postion and orientation. \n\ 00812 Point position\n\ 00813 Quaternion orientation\n\ 00814 \n\ 00815 ================================================================================\n\ 00816 MSG: geometry_msgs/Point\n\ 00817 # This contains the position of a point in free space\n\ 00818 float64 x\n\ 00819 float64 y\n\ 00820 float64 z\n\ 00821 \n\ 00822 ================================================================================\n\ 00823 MSG: geometry_msgs/Quaternion\n\ 00824 # This represents an orientation in free space in quaternion form.\n\ 00825 \n\ 00826 float64 x\n\ 00827 float64 y\n\ 00828 float64 z\n\ 00829 float64 w\n\ 00830 \n\ 00831 ================================================================================\n\ 00832 MSG: object_manipulation_msgs/GraspableObject\n\ 00833 # an object that the object_manipulator can work on\n\ 00834 \n\ 00835 # a graspable object can be represented in multiple ways. This message\n\ 00836 # can contain all of them. Which one is actually used is up to the receiver\n\ 00837 # of this message. When adding new representations, one must be careful that\n\ 00838 # they have reasonable lightweight defaults indicating that that particular\n\ 00839 # representation is not available.\n\ 00840 \n\ 00841 # the tf frame to be used as a reference frame when combining information from\n\ 00842 # the different representations below\n\ 00843 string reference_frame_id\n\ 00844 \n\ 00845 # potential recognition results from a database of models\n\ 00846 # all poses are relative to the object reference pose\n\ 00847 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00848 \n\ 00849 # the point cloud itself\n\ 00850 sensor_msgs/PointCloud cluster\n\ 00851 \n\ 00852 # a region of a PointCloud2 of interest\n\ 00853 object_manipulation_msgs/SceneRegion region\n\ 00854 \n\ 00855 # the name that this object has in the collision environment\n\ 00856 string collision_name\n\ 00857 ================================================================================\n\ 00858 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00859 # Informs that a specific model from the Model Database has been \n\ 00860 # identified at a certain location\n\ 00861 \n\ 00862 # the database id of the model\n\ 00863 int32 model_id\n\ 00864 \n\ 00865 # the pose that it can be found in\n\ 00866 geometry_msgs/PoseStamped pose\n\ 00867 \n\ 00868 # a measure of the confidence level in this detection result\n\ 00869 float32 confidence\n\ 00870 \n\ 00871 # the name of the object detector that generated this detection result\n\ 00872 string detector_name\n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: geometry_msgs/PoseStamped\n\ 00876 # A Pose with reference coordinate frame and timestamp\n\ 00877 Header header\n\ 00878 Pose pose\n\ 00879 \n\ 00880 ================================================================================\n\ 00881 MSG: sensor_msgs/PointCloud\n\ 00882 # This message holds a collection of 3d points, plus optional additional\n\ 00883 # information about each point.\n\ 00884 \n\ 00885 # Time of sensor data acquisition, coordinate frame ID.\n\ 00886 Header header\n\ 00887 \n\ 00888 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00889 # in the frame given in the header.\n\ 00890 geometry_msgs/Point32[] points\n\ 00891 \n\ 00892 # Each channel should have the same number of elements as points array,\n\ 00893 # and the data in each channel should correspond 1:1 with each point.\n\ 00894 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00895 ChannelFloat32[] channels\n\ 00896 \n\ 00897 ================================================================================\n\ 00898 MSG: geometry_msgs/Point32\n\ 00899 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00900 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00901 # \n\ 00902 # This recommendation is to promote interoperability. \n\ 00903 #\n\ 00904 # This message is designed to take up less space when sending\n\ 00905 # lots of points at once, as in the case of a PointCloud. \n\ 00906 \n\ 00907 float32 x\n\ 00908 float32 y\n\ 00909 float32 z\n\ 00910 ================================================================================\n\ 00911 MSG: sensor_msgs/ChannelFloat32\n\ 00912 # This message is used by the PointCloud message to hold optional data\n\ 00913 # associated with each point in the cloud. The length of the values\n\ 00914 # array should be the same as the length of the points array in the\n\ 00915 # PointCloud, and each value should be associated with the corresponding\n\ 00916 # point.\n\ 00917 \n\ 00918 # Channel names in existing practice include:\n\ 00919 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00920 # This is opposite to usual conventions but remains for\n\ 00921 # historical reasons. The newer PointCloud2 message has no\n\ 00922 # such problem.\n\ 00923 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00924 # (R,G,B) values packed into the least significant 24 bits,\n\ 00925 # in order.\n\ 00926 # \"intensity\" - laser or pixel intensity.\n\ 00927 # \"distance\"\n\ 00928 \n\ 00929 # The channel name should give semantics of the channel (e.g.\n\ 00930 # \"intensity\" instead of \"value\").\n\ 00931 string name\n\ 00932 \n\ 00933 # The values array should be 1-1 with the elements of the associated\n\ 00934 # PointCloud.\n\ 00935 float32[] values\n\ 00936 \n\ 00937 ================================================================================\n\ 00938 MSG: object_manipulation_msgs/SceneRegion\n\ 00939 # Point cloud\n\ 00940 sensor_msgs/PointCloud2 cloud\n\ 00941 \n\ 00942 # Indices for the region of interest\n\ 00943 int32[] mask\n\ 00944 \n\ 00945 # One of the corresponding 2D images, if applicable\n\ 00946 sensor_msgs/Image image\n\ 00947 \n\ 00948 # The disparity image, if applicable\n\ 00949 sensor_msgs/Image disparity_image\n\ 00950 \n\ 00951 # Camera info for the camera that took the image\n\ 00952 sensor_msgs/CameraInfo cam_info\n\ 00953 \n\ 00954 # a 3D region of interest for grasp planning\n\ 00955 geometry_msgs/PoseStamped roi_box_pose\n\ 00956 geometry_msgs/Vector3 roi_box_dims\n\ 00957 \n\ 00958 ================================================================================\n\ 00959 MSG: sensor_msgs/PointCloud2\n\ 00960 # This message holds a collection of N-dimensional points, which may\n\ 00961 # contain additional information such as normals, intensity, etc. The\n\ 00962 # point data is stored as a binary blob, its layout described by the\n\ 00963 # contents of the \"fields\" array.\n\ 00964 \n\ 00965 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00966 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00967 # camera depth sensors such as stereo or time-of-flight.\n\ 00968 \n\ 00969 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00970 # points).\n\ 00971 Header header\n\ 00972 \n\ 00973 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00974 # 1 and width is the length of the point cloud.\n\ 00975 uint32 height\n\ 00976 uint32 width\n\ 00977 \n\ 00978 # Describes the channels and their layout in the binary data blob.\n\ 00979 PointField[] fields\n\ 00980 \n\ 00981 bool is_bigendian # Is this data bigendian?\n\ 00982 uint32 point_step # Length of a point in bytes\n\ 00983 uint32 row_step # Length of a row in bytes\n\ 00984 uint8[] data # Actual point data, size is (row_step*height)\n\ 00985 \n\ 00986 bool is_dense # True if there are no invalid points\n\ 00987 \n\ 00988 ================================================================================\n\ 00989 MSG: sensor_msgs/PointField\n\ 00990 # This message holds the description of one point entry in the\n\ 00991 # PointCloud2 message format.\n\ 00992 uint8 INT8 = 1\n\ 00993 uint8 UINT8 = 2\n\ 00994 uint8 INT16 = 3\n\ 00995 uint8 UINT16 = 4\n\ 00996 uint8 INT32 = 5\n\ 00997 uint8 UINT32 = 6\n\ 00998 uint8 FLOAT32 = 7\n\ 00999 uint8 FLOAT64 = 8\n\ 01000 \n\ 01001 string name # Name of field\n\ 01002 uint32 offset # Offset from start of point struct\n\ 01003 uint8 datatype # Datatype enumeration, see above\n\ 01004 uint32 count # How many elements in the field\n\ 01005 \n\ 01006 ================================================================================\n\ 01007 MSG: sensor_msgs/Image\n\ 01008 # This message contains an uncompressed image\n\ 01009 # (0, 0) is at top-left corner of image\n\ 01010 #\n\ 01011 \n\ 01012 Header header # Header timestamp should be acquisition time of image\n\ 01013 # Header frame_id should be optical frame of camera\n\ 01014 # origin of frame should be optical center of cameara\n\ 01015 # +x should point to the right in the image\n\ 01016 # +y should point down in the image\n\ 01017 # +z should point into to plane of the image\n\ 01018 # If the frame_id here and the frame_id of the CameraInfo\n\ 01019 # message associated with the image conflict\n\ 01020 # the behavior is undefined\n\ 01021 \n\ 01022 uint32 height # image height, that is, number of rows\n\ 01023 uint32 width # image width, that is, number of columns\n\ 01024 \n\ 01025 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01026 # If you want to standardize a new string format, join\n\ 01027 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01028 \n\ 01029 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01030 # taken from the list of strings in src/image_encodings.cpp\n\ 01031 \n\ 01032 uint8 is_bigendian # is this data bigendian?\n\ 01033 uint32 step # Full row length in bytes\n\ 01034 uint8[] data # actual matrix data, size is (step * rows)\n\ 01035 \n\ 01036 ================================================================================\n\ 01037 MSG: sensor_msgs/CameraInfo\n\ 01038 # This message defines meta information for a camera. It should be in a\n\ 01039 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01040 # image topics named:\n\ 01041 #\n\ 01042 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01043 # image - monochrome, distorted\n\ 01044 # image_color - color, distorted\n\ 01045 # image_rect - monochrome, rectified\n\ 01046 # image_rect_color - color, rectified\n\ 01047 #\n\ 01048 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01049 # for producing the four processed image topics from image_raw and\n\ 01050 # camera_info. The meaning of the camera parameters are described in\n\ 01051 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01052 #\n\ 01053 # The image_geometry package provides a user-friendly interface to\n\ 01054 # common operations using this meta information. If you want to, e.g.,\n\ 01055 # project a 3d point into image coordinates, we strongly recommend\n\ 01056 # using image_geometry.\n\ 01057 #\n\ 01058 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01059 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01060 # indicates an uncalibrated camera.\n\ 01061 \n\ 01062 #######################################################################\n\ 01063 # Image acquisition info #\n\ 01064 #######################################################################\n\ 01065 \n\ 01066 # Time of image acquisition, camera coordinate frame ID\n\ 01067 Header header # Header timestamp should be acquisition time of image\n\ 01068 # Header frame_id should be optical frame of camera\n\ 01069 # origin of frame should be optical center of camera\n\ 01070 # +x should point to the right in the image\n\ 01071 # +y should point down in the image\n\ 01072 # +z should point into the plane of the image\n\ 01073 \n\ 01074 \n\ 01075 #######################################################################\n\ 01076 # Calibration Parameters #\n\ 01077 #######################################################################\n\ 01078 # These are fixed during camera calibration. Their values will be the #\n\ 01079 # same in all messages until the camera is recalibrated. Note that #\n\ 01080 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01081 # #\n\ 01082 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01083 # to: #\n\ 01084 # 1. An undistorted image (requires D and K) #\n\ 01085 # 2. A rectified image (requires D, K, R) #\n\ 01086 # The projection matrix P projects 3D points into the rectified image.#\n\ 01087 #######################################################################\n\ 01088 \n\ 01089 # The image dimensions with which the camera was calibrated. Normally\n\ 01090 # this will be the full camera resolution in pixels.\n\ 01091 uint32 height\n\ 01092 uint32 width\n\ 01093 \n\ 01094 # The distortion model used. Supported models are listed in\n\ 01095 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01096 # simple model of radial and tangential distortion - is sufficent.\n\ 01097 string distortion_model\n\ 01098 \n\ 01099 # The distortion parameters, size depending on the distortion model.\n\ 01100 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01101 float64[] D\n\ 01102 \n\ 01103 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01104 # [fx 0 cx]\n\ 01105 # K = [ 0 fy cy]\n\ 01106 # [ 0 0 1]\n\ 01107 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01108 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01109 # (cx, cy).\n\ 01110 float64[9] K # 3x3 row-major matrix\n\ 01111 \n\ 01112 # Rectification matrix (stereo cameras only)\n\ 01113 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01114 # stereo image plane so that epipolar lines in both stereo images are\n\ 01115 # parallel.\n\ 01116 float64[9] R # 3x3 row-major matrix\n\ 01117 \n\ 01118 # Projection/camera matrix\n\ 01119 # [fx' 0 cx' Tx]\n\ 01120 # P = [ 0 fy' cy' Ty]\n\ 01121 # [ 0 0 1 0]\n\ 01122 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01123 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01124 # is the normal camera intrinsic matrix for the rectified image.\n\ 01125 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01126 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01127 # (cx', cy') - these may differ from the values in K.\n\ 01128 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01129 # also have R = the identity and P[1:3,1:3] = K.\n\ 01130 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01131 # position of the optical center of the second camera in the first\n\ 01132 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01133 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01134 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01135 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01136 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01137 # the rectified image is given by:\n\ 01138 # [u v w]' = P * [X Y Z 1]'\n\ 01139 # x = u / w\n\ 01140 # y = v / w\n\ 01141 # This holds for both images of a stereo pair.\n\ 01142 float64[12] P # 3x4 row-major matrix\n\ 01143 \n\ 01144 \n\ 01145 #######################################################################\n\ 01146 # Operational Parameters #\n\ 01147 #######################################################################\n\ 01148 # These define the image region actually captured by the camera #\n\ 01149 # driver. Although they affect the geometry of the output image, they #\n\ 01150 # may be changed freely without recalibrating the camera. #\n\ 01151 #######################################################################\n\ 01152 \n\ 01153 # Binning refers here to any camera setting which combines rectangular\n\ 01154 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01155 # resolution of the output image to\n\ 01156 # (width / binning_x) x (height / binning_y).\n\ 01157 # The default values binning_x = binning_y = 0 is considered the same\n\ 01158 # as binning_x = binning_y = 1 (no subsampling).\n\ 01159 uint32 binning_x\n\ 01160 uint32 binning_y\n\ 01161 \n\ 01162 # Region of interest (subwindow of full camera resolution), given in\n\ 01163 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01164 # always denotes the same window of pixels on the camera sensor,\n\ 01165 # regardless of binning settings.\n\ 01166 # The default setting of roi (all values 0) is considered the same as\n\ 01167 # full resolution (roi.width = width, roi.height = height).\n\ 01168 RegionOfInterest roi\n\ 01169 \n\ 01170 ================================================================================\n\ 01171 MSG: sensor_msgs/RegionOfInterest\n\ 01172 # This message is used to specify a region of interest within an image.\n\ 01173 #\n\ 01174 # When used to specify the ROI setting of the camera when the image was\n\ 01175 # taken, the height and width fields should either match the height and\n\ 01176 # width fields for the associated image; or height = width = 0\n\ 01177 # indicates that the full resolution image was captured.\n\ 01178 \n\ 01179 uint32 x_offset # Leftmost pixel of the ROI\n\ 01180 # (0 if the ROI includes the left edge of the image)\n\ 01181 uint32 y_offset # Topmost pixel of the ROI\n\ 01182 # (0 if the ROI includes the top edge of the image)\n\ 01183 uint32 height # Height of ROI\n\ 01184 uint32 width # Width of ROI\n\ 01185 \n\ 01186 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01187 # ROI in this message. Typically this should be False if the full image\n\ 01188 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01189 # used).\n\ 01190 bool do_rectify\n\ 01191 \n\ 01192 ================================================================================\n\ 01193 MSG: geometry_msgs/Vector3\n\ 01194 # This represents a vector in free space. \n\ 01195 \n\ 01196 float64 x\n\ 01197 float64 y\n\ 01198 float64 z\n\ 01199 "; 01200 } 01201 01202 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); } 01203 }; 01204 01205 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {}; 01206 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {}; 01207 } // namespace message_traits 01208 } // namespace ros 01209 01210 namespace ros 01211 { 01212 namespace serialization 01213 { 01214 01215 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > 01216 { 01217 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01218 { 01219 stream.next(m.header); 01220 stream.next(m.status); 01221 stream.next(m.feedback); 01222 } 01223 01224 ROS_DECLARE_ALLINONE_SERIALIZER; 01225 }; // struct GraspPlanningActionFeedback_ 01226 } // namespace serialization 01227 } // namespace ros 01228 01229 namespace ros 01230 { 01231 namespace message_operations 01232 { 01233 01234 template<class ContainerAllocator> 01235 struct Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > 01236 { 01237 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> & v) 01238 { 01239 s << indent << "header: "; 01240 s << std::endl; 01241 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01242 s << indent << "status: "; 01243 s << std::endl; 01244 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status); 01245 s << indent << "feedback: "; 01246 s << std::endl; 01247 Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.feedback); 01248 } 01249 }; 01250 01251 01252 } // namespace message_operations 01253 } // namespace ros 01254 01255 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H 01256