00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspHandPostureExecutionActionGoal.h"
00018 #include "object_manipulation_msgs/GraspHandPostureExecutionActionResult.h"
00019 #include "object_manipulation_msgs/GraspHandPostureExecutionActionFeedback.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GraspHandPostureExecutionAction_ {
00025 typedef GraspHandPostureExecutionAction_<ContainerAllocator> Type;
00026
00027 GraspHandPostureExecutionAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 GraspHandPostureExecutionAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 private:
00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionAction"; }
00053 public:
00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00055
00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00057
00058 private:
00059 static const char* __s_getMD5Sum_() { return "9c7b002a44b8ec73513d411e2f3befd4"; }
00060 public:
00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00062
00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00064
00065 private:
00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00067 \n\
00068 GraspHandPostureExecutionActionGoal action_goal\n\
00069 GraspHandPostureExecutionActionResult action_result\n\
00070 GraspHandPostureExecutionActionFeedback action_feedback\n\
00071 \n\
00072 ================================================================================\n\
00073 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionGoal\n\
00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00075 \n\
00076 Header header\n\
00077 actionlib_msgs/GoalID goal_id\n\
00078 GraspHandPostureExecutionGoal goal\n\
00079 \n\
00080 ================================================================================\n\
00081 MSG: std_msgs/Header\n\
00082 # Standard metadata for higher-level stamped data types.\n\
00083 # This is generally used to communicate timestamped data \n\
00084 # in a particular coordinate frame.\n\
00085 # \n\
00086 # sequence ID: consecutively increasing ID \n\
00087 uint32 seq\n\
00088 #Two-integer timestamp that is expressed as:\n\
00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00091 # time-handling sugar is provided by the client library\n\
00092 time stamp\n\
00093 #Frame this data is associated with\n\
00094 # 0: no frame\n\
00095 # 1: global frame\n\
00096 string frame_id\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: actionlib_msgs/GoalID\n\
00100 # The stamp should store the time at which this goal was requested.\n\
00101 # It is used by an action server when it tries to preempt all\n\
00102 # goals that were requested before a certain time\n\
00103 time stamp\n\
00104 \n\
00105 # The id provides a way to associate feedback and\n\
00106 # result message with specific goal requests. The id\n\
00107 # specified must be unique.\n\
00108 string id\n\
00109 \n\
00110 \n\
00111 ================================================================================\n\
00112 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\
00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00115 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00116 # for each arm\n\
00117 \n\
00118 # the grasp to be executed\n\
00119 Grasp grasp\n\
00120 \n\
00121 # the goal of this action\n\
00122 # requests that the hand be set in the pre-grasp posture\n\
00123 int32 PRE_GRASP=1\n\
00124 # requests that the hand execute the actual grasp\n\
00125 int32 GRASP=2\n\
00126 # requests that the hand open to release the object\n\
00127 int32 RELEASE=3\n\
00128 int32 goal\n\
00129 \n\
00130 # the max contact force to use (<=0 if no desired max)\n\
00131 float32 max_contact_force\n\
00132 \n\
00133 \n\
00134 ================================================================================\n\
00135 MSG: object_manipulation_msgs/Grasp\n\
00136 \n\
00137 # The internal posture of the hand for the pre-grasp\n\
00138 # only positions are used\n\
00139 sensor_msgs/JointState pre_grasp_posture\n\
00140 \n\
00141 # The internal posture of the hand for the grasp\n\
00142 # positions and efforts are used\n\
00143 sensor_msgs/JointState grasp_posture\n\
00144 \n\
00145 # The position of the end-effector for the grasp relative to a reference frame \n\
00146 # (that is always specified elsewhere, not in this message)\n\
00147 geometry_msgs/Pose grasp_pose\n\
00148 \n\
00149 # The estimated probability of success for this grasp\n\
00150 float64 success_probability\n\
00151 \n\
00152 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00153 bool cluster_rep\n\
00154 \n\
00155 # how far the pre-grasp should ideally be away from the grasp\n\
00156 float32 desired_approach_distance\n\
00157 \n\
00158 # how much distance between pre-grasp and grasp must actually be feasible \n\
00159 # for the grasp not to be rejected\n\
00160 float32 min_approach_distance\n\
00161 \n\
00162 # an optional list of obstacles that we have semantic information about\n\
00163 # and that we expect might move in the course of executing this grasp\n\
00164 # the grasp planner is expected to make sure they move in an OK way; during\n\
00165 # execution, grasp executors will not check for collisions against these objects\n\
00166 GraspableObject[] moved_obstacles\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: sensor_msgs/JointState\n\
00170 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00171 #\n\
00172 # The state of each joint (revolute or prismatic) is defined by:\n\
00173 # * the position of the joint (rad or m),\n\
00174 # * the velocity of the joint (rad/s or m/s) and \n\
00175 # * the effort that is applied in the joint (Nm or N).\n\
00176 #\n\
00177 # Each joint is uniquely identified by its name\n\
00178 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00179 # in one message have to be recorded at the same time.\n\
00180 #\n\
00181 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00182 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00183 # effort associated with them, you can leave the effort array empty. \n\
00184 #\n\
00185 # All arrays in this message should have the same size, or be empty.\n\
00186 # This is the only way to uniquely associate the joint name with the correct\n\
00187 # states.\n\
00188 \n\
00189 \n\
00190 Header header\n\
00191 \n\
00192 string[] name\n\
00193 float64[] position\n\
00194 float64[] velocity\n\
00195 float64[] effort\n\
00196 \n\
00197 ================================================================================\n\
00198 MSG: geometry_msgs/Pose\n\
00199 # A representation of pose in free space, composed of postion and orientation. \n\
00200 Point position\n\
00201 Quaternion orientation\n\
00202 \n\
00203 ================================================================================\n\
00204 MSG: geometry_msgs/Point\n\
00205 # This contains the position of a point in free space\n\
00206 float64 x\n\
00207 float64 y\n\
00208 float64 z\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: geometry_msgs/Quaternion\n\
00212 # This represents an orientation in free space in quaternion form.\n\
00213 \n\
00214 float64 x\n\
00215 float64 y\n\
00216 float64 z\n\
00217 float64 w\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: object_manipulation_msgs/GraspableObject\n\
00221 # an object that the object_manipulator can work on\n\
00222 \n\
00223 # a graspable object can be represented in multiple ways. This message\n\
00224 # can contain all of them. Which one is actually used is up to the receiver\n\
00225 # of this message. When adding new representations, one must be careful that\n\
00226 # they have reasonable lightweight defaults indicating that that particular\n\
00227 # representation is not available.\n\
00228 \n\
00229 # the tf frame to be used as a reference frame when combining information from\n\
00230 # the different representations below\n\
00231 string reference_frame_id\n\
00232 \n\
00233 # potential recognition results from a database of models\n\
00234 # all poses are relative to the object reference pose\n\
00235 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00236 \n\
00237 # the point cloud itself\n\
00238 sensor_msgs/PointCloud cluster\n\
00239 \n\
00240 # a region of a PointCloud2 of interest\n\
00241 object_manipulation_msgs/SceneRegion region\n\
00242 \n\
00243 # the name that this object has in the collision environment\n\
00244 string collision_name\n\
00245 ================================================================================\n\
00246 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00247 # Informs that a specific model from the Model Database has been \n\
00248 # identified at a certain location\n\
00249 \n\
00250 # the database id of the model\n\
00251 int32 model_id\n\
00252 \n\
00253 # the pose that it can be found in\n\
00254 geometry_msgs/PoseStamped pose\n\
00255 \n\
00256 # a measure of the confidence level in this detection result\n\
00257 float32 confidence\n\
00258 \n\
00259 # the name of the object detector that generated this detection result\n\
00260 string detector_name\n\
00261 \n\
00262 ================================================================================\n\
00263 MSG: geometry_msgs/PoseStamped\n\
00264 # A Pose with reference coordinate frame and timestamp\n\
00265 Header header\n\
00266 Pose pose\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: sensor_msgs/PointCloud\n\
00270 # This message holds a collection of 3d points, plus optional additional\n\
00271 # information about each point.\n\
00272 \n\
00273 # Time of sensor data acquisition, coordinate frame ID.\n\
00274 Header header\n\
00275 \n\
00276 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00277 # in the frame given in the header.\n\
00278 geometry_msgs/Point32[] points\n\
00279 \n\
00280 # Each channel should have the same number of elements as points array,\n\
00281 # and the data in each channel should correspond 1:1 with each point.\n\
00282 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00283 ChannelFloat32[] channels\n\
00284 \n\
00285 ================================================================================\n\
00286 MSG: geometry_msgs/Point32\n\
00287 # This contains the position of a point in free space(with 32 bits of precision).\n\
00288 # It is recommeded to use Point wherever possible instead of Point32. \n\
00289 # \n\
00290 # This recommendation is to promote interoperability. \n\
00291 #\n\
00292 # This message is designed to take up less space when sending\n\
00293 # lots of points at once, as in the case of a PointCloud. \n\
00294 \n\
00295 float32 x\n\
00296 float32 y\n\
00297 float32 z\n\
00298 ================================================================================\n\
00299 MSG: sensor_msgs/ChannelFloat32\n\
00300 # This message is used by the PointCloud message to hold optional data\n\
00301 # associated with each point in the cloud. The length of the values\n\
00302 # array should be the same as the length of the points array in the\n\
00303 # PointCloud, and each value should be associated with the corresponding\n\
00304 # point.\n\
00305 \n\
00306 # Channel names in existing practice include:\n\
00307 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00308 # This is opposite to usual conventions but remains for\n\
00309 # historical reasons. The newer PointCloud2 message has no\n\
00310 # such problem.\n\
00311 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00312 # (R,G,B) values packed into the least significant 24 bits,\n\
00313 # in order.\n\
00314 # \"intensity\" - laser or pixel intensity.\n\
00315 # \"distance\"\n\
00316 \n\
00317 # The channel name should give semantics of the channel (e.g.\n\
00318 # \"intensity\" instead of \"value\").\n\
00319 string name\n\
00320 \n\
00321 # The values array should be 1-1 with the elements of the associated\n\
00322 # PointCloud.\n\
00323 float32[] values\n\
00324 \n\
00325 ================================================================================\n\
00326 MSG: object_manipulation_msgs/SceneRegion\n\
00327 # Point cloud\n\
00328 sensor_msgs/PointCloud2 cloud\n\
00329 \n\
00330 # Indices for the region of interest\n\
00331 int32[] mask\n\
00332 \n\
00333 # One of the corresponding 2D images, if applicable\n\
00334 sensor_msgs/Image image\n\
00335 \n\
00336 # The disparity image, if applicable\n\
00337 sensor_msgs/Image disparity_image\n\
00338 \n\
00339 # Camera info for the camera that took the image\n\
00340 sensor_msgs/CameraInfo cam_info\n\
00341 \n\
00342 # a 3D region of interest for grasp planning\n\
00343 geometry_msgs/PoseStamped roi_box_pose\n\
00344 geometry_msgs/Vector3 roi_box_dims\n\
00345 \n\
00346 ================================================================================\n\
00347 MSG: sensor_msgs/PointCloud2\n\
00348 # This message holds a collection of N-dimensional points, which may\n\
00349 # contain additional information such as normals, intensity, etc. The\n\
00350 # point data is stored as a binary blob, its layout described by the\n\
00351 # contents of the \"fields\" array.\n\
00352 \n\
00353 # The point cloud data may be organized 2d (image-like) or 1d\n\
00354 # (unordered). Point clouds organized as 2d images may be produced by\n\
00355 # camera depth sensors such as stereo or time-of-flight.\n\
00356 \n\
00357 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00358 # points).\n\
00359 Header header\n\
00360 \n\
00361 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00362 # 1 and width is the length of the point cloud.\n\
00363 uint32 height\n\
00364 uint32 width\n\
00365 \n\
00366 # Describes the channels and their layout in the binary data blob.\n\
00367 PointField[] fields\n\
00368 \n\
00369 bool is_bigendian # Is this data bigendian?\n\
00370 uint32 point_step # Length of a point in bytes\n\
00371 uint32 row_step # Length of a row in bytes\n\
00372 uint8[] data # Actual point data, size is (row_step*height)\n\
00373 \n\
00374 bool is_dense # True if there are no invalid points\n\
00375 \n\
00376 ================================================================================\n\
00377 MSG: sensor_msgs/PointField\n\
00378 # This message holds the description of one point entry in the\n\
00379 # PointCloud2 message format.\n\
00380 uint8 INT8 = 1\n\
00381 uint8 UINT8 = 2\n\
00382 uint8 INT16 = 3\n\
00383 uint8 UINT16 = 4\n\
00384 uint8 INT32 = 5\n\
00385 uint8 UINT32 = 6\n\
00386 uint8 FLOAT32 = 7\n\
00387 uint8 FLOAT64 = 8\n\
00388 \n\
00389 string name # Name of field\n\
00390 uint32 offset # Offset from start of point struct\n\
00391 uint8 datatype # Datatype enumeration, see above\n\
00392 uint32 count # How many elements in the field\n\
00393 \n\
00394 ================================================================================\n\
00395 MSG: sensor_msgs/Image\n\
00396 # This message contains an uncompressed image\n\
00397 # (0, 0) is at top-left corner of image\n\
00398 #\n\
00399 \n\
00400 Header header # Header timestamp should be acquisition time of image\n\
00401 # Header frame_id should be optical frame of camera\n\
00402 # origin of frame should be optical center of cameara\n\
00403 # +x should point to the right in the image\n\
00404 # +y should point down in the image\n\
00405 # +z should point into to plane of the image\n\
00406 # If the frame_id here and the frame_id of the CameraInfo\n\
00407 # message associated with the image conflict\n\
00408 # the behavior is undefined\n\
00409 \n\
00410 uint32 height # image height, that is, number of rows\n\
00411 uint32 width # image width, that is, number of columns\n\
00412 \n\
00413 # The legal values for encoding are in file src/image_encodings.cpp\n\
00414 # If you want to standardize a new string format, join\n\
00415 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00416 \n\
00417 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00418 # taken from the list of strings in src/image_encodings.cpp\n\
00419 \n\
00420 uint8 is_bigendian # is this data bigendian?\n\
00421 uint32 step # Full row length in bytes\n\
00422 uint8[] data # actual matrix data, size is (step * rows)\n\
00423 \n\
00424 ================================================================================\n\
00425 MSG: sensor_msgs/CameraInfo\n\
00426 # This message defines meta information for a camera. It should be in a\n\
00427 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00428 # image topics named:\n\
00429 #\n\
00430 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00431 # image - monochrome, distorted\n\
00432 # image_color - color, distorted\n\
00433 # image_rect - monochrome, rectified\n\
00434 # image_rect_color - color, rectified\n\
00435 #\n\
00436 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00437 # for producing the four processed image topics from image_raw and\n\
00438 # camera_info. The meaning of the camera parameters are described in\n\
00439 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00440 #\n\
00441 # The image_geometry package provides a user-friendly interface to\n\
00442 # common operations using this meta information. If you want to, e.g.,\n\
00443 # project a 3d point into image coordinates, we strongly recommend\n\
00444 # using image_geometry.\n\
00445 #\n\
00446 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00447 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00448 # indicates an uncalibrated camera.\n\
00449 \n\
00450 #######################################################################\n\
00451 # Image acquisition info #\n\
00452 #######################################################################\n\
00453 \n\
00454 # Time of image acquisition, camera coordinate frame ID\n\
00455 Header header # Header timestamp should be acquisition time of image\n\
00456 # Header frame_id should be optical frame of camera\n\
00457 # origin of frame should be optical center of camera\n\
00458 # +x should point to the right in the image\n\
00459 # +y should point down in the image\n\
00460 # +z should point into the plane of the image\n\
00461 \n\
00462 \n\
00463 #######################################################################\n\
00464 # Calibration Parameters #\n\
00465 #######################################################################\n\
00466 # These are fixed during camera calibration. Their values will be the #\n\
00467 # same in all messages until the camera is recalibrated. Note that #\n\
00468 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00469 # #\n\
00470 # The internal parameters can be used to warp a raw (distorted) image #\n\
00471 # to: #\n\
00472 # 1. An undistorted image (requires D and K) #\n\
00473 # 2. A rectified image (requires D, K, R) #\n\
00474 # The projection matrix P projects 3D points into the rectified image.#\n\
00475 #######################################################################\n\
00476 \n\
00477 # The image dimensions with which the camera was calibrated. Normally\n\
00478 # this will be the full camera resolution in pixels.\n\
00479 uint32 height\n\
00480 uint32 width\n\
00481 \n\
00482 # The distortion model used. Supported models are listed in\n\
00483 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00484 # simple model of radial and tangential distortion - is sufficent.\n\
00485 string distortion_model\n\
00486 \n\
00487 # The distortion parameters, size depending on the distortion model.\n\
00488 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00489 float64[] D\n\
00490 \n\
00491 # Intrinsic camera matrix for the raw (distorted) images.\n\
00492 # [fx 0 cx]\n\
00493 # K = [ 0 fy cy]\n\
00494 # [ 0 0 1]\n\
00495 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00496 # coordinates using the focal lengths (fx, fy) and principal point\n\
00497 # (cx, cy).\n\
00498 float64[9] K # 3x3 row-major matrix\n\
00499 \n\
00500 # Rectification matrix (stereo cameras only)\n\
00501 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00502 # stereo image plane so that epipolar lines in both stereo images are\n\
00503 # parallel.\n\
00504 float64[9] R # 3x3 row-major matrix\n\
00505 \n\
00506 # Projection/camera matrix\n\
00507 # [fx' 0 cx' Tx]\n\
00508 # P = [ 0 fy' cy' Ty]\n\
00509 # [ 0 0 1 0]\n\
00510 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00511 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00512 # is the normal camera intrinsic matrix for the rectified image.\n\
00513 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00514 # coordinates using the focal lengths (fx', fy') and principal point\n\
00515 # (cx', cy') - these may differ from the values in K.\n\
00516 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00517 # also have R = the identity and P[1:3,1:3] = K.\n\
00518 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00519 # position of the optical center of the second camera in the first\n\
00520 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00521 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00522 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00523 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00524 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00525 # the rectified image is given by:\n\
00526 # [u v w]' = P * [X Y Z 1]'\n\
00527 # x = u / w\n\
00528 # y = v / w\n\
00529 # This holds for both images of a stereo pair.\n\
00530 float64[12] P # 3x4 row-major matrix\n\
00531 \n\
00532 \n\
00533 #######################################################################\n\
00534 # Operational Parameters #\n\
00535 #######################################################################\n\
00536 # These define the image region actually captured by the camera #\n\
00537 # driver. Although they affect the geometry of the output image, they #\n\
00538 # may be changed freely without recalibrating the camera. #\n\
00539 #######################################################################\n\
00540 \n\
00541 # Binning refers here to any camera setting which combines rectangular\n\
00542 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00543 # resolution of the output image to\n\
00544 # (width / binning_x) x (height / binning_y).\n\
00545 # The default values binning_x = binning_y = 0 is considered the same\n\
00546 # as binning_x = binning_y = 1 (no subsampling).\n\
00547 uint32 binning_x\n\
00548 uint32 binning_y\n\
00549 \n\
00550 # Region of interest (subwindow of full camera resolution), given in\n\
00551 # full resolution (unbinned) image coordinates. A particular ROI\n\
00552 # always denotes the same window of pixels on the camera sensor,\n\
00553 # regardless of binning settings.\n\
00554 # The default setting of roi (all values 0) is considered the same as\n\
00555 # full resolution (roi.width = width, roi.height = height).\n\
00556 RegionOfInterest roi\n\
00557 \n\
00558 ================================================================================\n\
00559 MSG: sensor_msgs/RegionOfInterest\n\
00560 # This message is used to specify a region of interest within an image.\n\
00561 #\n\
00562 # When used to specify the ROI setting of the camera when the image was\n\
00563 # taken, the height and width fields should either match the height and\n\
00564 # width fields for the associated image; or height = width = 0\n\
00565 # indicates that the full resolution image was captured.\n\
00566 \n\
00567 uint32 x_offset # Leftmost pixel of the ROI\n\
00568 # (0 if the ROI includes the left edge of the image)\n\
00569 uint32 y_offset # Topmost pixel of the ROI\n\
00570 # (0 if the ROI includes the top edge of the image)\n\
00571 uint32 height # Height of ROI\n\
00572 uint32 width # Width of ROI\n\
00573 \n\
00574 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00575 # ROI in this message. Typically this should be False if the full image\n\
00576 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00577 # used).\n\
00578 bool do_rectify\n\
00579 \n\
00580 ================================================================================\n\
00581 MSG: geometry_msgs/Vector3\n\
00582 # This represents a vector in free space. \n\
00583 \n\
00584 float64 x\n\
00585 float64 y\n\
00586 float64 z\n\
00587 ================================================================================\n\
00588 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionResult\n\
00589 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00590 \n\
00591 Header header\n\
00592 actionlib_msgs/GoalStatus status\n\
00593 GraspHandPostureExecutionResult result\n\
00594 \n\
00595 ================================================================================\n\
00596 MSG: actionlib_msgs/GoalStatus\n\
00597 GoalID goal_id\n\
00598 uint8 status\n\
00599 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00600 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00601 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00602 # and has since completed its execution (Terminal State)\n\
00603 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00604 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00605 # to some failure (Terminal State)\n\
00606 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00607 # because the goal was unattainable or invalid (Terminal State)\n\
00608 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00609 # and has not yet completed execution\n\
00610 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00611 # but the action server has not yet confirmed that the goal is canceled\n\
00612 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00613 # and was successfully cancelled (Terminal State)\n\
00614 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00615 # sent over the wire by an action server\n\
00616 \n\
00617 #Allow for the user to associate a string with GoalStatus for debugging\n\
00618 string text\n\
00619 \n\
00620 \n\
00621 ================================================================================\n\
00622 MSG: object_manipulation_msgs/GraspHandPostureExecutionResult\n\
00623 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00624 # the result of the action\n\
00625 ManipulationResult result\n\
00626 \n\
00627 \n\
00628 ================================================================================\n\
00629 MSG: object_manipulation_msgs/ManipulationResult\n\
00630 # Result codes for manipulation tasks\n\
00631 \n\
00632 # task completed as expected\n\
00633 # generally means you can proceed as planned\n\
00634 int32 SUCCESS = 1\n\
00635 \n\
00636 # task not possible (e.g. out of reach or obstacles in the way)\n\
00637 # generally means that the world was not disturbed, so you can try another task\n\
00638 int32 UNFEASIBLE = -1\n\
00639 \n\
00640 # task was thought possible, but failed due to unexpected events during execution\n\
00641 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00642 # your sensed world model before proceeding to another task\n\
00643 int32 FAILED = -2\n\
00644 \n\
00645 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00646 # generally requires human attention\n\
00647 int32 ERROR = -3\n\
00648 \n\
00649 # means that at some point during execution we ended up in a state that the collision-aware\n\
00650 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00651 # probably need a new collision map to move the arm out of the stuck position\n\
00652 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00653 \n\
00654 # specific to grasp actions\n\
00655 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00656 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00657 int32 LIFT_FAILED = -5\n\
00658 \n\
00659 # specific to place actions\n\
00660 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00661 # it is likely that the collision environment will see collisions between the hand and the object\n\
00662 int32 RETREAT_FAILED = -6\n\
00663 \n\
00664 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00665 int32 CANCELLED = -7\n\
00666 \n\
00667 # the actual value of this error code\n\
00668 int32 value\n\
00669 \n\
00670 ================================================================================\n\
00671 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionFeedback\n\
00672 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00673 \n\
00674 Header header\n\
00675 actionlib_msgs/GoalStatus status\n\
00676 GraspHandPostureExecutionFeedback feedback\n\
00677 \n\
00678 ================================================================================\n\
00679 MSG: object_manipulation_msgs/GraspHandPostureExecutionFeedback\n\
00680 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00681 # empty for now\n\
00682 \n\
00683 \n\
00684 \n\
00685 "; }
00686 public:
00687 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00688
00689 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00690
00691 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00692 {
00693 ros::serialization::OStream stream(write_ptr, 1000000000);
00694 ros::serialization::serialize(stream, action_goal);
00695 ros::serialization::serialize(stream, action_result);
00696 ros::serialization::serialize(stream, action_feedback);
00697 return stream.getData();
00698 }
00699
00700 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00701 {
00702 ros::serialization::IStream stream(read_ptr, 1000000000);
00703 ros::serialization::deserialize(stream, action_goal);
00704 ros::serialization::deserialize(stream, action_result);
00705 ros::serialization::deserialize(stream, action_feedback);
00706 return stream.getData();
00707 }
00708
00709 ROS_DEPRECATED virtual uint32_t serializationLength() const
00710 {
00711 uint32_t size = 0;
00712 size += ros::serialization::serializationLength(action_goal);
00713 size += ros::serialization::serializationLength(action_result);
00714 size += ros::serialization::serializationLength(action_feedback);
00715 return size;
00716 }
00717
00718 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > Ptr;
00719 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> const> ConstPtr;
00720 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00721 };
00722 typedef ::object_manipulation_msgs::GraspHandPostureExecutionAction_<std::allocator<void> > GraspHandPostureExecutionAction;
00723
00724 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction> GraspHandPostureExecutionActionPtr;
00725 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction const> GraspHandPostureExecutionActionConstPtr;
00726
00727
00728 template<typename ContainerAllocator>
00729 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> & v)
00730 {
00731 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> >::stream(s, "", v);
00732 return s;}
00733
00734 }
00735
00736 namespace ros
00737 {
00738 namespace message_traits
00739 {
00740 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > : public TrueType {};
00741 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> const> : public TrueType {};
00742 template<class ContainerAllocator>
00743 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > {
00744 static const char* value()
00745 {
00746 return "9c7b002a44b8ec73513d411e2f3befd4";
00747 }
00748
00749 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); }
00750 static const uint64_t static_value1 = 0x9c7b002a44b8ec73ULL;
00751 static const uint64_t static_value2 = 0x513d411e2f3befd4ULL;
00752 };
00753
00754 template<class ContainerAllocator>
00755 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > {
00756 static const char* value()
00757 {
00758 return "object_manipulation_msgs/GraspHandPostureExecutionAction";
00759 }
00760
00761 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); }
00762 };
00763
00764 template<class ContainerAllocator>
00765 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > {
00766 static const char* value()
00767 {
00768 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00769 \n\
00770 GraspHandPostureExecutionActionGoal action_goal\n\
00771 GraspHandPostureExecutionActionResult action_result\n\
00772 GraspHandPostureExecutionActionFeedback action_feedback\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionGoal\n\
00776 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00777 \n\
00778 Header header\n\
00779 actionlib_msgs/GoalID goal_id\n\
00780 GraspHandPostureExecutionGoal goal\n\
00781 \n\
00782 ================================================================================\n\
00783 MSG: std_msgs/Header\n\
00784 # Standard metadata for higher-level stamped data types.\n\
00785 # This is generally used to communicate timestamped data \n\
00786 # in a particular coordinate frame.\n\
00787 # \n\
00788 # sequence ID: consecutively increasing ID \n\
00789 uint32 seq\n\
00790 #Two-integer timestamp that is expressed as:\n\
00791 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00792 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00793 # time-handling sugar is provided by the client library\n\
00794 time stamp\n\
00795 #Frame this data is associated with\n\
00796 # 0: no frame\n\
00797 # 1: global frame\n\
00798 string frame_id\n\
00799 \n\
00800 ================================================================================\n\
00801 MSG: actionlib_msgs/GoalID\n\
00802 # The stamp should store the time at which this goal was requested.\n\
00803 # It is used by an action server when it tries to preempt all\n\
00804 # goals that were requested before a certain time\n\
00805 time stamp\n\
00806 \n\
00807 # The id provides a way to associate feedback and\n\
00808 # result message with specific goal requests. The id\n\
00809 # specified must be unique.\n\
00810 string id\n\
00811 \n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\
00815 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00816 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\
00817 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\
00818 # for each arm\n\
00819 \n\
00820 # the grasp to be executed\n\
00821 Grasp grasp\n\
00822 \n\
00823 # the goal of this action\n\
00824 # requests that the hand be set in the pre-grasp posture\n\
00825 int32 PRE_GRASP=1\n\
00826 # requests that the hand execute the actual grasp\n\
00827 int32 GRASP=2\n\
00828 # requests that the hand open to release the object\n\
00829 int32 RELEASE=3\n\
00830 int32 goal\n\
00831 \n\
00832 # the max contact force to use (<=0 if no desired max)\n\
00833 float32 max_contact_force\n\
00834 \n\
00835 \n\
00836 ================================================================================\n\
00837 MSG: object_manipulation_msgs/Grasp\n\
00838 \n\
00839 # The internal posture of the hand for the pre-grasp\n\
00840 # only positions are used\n\
00841 sensor_msgs/JointState pre_grasp_posture\n\
00842 \n\
00843 # The internal posture of the hand for the grasp\n\
00844 # positions and efforts are used\n\
00845 sensor_msgs/JointState grasp_posture\n\
00846 \n\
00847 # The position of the end-effector for the grasp relative to a reference frame \n\
00848 # (that is always specified elsewhere, not in this message)\n\
00849 geometry_msgs/Pose grasp_pose\n\
00850 \n\
00851 # The estimated probability of success for this grasp\n\
00852 float64 success_probability\n\
00853 \n\
00854 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00855 bool cluster_rep\n\
00856 \n\
00857 # how far the pre-grasp should ideally be away from the grasp\n\
00858 float32 desired_approach_distance\n\
00859 \n\
00860 # how much distance between pre-grasp and grasp must actually be feasible \n\
00861 # for the grasp not to be rejected\n\
00862 float32 min_approach_distance\n\
00863 \n\
00864 # an optional list of obstacles that we have semantic information about\n\
00865 # and that we expect might move in the course of executing this grasp\n\
00866 # the grasp planner is expected to make sure they move in an OK way; during\n\
00867 # execution, grasp executors will not check for collisions against these objects\n\
00868 GraspableObject[] moved_obstacles\n\
00869 \n\
00870 ================================================================================\n\
00871 MSG: sensor_msgs/JointState\n\
00872 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00873 #\n\
00874 # The state of each joint (revolute or prismatic) is defined by:\n\
00875 # * the position of the joint (rad or m),\n\
00876 # * the velocity of the joint (rad/s or m/s) and \n\
00877 # * the effort that is applied in the joint (Nm or N).\n\
00878 #\n\
00879 # Each joint is uniquely identified by its name\n\
00880 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00881 # in one message have to be recorded at the same time.\n\
00882 #\n\
00883 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00884 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00885 # effort associated with them, you can leave the effort array empty. \n\
00886 #\n\
00887 # All arrays in this message should have the same size, or be empty.\n\
00888 # This is the only way to uniquely associate the joint name with the correct\n\
00889 # states.\n\
00890 \n\
00891 \n\
00892 Header header\n\
00893 \n\
00894 string[] name\n\
00895 float64[] position\n\
00896 float64[] velocity\n\
00897 float64[] effort\n\
00898 \n\
00899 ================================================================================\n\
00900 MSG: geometry_msgs/Pose\n\
00901 # A representation of pose in free space, composed of postion and orientation. \n\
00902 Point position\n\
00903 Quaternion orientation\n\
00904 \n\
00905 ================================================================================\n\
00906 MSG: geometry_msgs/Point\n\
00907 # This contains the position of a point in free space\n\
00908 float64 x\n\
00909 float64 y\n\
00910 float64 z\n\
00911 \n\
00912 ================================================================================\n\
00913 MSG: geometry_msgs/Quaternion\n\
00914 # This represents an orientation in free space in quaternion form.\n\
00915 \n\
00916 float64 x\n\
00917 float64 y\n\
00918 float64 z\n\
00919 float64 w\n\
00920 \n\
00921 ================================================================================\n\
00922 MSG: object_manipulation_msgs/GraspableObject\n\
00923 # an object that the object_manipulator can work on\n\
00924 \n\
00925 # a graspable object can be represented in multiple ways. This message\n\
00926 # can contain all of them. Which one is actually used is up to the receiver\n\
00927 # of this message. When adding new representations, one must be careful that\n\
00928 # they have reasonable lightweight defaults indicating that that particular\n\
00929 # representation is not available.\n\
00930 \n\
00931 # the tf frame to be used as a reference frame when combining information from\n\
00932 # the different representations below\n\
00933 string reference_frame_id\n\
00934 \n\
00935 # potential recognition results from a database of models\n\
00936 # all poses are relative to the object reference pose\n\
00937 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00938 \n\
00939 # the point cloud itself\n\
00940 sensor_msgs/PointCloud cluster\n\
00941 \n\
00942 # a region of a PointCloud2 of interest\n\
00943 object_manipulation_msgs/SceneRegion region\n\
00944 \n\
00945 # the name that this object has in the collision environment\n\
00946 string collision_name\n\
00947 ================================================================================\n\
00948 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00949 # Informs that a specific model from the Model Database has been \n\
00950 # identified at a certain location\n\
00951 \n\
00952 # the database id of the model\n\
00953 int32 model_id\n\
00954 \n\
00955 # the pose that it can be found in\n\
00956 geometry_msgs/PoseStamped pose\n\
00957 \n\
00958 # a measure of the confidence level in this detection result\n\
00959 float32 confidence\n\
00960 \n\
00961 # the name of the object detector that generated this detection result\n\
00962 string detector_name\n\
00963 \n\
00964 ================================================================================\n\
00965 MSG: geometry_msgs/PoseStamped\n\
00966 # A Pose with reference coordinate frame and timestamp\n\
00967 Header header\n\
00968 Pose pose\n\
00969 \n\
00970 ================================================================================\n\
00971 MSG: sensor_msgs/PointCloud\n\
00972 # This message holds a collection of 3d points, plus optional additional\n\
00973 # information about each point.\n\
00974 \n\
00975 # Time of sensor data acquisition, coordinate frame ID.\n\
00976 Header header\n\
00977 \n\
00978 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00979 # in the frame given in the header.\n\
00980 geometry_msgs/Point32[] points\n\
00981 \n\
00982 # Each channel should have the same number of elements as points array,\n\
00983 # and the data in each channel should correspond 1:1 with each point.\n\
00984 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00985 ChannelFloat32[] channels\n\
00986 \n\
00987 ================================================================================\n\
00988 MSG: geometry_msgs/Point32\n\
00989 # This contains the position of a point in free space(with 32 bits of precision).\n\
00990 # It is recommeded to use Point wherever possible instead of Point32. \n\
00991 # \n\
00992 # This recommendation is to promote interoperability. \n\
00993 #\n\
00994 # This message is designed to take up less space when sending\n\
00995 # lots of points at once, as in the case of a PointCloud. \n\
00996 \n\
00997 float32 x\n\
00998 float32 y\n\
00999 float32 z\n\
01000 ================================================================================\n\
01001 MSG: sensor_msgs/ChannelFloat32\n\
01002 # This message is used by the PointCloud message to hold optional data\n\
01003 # associated with each point in the cloud. The length of the values\n\
01004 # array should be the same as the length of the points array in the\n\
01005 # PointCloud, and each value should be associated with the corresponding\n\
01006 # point.\n\
01007 \n\
01008 # Channel names in existing practice include:\n\
01009 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01010 # This is opposite to usual conventions but remains for\n\
01011 # historical reasons. The newer PointCloud2 message has no\n\
01012 # such problem.\n\
01013 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01014 # (R,G,B) values packed into the least significant 24 bits,\n\
01015 # in order.\n\
01016 # \"intensity\" - laser or pixel intensity.\n\
01017 # \"distance\"\n\
01018 \n\
01019 # The channel name should give semantics of the channel (e.g.\n\
01020 # \"intensity\" instead of \"value\").\n\
01021 string name\n\
01022 \n\
01023 # The values array should be 1-1 with the elements of the associated\n\
01024 # PointCloud.\n\
01025 float32[] values\n\
01026 \n\
01027 ================================================================================\n\
01028 MSG: object_manipulation_msgs/SceneRegion\n\
01029 # Point cloud\n\
01030 sensor_msgs/PointCloud2 cloud\n\
01031 \n\
01032 # Indices for the region of interest\n\
01033 int32[] mask\n\
01034 \n\
01035 # One of the corresponding 2D images, if applicable\n\
01036 sensor_msgs/Image image\n\
01037 \n\
01038 # The disparity image, if applicable\n\
01039 sensor_msgs/Image disparity_image\n\
01040 \n\
01041 # Camera info for the camera that took the image\n\
01042 sensor_msgs/CameraInfo cam_info\n\
01043 \n\
01044 # a 3D region of interest for grasp planning\n\
01045 geometry_msgs/PoseStamped roi_box_pose\n\
01046 geometry_msgs/Vector3 roi_box_dims\n\
01047 \n\
01048 ================================================================================\n\
01049 MSG: sensor_msgs/PointCloud2\n\
01050 # This message holds a collection of N-dimensional points, which may\n\
01051 # contain additional information such as normals, intensity, etc. The\n\
01052 # point data is stored as a binary blob, its layout described by the\n\
01053 # contents of the \"fields\" array.\n\
01054 \n\
01055 # The point cloud data may be organized 2d (image-like) or 1d\n\
01056 # (unordered). Point clouds organized as 2d images may be produced by\n\
01057 # camera depth sensors such as stereo or time-of-flight.\n\
01058 \n\
01059 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01060 # points).\n\
01061 Header header\n\
01062 \n\
01063 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01064 # 1 and width is the length of the point cloud.\n\
01065 uint32 height\n\
01066 uint32 width\n\
01067 \n\
01068 # Describes the channels and their layout in the binary data blob.\n\
01069 PointField[] fields\n\
01070 \n\
01071 bool is_bigendian # Is this data bigendian?\n\
01072 uint32 point_step # Length of a point in bytes\n\
01073 uint32 row_step # Length of a row in bytes\n\
01074 uint8[] data # Actual point data, size is (row_step*height)\n\
01075 \n\
01076 bool is_dense # True if there are no invalid points\n\
01077 \n\
01078 ================================================================================\n\
01079 MSG: sensor_msgs/PointField\n\
01080 # This message holds the description of one point entry in the\n\
01081 # PointCloud2 message format.\n\
01082 uint8 INT8 = 1\n\
01083 uint8 UINT8 = 2\n\
01084 uint8 INT16 = 3\n\
01085 uint8 UINT16 = 4\n\
01086 uint8 INT32 = 5\n\
01087 uint8 UINT32 = 6\n\
01088 uint8 FLOAT32 = 7\n\
01089 uint8 FLOAT64 = 8\n\
01090 \n\
01091 string name # Name of field\n\
01092 uint32 offset # Offset from start of point struct\n\
01093 uint8 datatype # Datatype enumeration, see above\n\
01094 uint32 count # How many elements in the field\n\
01095 \n\
01096 ================================================================================\n\
01097 MSG: sensor_msgs/Image\n\
01098 # This message contains an uncompressed image\n\
01099 # (0, 0) is at top-left corner of image\n\
01100 #\n\
01101 \n\
01102 Header header # Header timestamp should be acquisition time of image\n\
01103 # Header frame_id should be optical frame of camera\n\
01104 # origin of frame should be optical center of cameara\n\
01105 # +x should point to the right in the image\n\
01106 # +y should point down in the image\n\
01107 # +z should point into to plane of the image\n\
01108 # If the frame_id here and the frame_id of the CameraInfo\n\
01109 # message associated with the image conflict\n\
01110 # the behavior is undefined\n\
01111 \n\
01112 uint32 height # image height, that is, number of rows\n\
01113 uint32 width # image width, that is, number of columns\n\
01114 \n\
01115 # The legal values for encoding are in file src/image_encodings.cpp\n\
01116 # If you want to standardize a new string format, join\n\
01117 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01118 \n\
01119 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01120 # taken from the list of strings in src/image_encodings.cpp\n\
01121 \n\
01122 uint8 is_bigendian # is this data bigendian?\n\
01123 uint32 step # Full row length in bytes\n\
01124 uint8[] data # actual matrix data, size is (step * rows)\n\
01125 \n\
01126 ================================================================================\n\
01127 MSG: sensor_msgs/CameraInfo\n\
01128 # This message defines meta information for a camera. It should be in a\n\
01129 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01130 # image topics named:\n\
01131 #\n\
01132 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01133 # image - monochrome, distorted\n\
01134 # image_color - color, distorted\n\
01135 # image_rect - monochrome, rectified\n\
01136 # image_rect_color - color, rectified\n\
01137 #\n\
01138 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01139 # for producing the four processed image topics from image_raw and\n\
01140 # camera_info. The meaning of the camera parameters are described in\n\
01141 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01142 #\n\
01143 # The image_geometry package provides a user-friendly interface to\n\
01144 # common operations using this meta information. If you want to, e.g.,\n\
01145 # project a 3d point into image coordinates, we strongly recommend\n\
01146 # using image_geometry.\n\
01147 #\n\
01148 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01149 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01150 # indicates an uncalibrated camera.\n\
01151 \n\
01152 #######################################################################\n\
01153 # Image acquisition info #\n\
01154 #######################################################################\n\
01155 \n\
01156 # Time of image acquisition, camera coordinate frame ID\n\
01157 Header header # Header timestamp should be acquisition time of image\n\
01158 # Header frame_id should be optical frame of camera\n\
01159 # origin of frame should be optical center of camera\n\
01160 # +x should point to the right in the image\n\
01161 # +y should point down in the image\n\
01162 # +z should point into the plane of the image\n\
01163 \n\
01164 \n\
01165 #######################################################################\n\
01166 # Calibration Parameters #\n\
01167 #######################################################################\n\
01168 # These are fixed during camera calibration. Their values will be the #\n\
01169 # same in all messages until the camera is recalibrated. Note that #\n\
01170 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01171 # #\n\
01172 # The internal parameters can be used to warp a raw (distorted) image #\n\
01173 # to: #\n\
01174 # 1. An undistorted image (requires D and K) #\n\
01175 # 2. A rectified image (requires D, K, R) #\n\
01176 # The projection matrix P projects 3D points into the rectified image.#\n\
01177 #######################################################################\n\
01178 \n\
01179 # The image dimensions with which the camera was calibrated. Normally\n\
01180 # this will be the full camera resolution in pixels.\n\
01181 uint32 height\n\
01182 uint32 width\n\
01183 \n\
01184 # The distortion model used. Supported models are listed in\n\
01185 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01186 # simple model of radial and tangential distortion - is sufficent.\n\
01187 string distortion_model\n\
01188 \n\
01189 # The distortion parameters, size depending on the distortion model.\n\
01190 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01191 float64[] D\n\
01192 \n\
01193 # Intrinsic camera matrix for the raw (distorted) images.\n\
01194 # [fx 0 cx]\n\
01195 # K = [ 0 fy cy]\n\
01196 # [ 0 0 1]\n\
01197 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01198 # coordinates using the focal lengths (fx, fy) and principal point\n\
01199 # (cx, cy).\n\
01200 float64[9] K # 3x3 row-major matrix\n\
01201 \n\
01202 # Rectification matrix (stereo cameras only)\n\
01203 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01204 # stereo image plane so that epipolar lines in both stereo images are\n\
01205 # parallel.\n\
01206 float64[9] R # 3x3 row-major matrix\n\
01207 \n\
01208 # Projection/camera matrix\n\
01209 # [fx' 0 cx' Tx]\n\
01210 # P = [ 0 fy' cy' Ty]\n\
01211 # [ 0 0 1 0]\n\
01212 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01213 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01214 # is the normal camera intrinsic matrix for the rectified image.\n\
01215 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01216 # coordinates using the focal lengths (fx', fy') and principal point\n\
01217 # (cx', cy') - these may differ from the values in K.\n\
01218 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01219 # also have R = the identity and P[1:3,1:3] = K.\n\
01220 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01221 # position of the optical center of the second camera in the first\n\
01222 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01223 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01224 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01225 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01226 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01227 # the rectified image is given by:\n\
01228 # [u v w]' = P * [X Y Z 1]'\n\
01229 # x = u / w\n\
01230 # y = v / w\n\
01231 # This holds for both images of a stereo pair.\n\
01232 float64[12] P # 3x4 row-major matrix\n\
01233 \n\
01234 \n\
01235 #######################################################################\n\
01236 # Operational Parameters #\n\
01237 #######################################################################\n\
01238 # These define the image region actually captured by the camera #\n\
01239 # driver. Although they affect the geometry of the output image, they #\n\
01240 # may be changed freely without recalibrating the camera. #\n\
01241 #######################################################################\n\
01242 \n\
01243 # Binning refers here to any camera setting which combines rectangular\n\
01244 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01245 # resolution of the output image to\n\
01246 # (width / binning_x) x (height / binning_y).\n\
01247 # The default values binning_x = binning_y = 0 is considered the same\n\
01248 # as binning_x = binning_y = 1 (no subsampling).\n\
01249 uint32 binning_x\n\
01250 uint32 binning_y\n\
01251 \n\
01252 # Region of interest (subwindow of full camera resolution), given in\n\
01253 # full resolution (unbinned) image coordinates. A particular ROI\n\
01254 # always denotes the same window of pixels on the camera sensor,\n\
01255 # regardless of binning settings.\n\
01256 # The default setting of roi (all values 0) is considered the same as\n\
01257 # full resolution (roi.width = width, roi.height = height).\n\
01258 RegionOfInterest roi\n\
01259 \n\
01260 ================================================================================\n\
01261 MSG: sensor_msgs/RegionOfInterest\n\
01262 # This message is used to specify a region of interest within an image.\n\
01263 #\n\
01264 # When used to specify the ROI setting of the camera when the image was\n\
01265 # taken, the height and width fields should either match the height and\n\
01266 # width fields for the associated image; or height = width = 0\n\
01267 # indicates that the full resolution image was captured.\n\
01268 \n\
01269 uint32 x_offset # Leftmost pixel of the ROI\n\
01270 # (0 if the ROI includes the left edge of the image)\n\
01271 uint32 y_offset # Topmost pixel of the ROI\n\
01272 # (0 if the ROI includes the top edge of the image)\n\
01273 uint32 height # Height of ROI\n\
01274 uint32 width # Width of ROI\n\
01275 \n\
01276 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01277 # ROI in this message. Typically this should be False if the full image\n\
01278 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01279 # used).\n\
01280 bool do_rectify\n\
01281 \n\
01282 ================================================================================\n\
01283 MSG: geometry_msgs/Vector3\n\
01284 # This represents a vector in free space. \n\
01285 \n\
01286 float64 x\n\
01287 float64 y\n\
01288 float64 z\n\
01289 ================================================================================\n\
01290 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionResult\n\
01291 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01292 \n\
01293 Header header\n\
01294 actionlib_msgs/GoalStatus status\n\
01295 GraspHandPostureExecutionResult result\n\
01296 \n\
01297 ================================================================================\n\
01298 MSG: actionlib_msgs/GoalStatus\n\
01299 GoalID goal_id\n\
01300 uint8 status\n\
01301 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01302 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01303 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01304 # and has since completed its execution (Terminal State)\n\
01305 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01306 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01307 # to some failure (Terminal State)\n\
01308 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01309 # because the goal was unattainable or invalid (Terminal State)\n\
01310 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01311 # and has not yet completed execution\n\
01312 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01313 # but the action server has not yet confirmed that the goal is canceled\n\
01314 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01315 # and was successfully cancelled (Terminal State)\n\
01316 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01317 # sent over the wire by an action server\n\
01318 \n\
01319 #Allow for the user to associate a string with GoalStatus for debugging\n\
01320 string text\n\
01321 \n\
01322 \n\
01323 ================================================================================\n\
01324 MSG: object_manipulation_msgs/GraspHandPostureExecutionResult\n\
01325 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01326 # the result of the action\n\
01327 ManipulationResult result\n\
01328 \n\
01329 \n\
01330 ================================================================================\n\
01331 MSG: object_manipulation_msgs/ManipulationResult\n\
01332 # Result codes for manipulation tasks\n\
01333 \n\
01334 # task completed as expected\n\
01335 # generally means you can proceed as planned\n\
01336 int32 SUCCESS = 1\n\
01337 \n\
01338 # task not possible (e.g. out of reach or obstacles in the way)\n\
01339 # generally means that the world was not disturbed, so you can try another task\n\
01340 int32 UNFEASIBLE = -1\n\
01341 \n\
01342 # task was thought possible, but failed due to unexpected events during execution\n\
01343 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01344 # your sensed world model before proceeding to another task\n\
01345 int32 FAILED = -2\n\
01346 \n\
01347 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01348 # generally requires human attention\n\
01349 int32 ERROR = -3\n\
01350 \n\
01351 # means that at some point during execution we ended up in a state that the collision-aware\n\
01352 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01353 # probably need a new collision map to move the arm out of the stuck position\n\
01354 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01355 \n\
01356 # specific to grasp actions\n\
01357 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01358 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01359 int32 LIFT_FAILED = -5\n\
01360 \n\
01361 # specific to place actions\n\
01362 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01363 # it is likely that the collision environment will see collisions between the hand and the object\n\
01364 int32 RETREAT_FAILED = -6\n\
01365 \n\
01366 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01367 int32 CANCELLED = -7\n\
01368 \n\
01369 # the actual value of this error code\n\
01370 int32 value\n\
01371 \n\
01372 ================================================================================\n\
01373 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionFeedback\n\
01374 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01375 \n\
01376 Header header\n\
01377 actionlib_msgs/GoalStatus status\n\
01378 GraspHandPostureExecutionFeedback feedback\n\
01379 \n\
01380 ================================================================================\n\
01381 MSG: object_manipulation_msgs/GraspHandPostureExecutionFeedback\n\
01382 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01383 # empty for now\n\
01384 \n\
01385 \n\
01386 \n\
01387 ";
01388 }
01389
01390 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); }
01391 };
01392
01393 }
01394 }
01395
01396 namespace ros
01397 {
01398 namespace serialization
01399 {
01400
01401 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> >
01402 {
01403 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01404 {
01405 stream.next(m.action_goal);
01406 stream.next(m.action_result);
01407 stream.next(m.action_feedback);
01408 }
01409
01410 ROS_DECLARE_ALLINONE_SERIALIZER;
01411 };
01412 }
01413 }
01414
01415 namespace ros
01416 {
01417 namespace message_operations
01418 {
01419
01420 template<class ContainerAllocator>
01421 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> >
01422 {
01423 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> & v)
01424 {
01425 s << indent << "action_goal: ";
01426 s << std::endl;
01427 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01428 s << indent << "action_result: ";
01429 s << std::endl;
01430 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01431 s << indent << "action_feedback: ";
01432 s << std::endl;
01433 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01434 }
01435 };
01436
01437
01438 }
01439 }
01440
01441 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H
01442