00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalStatus.h"
00019 #include "object_manipulation_msgs/GraspPlanningFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspPlanningActionFeedback_ {
00025 typedef GraspPlanningActionFeedback_<ContainerAllocator> Type;
00026
00027 GraspPlanningActionFeedback_()
00028 : header()
00029 , status()
00030 , feedback()
00031 {
00032 }
00033
00034 GraspPlanningActionFeedback_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , status(_alloc)
00037 , feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type;
00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status;
00046
00047 typedef ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> _feedback_type;
00048 ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningActionFeedback"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "8f0cac201a22e6d38c53ae3d096f2dd7"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 Header header\n\
00069 actionlib_msgs/GoalStatus status\n\
00070 GraspPlanningFeedback feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: std_msgs/Header\n\
00074 # Standard metadata for higher-level stamped data types.\n\
00075 # This is generally used to communicate timestamped data \n\
00076 # in a particular coordinate frame.\n\
00077 # \n\
00078 # sequence ID: consecutively increasing ID \n\
00079 uint32 seq\n\
00080 #Two-integer timestamp that is expressed as:\n\
00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00083 # time-handling sugar is provided by the client library\n\
00084 time stamp\n\
00085 #Frame this data is associated with\n\
00086 # 0: no frame\n\
00087 # 1: global frame\n\
00088 string frame_id\n\
00089 \n\
00090 ================================================================================\n\
00091 MSG: actionlib_msgs/GoalStatus\n\
00092 GoalID goal_id\n\
00093 uint8 status\n\
00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00097 # and has since completed its execution (Terminal State)\n\
00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00100 # to some failure (Terminal State)\n\
00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00102 # because the goal was unattainable or invalid (Terminal State)\n\
00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00104 # and has not yet completed execution\n\
00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00106 # but the action server has not yet confirmed that the goal is canceled\n\
00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00108 # and was successfully cancelled (Terminal State)\n\
00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00110 # sent over the wire by an action server\n\
00111 \n\
00112 #Allow for the user to associate a string with GoalStatus for debugging\n\
00113 string text\n\
00114 \n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: actionlib_msgs/GoalID\n\
00118 # The stamp should store the time at which this goal was requested.\n\
00119 # It is used by an action server when it tries to preempt all\n\
00120 # goals that were requested before a certain time\n\
00121 time stamp\n\
00122 \n\
00123 # The id provides a way to associate feedback and\n\
00124 # result message with specific goal requests. The id\n\
00125 # specified must be unique.\n\
00126 string id\n\
00127 \n\
00128 \n\
00129 ================================================================================\n\
00130 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\
00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00132 \n\
00133 # grasps planned so far\n\
00134 Grasp[] grasps\n\
00135 \n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/Grasp\n\
00140 \n\
00141 # The internal posture of the hand for the pre-grasp\n\
00142 # only positions are used\n\
00143 sensor_msgs/JointState pre_grasp_posture\n\
00144 \n\
00145 # The internal posture of the hand for the grasp\n\
00146 # positions and efforts are used\n\
00147 sensor_msgs/JointState grasp_posture\n\
00148 \n\
00149 # The position of the end-effector for the grasp relative to a reference frame \n\
00150 # (that is always specified elsewhere, not in this message)\n\
00151 geometry_msgs/Pose grasp_pose\n\
00152 \n\
00153 # The estimated probability of success for this grasp\n\
00154 float64 success_probability\n\
00155 \n\
00156 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00157 bool cluster_rep\n\
00158 \n\
00159 # how far the pre-grasp should ideally be away from the grasp\n\
00160 float32 desired_approach_distance\n\
00161 \n\
00162 # how much distance between pre-grasp and grasp must actually be feasible \n\
00163 # for the grasp not to be rejected\n\
00164 float32 min_approach_distance\n\
00165 \n\
00166 # an optional list of obstacles that we have semantic information about\n\
00167 # and that we expect might move in the course of executing this grasp\n\
00168 # the grasp planner is expected to make sure they move in an OK way; during\n\
00169 # execution, grasp executors will not check for collisions against these objects\n\
00170 GraspableObject[] moved_obstacles\n\
00171 \n\
00172 ================================================================================\n\
00173 MSG: sensor_msgs/JointState\n\
00174 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00175 #\n\
00176 # The state of each joint (revolute or prismatic) is defined by:\n\
00177 # * the position of the joint (rad or m),\n\
00178 # * the velocity of the joint (rad/s or m/s) and \n\
00179 # * the effort that is applied in the joint (Nm or N).\n\
00180 #\n\
00181 # Each joint is uniquely identified by its name\n\
00182 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00183 # in one message have to be recorded at the same time.\n\
00184 #\n\
00185 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00186 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00187 # effort associated with them, you can leave the effort array empty. \n\
00188 #\n\
00189 # All arrays in this message should have the same size, or be empty.\n\
00190 # This is the only way to uniquely associate the joint name with the correct\n\
00191 # states.\n\
00192 \n\
00193 \n\
00194 Header header\n\
00195 \n\
00196 string[] name\n\
00197 float64[] position\n\
00198 float64[] velocity\n\
00199 float64[] effort\n\
00200 \n\
00201 ================================================================================\n\
00202 MSG: geometry_msgs/Pose\n\
00203 # A representation of pose in free space, composed of postion and orientation. \n\
00204 Point position\n\
00205 Quaternion orientation\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: geometry_msgs/Point\n\
00209 # This contains the position of a point in free space\n\
00210 float64 x\n\
00211 float64 y\n\
00212 float64 z\n\
00213 \n\
00214 ================================================================================\n\
00215 MSG: geometry_msgs/Quaternion\n\
00216 # This represents an orientation in free space in quaternion form.\n\
00217 \n\
00218 float64 x\n\
00219 float64 y\n\
00220 float64 z\n\
00221 float64 w\n\
00222 \n\
00223 ================================================================================\n\
00224 MSG: object_manipulation_msgs/GraspableObject\n\
00225 # an object that the object_manipulator can work on\n\
00226 \n\
00227 # a graspable object can be represented in multiple ways. This message\n\
00228 # can contain all of them. Which one is actually used is up to the receiver\n\
00229 # of this message. When adding new representations, one must be careful that\n\
00230 # they have reasonable lightweight defaults indicating that that particular\n\
00231 # representation is not available.\n\
00232 \n\
00233 # the tf frame to be used as a reference frame when combining information from\n\
00234 # the different representations below\n\
00235 string reference_frame_id\n\
00236 \n\
00237 # potential recognition results from a database of models\n\
00238 # all poses are relative to the object reference pose\n\
00239 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00240 \n\
00241 # the point cloud itself\n\
00242 sensor_msgs/PointCloud cluster\n\
00243 \n\
00244 # a region of a PointCloud2 of interest\n\
00245 object_manipulation_msgs/SceneRegion region\n\
00246 \n\
00247 # the name that this object has in the collision environment\n\
00248 string collision_name\n\
00249 ================================================================================\n\
00250 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00251 # Informs that a specific model from the Model Database has been \n\
00252 # identified at a certain location\n\
00253 \n\
00254 # the database id of the model\n\
00255 int32 model_id\n\
00256 \n\
00257 # the pose that it can be found in\n\
00258 geometry_msgs/PoseStamped pose\n\
00259 \n\
00260 # a measure of the confidence level in this detection result\n\
00261 float32 confidence\n\
00262 \n\
00263 # the name of the object detector that generated this detection result\n\
00264 string detector_name\n\
00265 \n\
00266 ================================================================================\n\
00267 MSG: geometry_msgs/PoseStamped\n\
00268 # A Pose with reference coordinate frame and timestamp\n\
00269 Header header\n\
00270 Pose pose\n\
00271 \n\
00272 ================================================================================\n\
00273 MSG: sensor_msgs/PointCloud\n\
00274 # This message holds a collection of 3d points, plus optional additional\n\
00275 # information about each point.\n\
00276 \n\
00277 # Time of sensor data acquisition, coordinate frame ID.\n\
00278 Header header\n\
00279 \n\
00280 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00281 # in the frame given in the header.\n\
00282 geometry_msgs/Point32[] points\n\
00283 \n\
00284 # Each channel should have the same number of elements as points array,\n\
00285 # and the data in each channel should correspond 1:1 with each point.\n\
00286 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00287 ChannelFloat32[] channels\n\
00288 \n\
00289 ================================================================================\n\
00290 MSG: geometry_msgs/Point32\n\
00291 # This contains the position of a point in free space(with 32 bits of precision).\n\
00292 # It is recommeded to use Point wherever possible instead of Point32. \n\
00293 # \n\
00294 # This recommendation is to promote interoperability. \n\
00295 #\n\
00296 # This message is designed to take up less space when sending\n\
00297 # lots of points at once, as in the case of a PointCloud. \n\
00298 \n\
00299 float32 x\n\
00300 float32 y\n\
00301 float32 z\n\
00302 ================================================================================\n\
00303 MSG: sensor_msgs/ChannelFloat32\n\
00304 # This message is used by the PointCloud message to hold optional data\n\
00305 # associated with each point in the cloud. The length of the values\n\
00306 # array should be the same as the length of the points array in the\n\
00307 # PointCloud, and each value should be associated with the corresponding\n\
00308 # point.\n\
00309 \n\
00310 # Channel names in existing practice include:\n\
00311 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00312 # This is opposite to usual conventions but remains for\n\
00313 # historical reasons. The newer PointCloud2 message has no\n\
00314 # such problem.\n\
00315 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00316 # (R,G,B) values packed into the least significant 24 bits,\n\
00317 # in order.\n\
00318 # \"intensity\" - laser or pixel intensity.\n\
00319 # \"distance\"\n\
00320 \n\
00321 # The channel name should give semantics of the channel (e.g.\n\
00322 # \"intensity\" instead of \"value\").\n\
00323 string name\n\
00324 \n\
00325 # The values array should be 1-1 with the elements of the associated\n\
00326 # PointCloud.\n\
00327 float32[] values\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: object_manipulation_msgs/SceneRegion\n\
00331 # Point cloud\n\
00332 sensor_msgs/PointCloud2 cloud\n\
00333 \n\
00334 # Indices for the region of interest\n\
00335 int32[] mask\n\
00336 \n\
00337 # One of the corresponding 2D images, if applicable\n\
00338 sensor_msgs/Image image\n\
00339 \n\
00340 # The disparity image, if applicable\n\
00341 sensor_msgs/Image disparity_image\n\
00342 \n\
00343 # Camera info for the camera that took the image\n\
00344 sensor_msgs/CameraInfo cam_info\n\
00345 \n\
00346 # a 3D region of interest for grasp planning\n\
00347 geometry_msgs/PoseStamped roi_box_pose\n\
00348 geometry_msgs/Vector3 roi_box_dims\n\
00349 \n\
00350 ================================================================================\n\
00351 MSG: sensor_msgs/PointCloud2\n\
00352 # This message holds a collection of N-dimensional points, which may\n\
00353 # contain additional information such as normals, intensity, etc. The\n\
00354 # point data is stored as a binary blob, its layout described by the\n\
00355 # contents of the \"fields\" array.\n\
00356 \n\
00357 # The point cloud data may be organized 2d (image-like) or 1d\n\
00358 # (unordered). Point clouds organized as 2d images may be produced by\n\
00359 # camera depth sensors such as stereo or time-of-flight.\n\
00360 \n\
00361 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00362 # points).\n\
00363 Header header\n\
00364 \n\
00365 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00366 # 1 and width is the length of the point cloud.\n\
00367 uint32 height\n\
00368 uint32 width\n\
00369 \n\
00370 # Describes the channels and their layout in the binary data blob.\n\
00371 PointField[] fields\n\
00372 \n\
00373 bool is_bigendian # Is this data bigendian?\n\
00374 uint32 point_step # Length of a point in bytes\n\
00375 uint32 row_step # Length of a row in bytes\n\
00376 uint8[] data # Actual point data, size is (row_step*height)\n\
00377 \n\
00378 bool is_dense # True if there are no invalid points\n\
00379 \n\
00380 ================================================================================\n\
00381 MSG: sensor_msgs/PointField\n\
00382 # This message holds the description of one point entry in the\n\
00383 # PointCloud2 message format.\n\
00384 uint8 INT8 = 1\n\
00385 uint8 UINT8 = 2\n\
00386 uint8 INT16 = 3\n\
00387 uint8 UINT16 = 4\n\
00388 uint8 INT32 = 5\n\
00389 uint8 UINT32 = 6\n\
00390 uint8 FLOAT32 = 7\n\
00391 uint8 FLOAT64 = 8\n\
00392 \n\
00393 string name # Name of field\n\
00394 uint32 offset # Offset from start of point struct\n\
00395 uint8 datatype # Datatype enumeration, see above\n\
00396 uint32 count # How many elements in the field\n\
00397 \n\
00398 ================================================================================\n\
00399 MSG: sensor_msgs/Image\n\
00400 # This message contains an uncompressed image\n\
00401 # (0, 0) is at top-left corner of image\n\
00402 #\n\
00403 \n\
00404 Header header # Header timestamp should be acquisition time of image\n\
00405 # Header frame_id should be optical frame of camera\n\
00406 # origin of frame should be optical center of cameara\n\
00407 # +x should point to the right in the image\n\
00408 # +y should point down in the image\n\
00409 # +z should point into to plane of the image\n\
00410 # If the frame_id here and the frame_id of the CameraInfo\n\
00411 # message associated with the image conflict\n\
00412 # the behavior is undefined\n\
00413 \n\
00414 uint32 height # image height, that is, number of rows\n\
00415 uint32 width # image width, that is, number of columns\n\
00416 \n\
00417 # The legal values for encoding are in file src/image_encodings.cpp\n\
00418 # If you want to standardize a new string format, join\n\
00419 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00420 \n\
00421 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00422 # taken from the list of strings in src/image_encodings.cpp\n\
00423 \n\
00424 uint8 is_bigendian # is this data bigendian?\n\
00425 uint32 step # Full row length in bytes\n\
00426 uint8[] data # actual matrix data, size is (step * rows)\n\
00427 \n\
00428 ================================================================================\n\
00429 MSG: sensor_msgs/CameraInfo\n\
00430 # This message defines meta information for a camera. It should be in a\n\
00431 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00432 # image topics named:\n\
00433 #\n\
00434 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00435 # image - monochrome, distorted\n\
00436 # image_color - color, distorted\n\
00437 # image_rect - monochrome, rectified\n\
00438 # image_rect_color - color, rectified\n\
00439 #\n\
00440 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00441 # for producing the four processed image topics from image_raw and\n\
00442 # camera_info. The meaning of the camera parameters are described in\n\
00443 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00444 #\n\
00445 # The image_geometry package provides a user-friendly interface to\n\
00446 # common operations using this meta information. If you want to, e.g.,\n\
00447 # project a 3d point into image coordinates, we strongly recommend\n\
00448 # using image_geometry.\n\
00449 #\n\
00450 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00451 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00452 # indicates an uncalibrated camera.\n\
00453 \n\
00454 #######################################################################\n\
00455 # Image acquisition info #\n\
00456 #######################################################################\n\
00457 \n\
00458 # Time of image acquisition, camera coordinate frame ID\n\
00459 Header header # Header timestamp should be acquisition time of image\n\
00460 # Header frame_id should be optical frame of camera\n\
00461 # origin of frame should be optical center of camera\n\
00462 # +x should point to the right in the image\n\
00463 # +y should point down in the image\n\
00464 # +z should point into the plane of the image\n\
00465 \n\
00466 \n\
00467 #######################################################################\n\
00468 # Calibration Parameters #\n\
00469 #######################################################################\n\
00470 # These are fixed during camera calibration. Their values will be the #\n\
00471 # same in all messages until the camera is recalibrated. Note that #\n\
00472 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00473 # #\n\
00474 # The internal parameters can be used to warp a raw (distorted) image #\n\
00475 # to: #\n\
00476 # 1. An undistorted image (requires D and K) #\n\
00477 # 2. A rectified image (requires D, K, R) #\n\
00478 # The projection matrix P projects 3D points into the rectified image.#\n\
00479 #######################################################################\n\
00480 \n\
00481 # The image dimensions with which the camera was calibrated. Normally\n\
00482 # this will be the full camera resolution in pixels.\n\
00483 uint32 height\n\
00484 uint32 width\n\
00485 \n\
00486 # The distortion model used. Supported models are listed in\n\
00487 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00488 # simple model of radial and tangential distortion - is sufficent.\n\
00489 string distortion_model\n\
00490 \n\
00491 # The distortion parameters, size depending on the distortion model.\n\
00492 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00493 float64[] D\n\
00494 \n\
00495 # Intrinsic camera matrix for the raw (distorted) images.\n\
00496 # [fx 0 cx]\n\
00497 # K = [ 0 fy cy]\n\
00498 # [ 0 0 1]\n\
00499 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00500 # coordinates using the focal lengths (fx, fy) and principal point\n\
00501 # (cx, cy).\n\
00502 float64[9] K # 3x3 row-major matrix\n\
00503 \n\
00504 # Rectification matrix (stereo cameras only)\n\
00505 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00506 # stereo image plane so that epipolar lines in both stereo images are\n\
00507 # parallel.\n\
00508 float64[9] R # 3x3 row-major matrix\n\
00509 \n\
00510 # Projection/camera matrix\n\
00511 # [fx' 0 cx' Tx]\n\
00512 # P = [ 0 fy' cy' Ty]\n\
00513 # [ 0 0 1 0]\n\
00514 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00515 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00516 # is the normal camera intrinsic matrix for the rectified image.\n\
00517 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00518 # coordinates using the focal lengths (fx', fy') and principal point\n\
00519 # (cx', cy') - these may differ from the values in K.\n\
00520 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00521 # also have R = the identity and P[1:3,1:3] = K.\n\
00522 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00523 # position of the optical center of the second camera in the first\n\
00524 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00525 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00526 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00527 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00528 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00529 # the rectified image is given by:\n\
00530 # [u v w]' = P * [X Y Z 1]'\n\
00531 # x = u / w\n\
00532 # y = v / w\n\
00533 # This holds for both images of a stereo pair.\n\
00534 float64[12] P # 3x4 row-major matrix\n\
00535 \n\
00536 \n\
00537 #######################################################################\n\
00538 # Operational Parameters #\n\
00539 #######################################################################\n\
00540 # These define the image region actually captured by the camera #\n\
00541 # driver. Although they affect the geometry of the output image, they #\n\
00542 # may be changed freely without recalibrating the camera. #\n\
00543 #######################################################################\n\
00544 \n\
00545 # Binning refers here to any camera setting which combines rectangular\n\
00546 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00547 # resolution of the output image to\n\
00548 # (width / binning_x) x (height / binning_y).\n\
00549 # The default values binning_x = binning_y = 0 is considered the same\n\
00550 # as binning_x = binning_y = 1 (no subsampling).\n\
00551 uint32 binning_x\n\
00552 uint32 binning_y\n\
00553 \n\
00554 # Region of interest (subwindow of full camera resolution), given in\n\
00555 # full resolution (unbinned) image coordinates. A particular ROI\n\
00556 # always denotes the same window of pixels on the camera sensor,\n\
00557 # regardless of binning settings.\n\
00558 # The default setting of roi (all values 0) is considered the same as\n\
00559 # full resolution (roi.width = width, roi.height = height).\n\
00560 RegionOfInterest roi\n\
00561 \n\
00562 ================================================================================\n\
00563 MSG: sensor_msgs/RegionOfInterest\n\
00564 # This message is used to specify a region of interest within an image.\n\
00565 #\n\
00566 # When used to specify the ROI setting of the camera when the image was\n\
00567 # taken, the height and width fields should either match the height and\n\
00568 # width fields for the associated image; or height = width = 0\n\
00569 # indicates that the full resolution image was captured.\n\
00570 \n\
00571 uint32 x_offset # Leftmost pixel of the ROI\n\
00572 # (0 if the ROI includes the left edge of the image)\n\
00573 uint32 y_offset # Topmost pixel of the ROI\n\
00574 # (0 if the ROI includes the top edge of the image)\n\
00575 uint32 height # Height of ROI\n\
00576 uint32 width # Width of ROI\n\
00577 \n\
00578 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00579 # ROI in this message. Typically this should be False if the full image\n\
00580 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00581 # used).\n\
00582 bool do_rectify\n\
00583 \n\
00584 ================================================================================\n\
00585 MSG: geometry_msgs/Vector3\n\
00586 # This represents a vector in free space. \n\
00587 \n\
00588 float64 x\n\
00589 float64 y\n\
00590 float64 z\n\
00591 "; }
00592 public:
00593 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00594
00595 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00596
00597 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00598 {
00599 ros::serialization::OStream stream(write_ptr, 1000000000);
00600 ros::serialization::serialize(stream, header);
00601 ros::serialization::serialize(stream, status);
00602 ros::serialization::serialize(stream, feedback);
00603 return stream.getData();
00604 }
00605
00606 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00607 {
00608 ros::serialization::IStream stream(read_ptr, 1000000000);
00609 ros::serialization::deserialize(stream, header);
00610 ros::serialization::deserialize(stream, status);
00611 ros::serialization::deserialize(stream, feedback);
00612 return stream.getData();
00613 }
00614
00615 ROS_DEPRECATED virtual uint32_t serializationLength() const
00616 {
00617 uint32_t size = 0;
00618 size += ros::serialization::serializationLength(header);
00619 size += ros::serialization::serializationLength(status);
00620 size += ros::serialization::serializationLength(feedback);
00621 return size;
00622 }
00623
00624 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > Ptr;
00625 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> const> ConstPtr;
00626 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00627 };
00628 typedef ::object_manipulation_msgs::GraspPlanningActionFeedback_<std::allocator<void> > GraspPlanningActionFeedback;
00629
00630 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback> GraspPlanningActionFeedbackPtr;
00631 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionFeedback const> GraspPlanningActionFeedbackConstPtr;
00632
00633
00634 template<typename ContainerAllocator>
00635 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> & v)
00636 {
00637 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >::stream(s, "", v);
00638 return s;}
00639
00640 }
00641
00642 namespace ros
00643 {
00644 namespace message_traits
00645 {
00646 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {};
00647 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> const> : public TrueType {};
00648 template<class ContainerAllocator>
00649 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > {
00650 static const char* value()
00651 {
00652 return "8f0cac201a22e6d38c53ae3d096f2dd7";
00653 }
00654
00655 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); }
00656 static const uint64_t static_value1 = 0x8f0cac201a22e6d3ULL;
00657 static const uint64_t static_value2 = 0x8c53ae3d096f2dd7ULL;
00658 };
00659
00660 template<class ContainerAllocator>
00661 struct DataType< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > {
00662 static const char* value()
00663 {
00664 return "object_manipulation_msgs/GraspPlanningActionFeedback";
00665 }
00666
00667 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); }
00668 };
00669
00670 template<class ContainerAllocator>
00671 struct Definition< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > {
00672 static const char* value()
00673 {
00674 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00675 \n\
00676 Header header\n\
00677 actionlib_msgs/GoalStatus status\n\
00678 GraspPlanningFeedback feedback\n\
00679 \n\
00680 ================================================================================\n\
00681 MSG: std_msgs/Header\n\
00682 # Standard metadata for higher-level stamped data types.\n\
00683 # This is generally used to communicate timestamped data \n\
00684 # in a particular coordinate frame.\n\
00685 # \n\
00686 # sequence ID: consecutively increasing ID \n\
00687 uint32 seq\n\
00688 #Two-integer timestamp that is expressed as:\n\
00689 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00690 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00691 # time-handling sugar is provided by the client library\n\
00692 time stamp\n\
00693 #Frame this data is associated with\n\
00694 # 0: no frame\n\
00695 # 1: global frame\n\
00696 string frame_id\n\
00697 \n\
00698 ================================================================================\n\
00699 MSG: actionlib_msgs/GoalStatus\n\
00700 GoalID goal_id\n\
00701 uint8 status\n\
00702 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00703 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00704 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00705 # and has since completed its execution (Terminal State)\n\
00706 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00707 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00708 # to some failure (Terminal State)\n\
00709 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00710 # because the goal was unattainable or invalid (Terminal State)\n\
00711 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00712 # and has not yet completed execution\n\
00713 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00714 # but the action server has not yet confirmed that the goal is canceled\n\
00715 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00716 # and was successfully cancelled (Terminal State)\n\
00717 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00718 # sent over the wire by an action server\n\
00719 \n\
00720 #Allow for the user to associate a string with GoalStatus for debugging\n\
00721 string text\n\
00722 \n\
00723 \n\
00724 ================================================================================\n\
00725 MSG: actionlib_msgs/GoalID\n\
00726 # The stamp should store the time at which this goal was requested.\n\
00727 # It is used by an action server when it tries to preempt all\n\
00728 # goals that were requested before a certain time\n\
00729 time stamp\n\
00730 \n\
00731 # The id provides a way to associate feedback and\n\
00732 # result message with specific goal requests. The id\n\
00733 # specified must be unique.\n\
00734 string id\n\
00735 \n\
00736 \n\
00737 ================================================================================\n\
00738 MSG: object_manipulation_msgs/GraspPlanningFeedback\n\
00739 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00740 \n\
00741 # grasps planned so far\n\
00742 Grasp[] grasps\n\
00743 \n\
00744 \n\
00745 \n\
00746 ================================================================================\n\
00747 MSG: object_manipulation_msgs/Grasp\n\
00748 \n\
00749 # The internal posture of the hand for the pre-grasp\n\
00750 # only positions are used\n\
00751 sensor_msgs/JointState pre_grasp_posture\n\
00752 \n\
00753 # The internal posture of the hand for the grasp\n\
00754 # positions and efforts are used\n\
00755 sensor_msgs/JointState grasp_posture\n\
00756 \n\
00757 # The position of the end-effector for the grasp relative to a reference frame \n\
00758 # (that is always specified elsewhere, not in this message)\n\
00759 geometry_msgs/Pose grasp_pose\n\
00760 \n\
00761 # The estimated probability of success for this grasp\n\
00762 float64 success_probability\n\
00763 \n\
00764 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00765 bool cluster_rep\n\
00766 \n\
00767 # how far the pre-grasp should ideally be away from the grasp\n\
00768 float32 desired_approach_distance\n\
00769 \n\
00770 # how much distance between pre-grasp and grasp must actually be feasible \n\
00771 # for the grasp not to be rejected\n\
00772 float32 min_approach_distance\n\
00773 \n\
00774 # an optional list of obstacles that we have semantic information about\n\
00775 # and that we expect might move in the course of executing this grasp\n\
00776 # the grasp planner is expected to make sure they move in an OK way; during\n\
00777 # execution, grasp executors will not check for collisions against these objects\n\
00778 GraspableObject[] moved_obstacles\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: sensor_msgs/JointState\n\
00782 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00783 #\n\
00784 # The state of each joint (revolute or prismatic) is defined by:\n\
00785 # * the position of the joint (rad or m),\n\
00786 # * the velocity of the joint (rad/s or m/s) and \n\
00787 # * the effort that is applied in the joint (Nm or N).\n\
00788 #\n\
00789 # Each joint is uniquely identified by its name\n\
00790 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00791 # in one message have to be recorded at the same time.\n\
00792 #\n\
00793 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00794 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00795 # effort associated with them, you can leave the effort array empty. \n\
00796 #\n\
00797 # All arrays in this message should have the same size, or be empty.\n\
00798 # This is the only way to uniquely associate the joint name with the correct\n\
00799 # states.\n\
00800 \n\
00801 \n\
00802 Header header\n\
00803 \n\
00804 string[] name\n\
00805 float64[] position\n\
00806 float64[] velocity\n\
00807 float64[] effort\n\
00808 \n\
00809 ================================================================================\n\
00810 MSG: geometry_msgs/Pose\n\
00811 # A representation of pose in free space, composed of postion and orientation. \n\
00812 Point position\n\
00813 Quaternion orientation\n\
00814 \n\
00815 ================================================================================\n\
00816 MSG: geometry_msgs/Point\n\
00817 # This contains the position of a point in free space\n\
00818 float64 x\n\
00819 float64 y\n\
00820 float64 z\n\
00821 \n\
00822 ================================================================================\n\
00823 MSG: geometry_msgs/Quaternion\n\
00824 # This represents an orientation in free space in quaternion form.\n\
00825 \n\
00826 float64 x\n\
00827 float64 y\n\
00828 float64 z\n\
00829 float64 w\n\
00830 \n\
00831 ================================================================================\n\
00832 MSG: object_manipulation_msgs/GraspableObject\n\
00833 # an object that the object_manipulator can work on\n\
00834 \n\
00835 # a graspable object can be represented in multiple ways. This message\n\
00836 # can contain all of them. Which one is actually used is up to the receiver\n\
00837 # of this message. When adding new representations, one must be careful that\n\
00838 # they have reasonable lightweight defaults indicating that that particular\n\
00839 # representation is not available.\n\
00840 \n\
00841 # the tf frame to be used as a reference frame when combining information from\n\
00842 # the different representations below\n\
00843 string reference_frame_id\n\
00844 \n\
00845 # potential recognition results from a database of models\n\
00846 # all poses are relative to the object reference pose\n\
00847 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00848 \n\
00849 # the point cloud itself\n\
00850 sensor_msgs/PointCloud cluster\n\
00851 \n\
00852 # a region of a PointCloud2 of interest\n\
00853 object_manipulation_msgs/SceneRegion region\n\
00854 \n\
00855 # the name that this object has in the collision environment\n\
00856 string collision_name\n\
00857 ================================================================================\n\
00858 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00859 # Informs that a specific model from the Model Database has been \n\
00860 # identified at a certain location\n\
00861 \n\
00862 # the database id of the model\n\
00863 int32 model_id\n\
00864 \n\
00865 # the pose that it can be found in\n\
00866 geometry_msgs/PoseStamped pose\n\
00867 \n\
00868 # a measure of the confidence level in this detection result\n\
00869 float32 confidence\n\
00870 \n\
00871 # the name of the object detector that generated this detection result\n\
00872 string detector_name\n\
00873 \n\
00874 ================================================================================\n\
00875 MSG: geometry_msgs/PoseStamped\n\
00876 # A Pose with reference coordinate frame and timestamp\n\
00877 Header header\n\
00878 Pose pose\n\
00879 \n\
00880 ================================================================================\n\
00881 MSG: sensor_msgs/PointCloud\n\
00882 # This message holds a collection of 3d points, plus optional additional\n\
00883 # information about each point.\n\
00884 \n\
00885 # Time of sensor data acquisition, coordinate frame ID.\n\
00886 Header header\n\
00887 \n\
00888 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00889 # in the frame given in the header.\n\
00890 geometry_msgs/Point32[] points\n\
00891 \n\
00892 # Each channel should have the same number of elements as points array,\n\
00893 # and the data in each channel should correspond 1:1 with each point.\n\
00894 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00895 ChannelFloat32[] channels\n\
00896 \n\
00897 ================================================================================\n\
00898 MSG: geometry_msgs/Point32\n\
00899 # This contains the position of a point in free space(with 32 bits of precision).\n\
00900 # It is recommeded to use Point wherever possible instead of Point32. \n\
00901 # \n\
00902 # This recommendation is to promote interoperability. \n\
00903 #\n\
00904 # This message is designed to take up less space when sending\n\
00905 # lots of points at once, as in the case of a PointCloud. \n\
00906 \n\
00907 float32 x\n\
00908 float32 y\n\
00909 float32 z\n\
00910 ================================================================================\n\
00911 MSG: sensor_msgs/ChannelFloat32\n\
00912 # This message is used by the PointCloud message to hold optional data\n\
00913 # associated with each point in the cloud. The length of the values\n\
00914 # array should be the same as the length of the points array in the\n\
00915 # PointCloud, and each value should be associated with the corresponding\n\
00916 # point.\n\
00917 \n\
00918 # Channel names in existing practice include:\n\
00919 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00920 # This is opposite to usual conventions but remains for\n\
00921 # historical reasons. The newer PointCloud2 message has no\n\
00922 # such problem.\n\
00923 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00924 # (R,G,B) values packed into the least significant 24 bits,\n\
00925 # in order.\n\
00926 # \"intensity\" - laser or pixel intensity.\n\
00927 # \"distance\"\n\
00928 \n\
00929 # The channel name should give semantics of the channel (e.g.\n\
00930 # \"intensity\" instead of \"value\").\n\
00931 string name\n\
00932 \n\
00933 # The values array should be 1-1 with the elements of the associated\n\
00934 # PointCloud.\n\
00935 float32[] values\n\
00936 \n\
00937 ================================================================================\n\
00938 MSG: object_manipulation_msgs/SceneRegion\n\
00939 # Point cloud\n\
00940 sensor_msgs/PointCloud2 cloud\n\
00941 \n\
00942 # Indices for the region of interest\n\
00943 int32[] mask\n\
00944 \n\
00945 # One of the corresponding 2D images, if applicable\n\
00946 sensor_msgs/Image image\n\
00947 \n\
00948 # The disparity image, if applicable\n\
00949 sensor_msgs/Image disparity_image\n\
00950 \n\
00951 # Camera info for the camera that took the image\n\
00952 sensor_msgs/CameraInfo cam_info\n\
00953 \n\
00954 # a 3D region of interest for grasp planning\n\
00955 geometry_msgs/PoseStamped roi_box_pose\n\
00956 geometry_msgs/Vector3 roi_box_dims\n\
00957 \n\
00958 ================================================================================\n\
00959 MSG: sensor_msgs/PointCloud2\n\
00960 # This message holds a collection of N-dimensional points, which may\n\
00961 # contain additional information such as normals, intensity, etc. The\n\
00962 # point data is stored as a binary blob, its layout described by the\n\
00963 # contents of the \"fields\" array.\n\
00964 \n\
00965 # The point cloud data may be organized 2d (image-like) or 1d\n\
00966 # (unordered). Point clouds organized as 2d images may be produced by\n\
00967 # camera depth sensors such as stereo or time-of-flight.\n\
00968 \n\
00969 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00970 # points).\n\
00971 Header header\n\
00972 \n\
00973 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00974 # 1 and width is the length of the point cloud.\n\
00975 uint32 height\n\
00976 uint32 width\n\
00977 \n\
00978 # Describes the channels and their layout in the binary data blob.\n\
00979 PointField[] fields\n\
00980 \n\
00981 bool is_bigendian # Is this data bigendian?\n\
00982 uint32 point_step # Length of a point in bytes\n\
00983 uint32 row_step # Length of a row in bytes\n\
00984 uint8[] data # Actual point data, size is (row_step*height)\n\
00985 \n\
00986 bool is_dense # True if there are no invalid points\n\
00987 \n\
00988 ================================================================================\n\
00989 MSG: sensor_msgs/PointField\n\
00990 # This message holds the description of one point entry in the\n\
00991 # PointCloud2 message format.\n\
00992 uint8 INT8 = 1\n\
00993 uint8 UINT8 = 2\n\
00994 uint8 INT16 = 3\n\
00995 uint8 UINT16 = 4\n\
00996 uint8 INT32 = 5\n\
00997 uint8 UINT32 = 6\n\
00998 uint8 FLOAT32 = 7\n\
00999 uint8 FLOAT64 = 8\n\
01000 \n\
01001 string name # Name of field\n\
01002 uint32 offset # Offset from start of point struct\n\
01003 uint8 datatype # Datatype enumeration, see above\n\
01004 uint32 count # How many elements in the field\n\
01005 \n\
01006 ================================================================================\n\
01007 MSG: sensor_msgs/Image\n\
01008 # This message contains an uncompressed image\n\
01009 # (0, 0) is at top-left corner of image\n\
01010 #\n\
01011 \n\
01012 Header header # Header timestamp should be acquisition time of image\n\
01013 # Header frame_id should be optical frame of camera\n\
01014 # origin of frame should be optical center of cameara\n\
01015 # +x should point to the right in the image\n\
01016 # +y should point down in the image\n\
01017 # +z should point into to plane of the image\n\
01018 # If the frame_id here and the frame_id of the CameraInfo\n\
01019 # message associated with the image conflict\n\
01020 # the behavior is undefined\n\
01021 \n\
01022 uint32 height # image height, that is, number of rows\n\
01023 uint32 width # image width, that is, number of columns\n\
01024 \n\
01025 # The legal values for encoding are in file src/image_encodings.cpp\n\
01026 # If you want to standardize a new string format, join\n\
01027 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01028 \n\
01029 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01030 # taken from the list of strings in src/image_encodings.cpp\n\
01031 \n\
01032 uint8 is_bigendian # is this data bigendian?\n\
01033 uint32 step # Full row length in bytes\n\
01034 uint8[] data # actual matrix data, size is (step * rows)\n\
01035 \n\
01036 ================================================================================\n\
01037 MSG: sensor_msgs/CameraInfo\n\
01038 # This message defines meta information for a camera. It should be in a\n\
01039 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01040 # image topics named:\n\
01041 #\n\
01042 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01043 # image - monochrome, distorted\n\
01044 # image_color - color, distorted\n\
01045 # image_rect - monochrome, rectified\n\
01046 # image_rect_color - color, rectified\n\
01047 #\n\
01048 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01049 # for producing the four processed image topics from image_raw and\n\
01050 # camera_info. The meaning of the camera parameters are described in\n\
01051 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01052 #\n\
01053 # The image_geometry package provides a user-friendly interface to\n\
01054 # common operations using this meta information. If you want to, e.g.,\n\
01055 # project a 3d point into image coordinates, we strongly recommend\n\
01056 # using image_geometry.\n\
01057 #\n\
01058 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01059 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01060 # indicates an uncalibrated camera.\n\
01061 \n\
01062 #######################################################################\n\
01063 # Image acquisition info #\n\
01064 #######################################################################\n\
01065 \n\
01066 # Time of image acquisition, camera coordinate frame ID\n\
01067 Header header # Header timestamp should be acquisition time of image\n\
01068 # Header frame_id should be optical frame of camera\n\
01069 # origin of frame should be optical center of camera\n\
01070 # +x should point to the right in the image\n\
01071 # +y should point down in the image\n\
01072 # +z should point into the plane of the image\n\
01073 \n\
01074 \n\
01075 #######################################################################\n\
01076 # Calibration Parameters #\n\
01077 #######################################################################\n\
01078 # These are fixed during camera calibration. Their values will be the #\n\
01079 # same in all messages until the camera is recalibrated. Note that #\n\
01080 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01081 # #\n\
01082 # The internal parameters can be used to warp a raw (distorted) image #\n\
01083 # to: #\n\
01084 # 1. An undistorted image (requires D and K) #\n\
01085 # 2. A rectified image (requires D, K, R) #\n\
01086 # The projection matrix P projects 3D points into the rectified image.#\n\
01087 #######################################################################\n\
01088 \n\
01089 # The image dimensions with which the camera was calibrated. Normally\n\
01090 # this will be the full camera resolution in pixels.\n\
01091 uint32 height\n\
01092 uint32 width\n\
01093 \n\
01094 # The distortion model used. Supported models are listed in\n\
01095 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01096 # simple model of radial and tangential distortion - is sufficent.\n\
01097 string distortion_model\n\
01098 \n\
01099 # The distortion parameters, size depending on the distortion model.\n\
01100 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01101 float64[] D\n\
01102 \n\
01103 # Intrinsic camera matrix for the raw (distorted) images.\n\
01104 # [fx 0 cx]\n\
01105 # K = [ 0 fy cy]\n\
01106 # [ 0 0 1]\n\
01107 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01108 # coordinates using the focal lengths (fx, fy) and principal point\n\
01109 # (cx, cy).\n\
01110 float64[9] K # 3x3 row-major matrix\n\
01111 \n\
01112 # Rectification matrix (stereo cameras only)\n\
01113 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01114 # stereo image plane so that epipolar lines in both stereo images are\n\
01115 # parallel.\n\
01116 float64[9] R # 3x3 row-major matrix\n\
01117 \n\
01118 # Projection/camera matrix\n\
01119 # [fx' 0 cx' Tx]\n\
01120 # P = [ 0 fy' cy' Ty]\n\
01121 # [ 0 0 1 0]\n\
01122 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01123 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01124 # is the normal camera intrinsic matrix for the rectified image.\n\
01125 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01126 # coordinates using the focal lengths (fx', fy') and principal point\n\
01127 # (cx', cy') - these may differ from the values in K.\n\
01128 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01129 # also have R = the identity and P[1:3,1:3] = K.\n\
01130 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01131 # position of the optical center of the second camera in the first\n\
01132 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01133 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01134 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01135 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01136 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01137 # the rectified image is given by:\n\
01138 # [u v w]' = P * [X Y Z 1]'\n\
01139 # x = u / w\n\
01140 # y = v / w\n\
01141 # This holds for both images of a stereo pair.\n\
01142 float64[12] P # 3x4 row-major matrix\n\
01143 \n\
01144 \n\
01145 #######################################################################\n\
01146 # Operational Parameters #\n\
01147 #######################################################################\n\
01148 # These define the image region actually captured by the camera #\n\
01149 # driver. Although they affect the geometry of the output image, they #\n\
01150 # may be changed freely without recalibrating the camera. #\n\
01151 #######################################################################\n\
01152 \n\
01153 # Binning refers here to any camera setting which combines rectangular\n\
01154 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01155 # resolution of the output image to\n\
01156 # (width / binning_x) x (height / binning_y).\n\
01157 # The default values binning_x = binning_y = 0 is considered the same\n\
01158 # as binning_x = binning_y = 1 (no subsampling).\n\
01159 uint32 binning_x\n\
01160 uint32 binning_y\n\
01161 \n\
01162 # Region of interest (subwindow of full camera resolution), given in\n\
01163 # full resolution (unbinned) image coordinates. A particular ROI\n\
01164 # always denotes the same window of pixels on the camera sensor,\n\
01165 # regardless of binning settings.\n\
01166 # The default setting of roi (all values 0) is considered the same as\n\
01167 # full resolution (roi.width = width, roi.height = height).\n\
01168 RegionOfInterest roi\n\
01169 \n\
01170 ================================================================================\n\
01171 MSG: sensor_msgs/RegionOfInterest\n\
01172 # This message is used to specify a region of interest within an image.\n\
01173 #\n\
01174 # When used to specify the ROI setting of the camera when the image was\n\
01175 # taken, the height and width fields should either match the height and\n\
01176 # width fields for the associated image; or height = width = 0\n\
01177 # indicates that the full resolution image was captured.\n\
01178 \n\
01179 uint32 x_offset # Leftmost pixel of the ROI\n\
01180 # (0 if the ROI includes the left edge of the image)\n\
01181 uint32 y_offset # Topmost pixel of the ROI\n\
01182 # (0 if the ROI includes the top edge of the image)\n\
01183 uint32 height # Height of ROI\n\
01184 uint32 width # Width of ROI\n\
01185 \n\
01186 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01187 # ROI in this message. Typically this should be False if the full image\n\
01188 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01189 # used).\n\
01190 bool do_rectify\n\
01191 \n\
01192 ================================================================================\n\
01193 MSG: geometry_msgs/Vector3\n\
01194 # This represents a vector in free space. \n\
01195 \n\
01196 float64 x\n\
01197 float64 y\n\
01198 float64 z\n\
01199 ";
01200 }
01201
01202 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> &) { return value(); }
01203 };
01204
01205 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {};
01206 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> > : public TrueType {};
01207 }
01208 }
01209
01210 namespace ros
01211 {
01212 namespace serialization
01213 {
01214
01215 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >
01216 {
01217 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01218 {
01219 stream.next(m.header);
01220 stream.next(m.status);
01221 stream.next(m.feedback);
01222 }
01223
01224 ROS_DECLARE_ALLINONE_SERIALIZER;
01225 };
01226 }
01227 }
01228
01229 namespace ros
01230 {
01231 namespace message_operations
01232 {
01233
01234 template<class ContainerAllocator>
01235 struct Printer< ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> >
01236 {
01237 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningActionFeedback_<ContainerAllocator> & v)
01238 {
01239 s << indent << "header: ";
01240 s << std::endl;
01241 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01242 s << indent << "status: ";
01243 s << std::endl;
01244 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status);
01245 s << indent << "feedback: ";
01246 s << std::endl;
01247 Printer< ::object_manipulation_msgs::GraspPlanningFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.feedback);
01248 }
01249 };
01250
01251
01252 }
01253 }
01254
01255 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONFEEDBACK_H
01256