$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspHandPostureExecutionAction.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_manipulation_msgs/GraspHandPostureExecutionActionGoal.h" 00018 #include "object_manipulation_msgs/GraspHandPostureExecutionActionResult.h" 00019 #include "object_manipulation_msgs/GraspHandPostureExecutionActionFeedback.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspHandPostureExecutionAction_ { 00025 typedef GraspHandPostureExecutionAction_<ContainerAllocator> Type; 00026 00027 GraspHandPostureExecutionAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 GraspHandPostureExecutionAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "9c7b002a44b8ec73513d411e2f3befd4"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 GraspHandPostureExecutionActionGoal action_goal\n\ 00069 GraspHandPostureExecutionActionResult action_result\n\ 00070 GraspHandPostureExecutionActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 GraspHandPostureExecutionGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00115 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00116 # for each arm\n\ 00117 \n\ 00118 # the grasp to be executed\n\ 00119 Grasp grasp\n\ 00120 \n\ 00121 # the goal of this action\n\ 00122 # requests that the hand be set in the pre-grasp posture\n\ 00123 int32 PRE_GRASP=1\n\ 00124 # requests that the hand execute the actual grasp\n\ 00125 int32 GRASP=2\n\ 00126 # requests that the hand open to release the object\n\ 00127 int32 RELEASE=3\n\ 00128 int32 goal\n\ 00129 \n\ 00130 # the max contact force to use (<=0 if no desired max)\n\ 00131 float32 max_contact_force\n\ 00132 \n\ 00133 \n\ 00134 ================================================================================\n\ 00135 MSG: object_manipulation_msgs/Grasp\n\ 00136 \n\ 00137 # The internal posture of the hand for the pre-grasp\n\ 00138 # only positions are used\n\ 00139 sensor_msgs/JointState pre_grasp_posture\n\ 00140 \n\ 00141 # The internal posture of the hand for the grasp\n\ 00142 # positions and efforts are used\n\ 00143 sensor_msgs/JointState grasp_posture\n\ 00144 \n\ 00145 # The position of the end-effector for the grasp relative to a reference frame \n\ 00146 # (that is always specified elsewhere, not in this message)\n\ 00147 geometry_msgs/Pose grasp_pose\n\ 00148 \n\ 00149 # The estimated probability of success for this grasp\n\ 00150 float64 success_probability\n\ 00151 \n\ 00152 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00153 bool cluster_rep\n\ 00154 \n\ 00155 # how far the pre-grasp should ideally be away from the grasp\n\ 00156 float32 desired_approach_distance\n\ 00157 \n\ 00158 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00159 # for the grasp not to be rejected\n\ 00160 float32 min_approach_distance\n\ 00161 \n\ 00162 # an optional list of obstacles that we have semantic information about\n\ 00163 # and that we expect might move in the course of executing this grasp\n\ 00164 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00165 # execution, grasp executors will not check for collisions against these objects\n\ 00166 GraspableObject[] moved_obstacles\n\ 00167 \n\ 00168 ================================================================================\n\ 00169 MSG: sensor_msgs/JointState\n\ 00170 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00171 #\n\ 00172 # The state of each joint (revolute or prismatic) is defined by:\n\ 00173 # * the position of the joint (rad or m),\n\ 00174 # * the velocity of the joint (rad/s or m/s) and \n\ 00175 # * the effort that is applied in the joint (Nm or N).\n\ 00176 #\n\ 00177 # Each joint is uniquely identified by its name\n\ 00178 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00179 # in one message have to be recorded at the same time.\n\ 00180 #\n\ 00181 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00182 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00183 # effort associated with them, you can leave the effort array empty. \n\ 00184 #\n\ 00185 # All arrays in this message should have the same size, or be empty.\n\ 00186 # This is the only way to uniquely associate the joint name with the correct\n\ 00187 # states.\n\ 00188 \n\ 00189 \n\ 00190 Header header\n\ 00191 \n\ 00192 string[] name\n\ 00193 float64[] position\n\ 00194 float64[] velocity\n\ 00195 float64[] effort\n\ 00196 \n\ 00197 ================================================================================\n\ 00198 MSG: geometry_msgs/Pose\n\ 00199 # A representation of pose in free space, composed of postion and orientation. \n\ 00200 Point position\n\ 00201 Quaternion orientation\n\ 00202 \n\ 00203 ================================================================================\n\ 00204 MSG: geometry_msgs/Point\n\ 00205 # This contains the position of a point in free space\n\ 00206 float64 x\n\ 00207 float64 y\n\ 00208 float64 z\n\ 00209 \n\ 00210 ================================================================================\n\ 00211 MSG: geometry_msgs/Quaternion\n\ 00212 # This represents an orientation in free space in quaternion form.\n\ 00213 \n\ 00214 float64 x\n\ 00215 float64 y\n\ 00216 float64 z\n\ 00217 float64 w\n\ 00218 \n\ 00219 ================================================================================\n\ 00220 MSG: object_manipulation_msgs/GraspableObject\n\ 00221 # an object that the object_manipulator can work on\n\ 00222 \n\ 00223 # a graspable object can be represented in multiple ways. This message\n\ 00224 # can contain all of them. Which one is actually used is up to the receiver\n\ 00225 # of this message. When adding new representations, one must be careful that\n\ 00226 # they have reasonable lightweight defaults indicating that that particular\n\ 00227 # representation is not available.\n\ 00228 \n\ 00229 # the tf frame to be used as a reference frame when combining information from\n\ 00230 # the different representations below\n\ 00231 string reference_frame_id\n\ 00232 \n\ 00233 # potential recognition results from a database of models\n\ 00234 # all poses are relative to the object reference pose\n\ 00235 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00236 \n\ 00237 # the point cloud itself\n\ 00238 sensor_msgs/PointCloud cluster\n\ 00239 \n\ 00240 # a region of a PointCloud2 of interest\n\ 00241 object_manipulation_msgs/SceneRegion region\n\ 00242 \n\ 00243 # the name that this object has in the collision environment\n\ 00244 string collision_name\n\ 00245 ================================================================================\n\ 00246 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00247 # Informs that a specific model from the Model Database has been \n\ 00248 # identified at a certain location\n\ 00249 \n\ 00250 # the database id of the model\n\ 00251 int32 model_id\n\ 00252 \n\ 00253 # the pose that it can be found in\n\ 00254 geometry_msgs/PoseStamped pose\n\ 00255 \n\ 00256 # a measure of the confidence level in this detection result\n\ 00257 float32 confidence\n\ 00258 \n\ 00259 # the name of the object detector that generated this detection result\n\ 00260 string detector_name\n\ 00261 \n\ 00262 ================================================================================\n\ 00263 MSG: geometry_msgs/PoseStamped\n\ 00264 # A Pose with reference coordinate frame and timestamp\n\ 00265 Header header\n\ 00266 Pose pose\n\ 00267 \n\ 00268 ================================================================================\n\ 00269 MSG: sensor_msgs/PointCloud\n\ 00270 # This message holds a collection of 3d points, plus optional additional\n\ 00271 # information about each point.\n\ 00272 \n\ 00273 # Time of sensor data acquisition, coordinate frame ID.\n\ 00274 Header header\n\ 00275 \n\ 00276 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00277 # in the frame given in the header.\n\ 00278 geometry_msgs/Point32[] points\n\ 00279 \n\ 00280 # Each channel should have the same number of elements as points array,\n\ 00281 # and the data in each channel should correspond 1:1 with each point.\n\ 00282 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00283 ChannelFloat32[] channels\n\ 00284 \n\ 00285 ================================================================================\n\ 00286 MSG: geometry_msgs/Point32\n\ 00287 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00288 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00289 # \n\ 00290 # This recommendation is to promote interoperability. \n\ 00291 #\n\ 00292 # This message is designed to take up less space when sending\n\ 00293 # lots of points at once, as in the case of a PointCloud. \n\ 00294 \n\ 00295 float32 x\n\ 00296 float32 y\n\ 00297 float32 z\n\ 00298 ================================================================================\n\ 00299 MSG: sensor_msgs/ChannelFloat32\n\ 00300 # This message is used by the PointCloud message to hold optional data\n\ 00301 # associated with each point in the cloud. The length of the values\n\ 00302 # array should be the same as the length of the points array in the\n\ 00303 # PointCloud, and each value should be associated with the corresponding\n\ 00304 # point.\n\ 00305 \n\ 00306 # Channel names in existing practice include:\n\ 00307 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00308 # This is opposite to usual conventions but remains for\n\ 00309 # historical reasons. The newer PointCloud2 message has no\n\ 00310 # such problem.\n\ 00311 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00312 # (R,G,B) values packed into the least significant 24 bits,\n\ 00313 # in order.\n\ 00314 # \"intensity\" - laser or pixel intensity.\n\ 00315 # \"distance\"\n\ 00316 \n\ 00317 # The channel name should give semantics of the channel (e.g.\n\ 00318 # \"intensity\" instead of \"value\").\n\ 00319 string name\n\ 00320 \n\ 00321 # The values array should be 1-1 with the elements of the associated\n\ 00322 # PointCloud.\n\ 00323 float32[] values\n\ 00324 \n\ 00325 ================================================================================\n\ 00326 MSG: object_manipulation_msgs/SceneRegion\n\ 00327 # Point cloud\n\ 00328 sensor_msgs/PointCloud2 cloud\n\ 00329 \n\ 00330 # Indices for the region of interest\n\ 00331 int32[] mask\n\ 00332 \n\ 00333 # One of the corresponding 2D images, if applicable\n\ 00334 sensor_msgs/Image image\n\ 00335 \n\ 00336 # The disparity image, if applicable\n\ 00337 sensor_msgs/Image disparity_image\n\ 00338 \n\ 00339 # Camera info for the camera that took the image\n\ 00340 sensor_msgs/CameraInfo cam_info\n\ 00341 \n\ 00342 # a 3D region of interest for grasp planning\n\ 00343 geometry_msgs/PoseStamped roi_box_pose\n\ 00344 geometry_msgs/Vector3 roi_box_dims\n\ 00345 \n\ 00346 ================================================================================\n\ 00347 MSG: sensor_msgs/PointCloud2\n\ 00348 # This message holds a collection of N-dimensional points, which may\n\ 00349 # contain additional information such as normals, intensity, etc. The\n\ 00350 # point data is stored as a binary blob, its layout described by the\n\ 00351 # contents of the \"fields\" array.\n\ 00352 \n\ 00353 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00354 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00355 # camera depth sensors such as stereo or time-of-flight.\n\ 00356 \n\ 00357 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00358 # points).\n\ 00359 Header header\n\ 00360 \n\ 00361 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00362 # 1 and width is the length of the point cloud.\n\ 00363 uint32 height\n\ 00364 uint32 width\n\ 00365 \n\ 00366 # Describes the channels and their layout in the binary data blob.\n\ 00367 PointField[] fields\n\ 00368 \n\ 00369 bool is_bigendian # Is this data bigendian?\n\ 00370 uint32 point_step # Length of a point in bytes\n\ 00371 uint32 row_step # Length of a row in bytes\n\ 00372 uint8[] data # Actual point data, size is (row_step*height)\n\ 00373 \n\ 00374 bool is_dense # True if there are no invalid points\n\ 00375 \n\ 00376 ================================================================================\n\ 00377 MSG: sensor_msgs/PointField\n\ 00378 # This message holds the description of one point entry in the\n\ 00379 # PointCloud2 message format.\n\ 00380 uint8 INT8 = 1\n\ 00381 uint8 UINT8 = 2\n\ 00382 uint8 INT16 = 3\n\ 00383 uint8 UINT16 = 4\n\ 00384 uint8 INT32 = 5\n\ 00385 uint8 UINT32 = 6\n\ 00386 uint8 FLOAT32 = 7\n\ 00387 uint8 FLOAT64 = 8\n\ 00388 \n\ 00389 string name # Name of field\n\ 00390 uint32 offset # Offset from start of point struct\n\ 00391 uint8 datatype # Datatype enumeration, see above\n\ 00392 uint32 count # How many elements in the field\n\ 00393 \n\ 00394 ================================================================================\n\ 00395 MSG: sensor_msgs/Image\n\ 00396 # This message contains an uncompressed image\n\ 00397 # (0, 0) is at top-left corner of image\n\ 00398 #\n\ 00399 \n\ 00400 Header header # Header timestamp should be acquisition time of image\n\ 00401 # Header frame_id should be optical frame of camera\n\ 00402 # origin of frame should be optical center of cameara\n\ 00403 # +x should point to the right in the image\n\ 00404 # +y should point down in the image\n\ 00405 # +z should point into to plane of the image\n\ 00406 # If the frame_id here and the frame_id of the CameraInfo\n\ 00407 # message associated with the image conflict\n\ 00408 # the behavior is undefined\n\ 00409 \n\ 00410 uint32 height # image height, that is, number of rows\n\ 00411 uint32 width # image width, that is, number of columns\n\ 00412 \n\ 00413 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00414 # If you want to standardize a new string format, join\n\ 00415 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00416 \n\ 00417 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00418 # taken from the list of strings in src/image_encodings.cpp\n\ 00419 \n\ 00420 uint8 is_bigendian # is this data bigendian?\n\ 00421 uint32 step # Full row length in bytes\n\ 00422 uint8[] data # actual matrix data, size is (step * rows)\n\ 00423 \n\ 00424 ================================================================================\n\ 00425 MSG: sensor_msgs/CameraInfo\n\ 00426 # This message defines meta information for a camera. It should be in a\n\ 00427 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00428 # image topics named:\n\ 00429 #\n\ 00430 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00431 # image - monochrome, distorted\n\ 00432 # image_color - color, distorted\n\ 00433 # image_rect - monochrome, rectified\n\ 00434 # image_rect_color - color, rectified\n\ 00435 #\n\ 00436 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00437 # for producing the four processed image topics from image_raw and\n\ 00438 # camera_info. The meaning of the camera parameters are described in\n\ 00439 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00440 #\n\ 00441 # The image_geometry package provides a user-friendly interface to\n\ 00442 # common operations using this meta information. If you want to, e.g.,\n\ 00443 # project a 3d point into image coordinates, we strongly recommend\n\ 00444 # using image_geometry.\n\ 00445 #\n\ 00446 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00447 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00448 # indicates an uncalibrated camera.\n\ 00449 \n\ 00450 #######################################################################\n\ 00451 # Image acquisition info #\n\ 00452 #######################################################################\n\ 00453 \n\ 00454 # Time of image acquisition, camera coordinate frame ID\n\ 00455 Header header # Header timestamp should be acquisition time of image\n\ 00456 # Header frame_id should be optical frame of camera\n\ 00457 # origin of frame should be optical center of camera\n\ 00458 # +x should point to the right in the image\n\ 00459 # +y should point down in the image\n\ 00460 # +z should point into the plane of the image\n\ 00461 \n\ 00462 \n\ 00463 #######################################################################\n\ 00464 # Calibration Parameters #\n\ 00465 #######################################################################\n\ 00466 # These are fixed during camera calibration. Their values will be the #\n\ 00467 # same in all messages until the camera is recalibrated. Note that #\n\ 00468 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00469 # #\n\ 00470 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00471 # to: #\n\ 00472 # 1. An undistorted image (requires D and K) #\n\ 00473 # 2. A rectified image (requires D, K, R) #\n\ 00474 # The projection matrix P projects 3D points into the rectified image.#\n\ 00475 #######################################################################\n\ 00476 \n\ 00477 # The image dimensions with which the camera was calibrated. Normally\n\ 00478 # this will be the full camera resolution in pixels.\n\ 00479 uint32 height\n\ 00480 uint32 width\n\ 00481 \n\ 00482 # The distortion model used. Supported models are listed in\n\ 00483 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00484 # simple model of radial and tangential distortion - is sufficent.\n\ 00485 string distortion_model\n\ 00486 \n\ 00487 # The distortion parameters, size depending on the distortion model.\n\ 00488 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00489 float64[] D\n\ 00490 \n\ 00491 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00492 # [fx 0 cx]\n\ 00493 # K = [ 0 fy cy]\n\ 00494 # [ 0 0 1]\n\ 00495 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00496 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00497 # (cx, cy).\n\ 00498 float64[9] K # 3x3 row-major matrix\n\ 00499 \n\ 00500 # Rectification matrix (stereo cameras only)\n\ 00501 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00502 # stereo image plane so that epipolar lines in both stereo images are\n\ 00503 # parallel.\n\ 00504 float64[9] R # 3x3 row-major matrix\n\ 00505 \n\ 00506 # Projection/camera matrix\n\ 00507 # [fx' 0 cx' Tx]\n\ 00508 # P = [ 0 fy' cy' Ty]\n\ 00509 # [ 0 0 1 0]\n\ 00510 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00511 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00512 # is the normal camera intrinsic matrix for the rectified image.\n\ 00513 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00514 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00515 # (cx', cy') - these may differ from the values in K.\n\ 00516 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00517 # also have R = the identity and P[1:3,1:3] = K.\n\ 00518 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00519 # position of the optical center of the second camera in the first\n\ 00520 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00521 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00522 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00523 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00524 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00525 # the rectified image is given by:\n\ 00526 # [u v w]' = P * [X Y Z 1]'\n\ 00527 # x = u / w\n\ 00528 # y = v / w\n\ 00529 # This holds for both images of a stereo pair.\n\ 00530 float64[12] P # 3x4 row-major matrix\n\ 00531 \n\ 00532 \n\ 00533 #######################################################################\n\ 00534 # Operational Parameters #\n\ 00535 #######################################################################\n\ 00536 # These define the image region actually captured by the camera #\n\ 00537 # driver. Although they affect the geometry of the output image, they #\n\ 00538 # may be changed freely without recalibrating the camera. #\n\ 00539 #######################################################################\n\ 00540 \n\ 00541 # Binning refers here to any camera setting which combines rectangular\n\ 00542 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00543 # resolution of the output image to\n\ 00544 # (width / binning_x) x (height / binning_y).\n\ 00545 # The default values binning_x = binning_y = 0 is considered the same\n\ 00546 # as binning_x = binning_y = 1 (no subsampling).\n\ 00547 uint32 binning_x\n\ 00548 uint32 binning_y\n\ 00549 \n\ 00550 # Region of interest (subwindow of full camera resolution), given in\n\ 00551 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00552 # always denotes the same window of pixels on the camera sensor,\n\ 00553 # regardless of binning settings.\n\ 00554 # The default setting of roi (all values 0) is considered the same as\n\ 00555 # full resolution (roi.width = width, roi.height = height).\n\ 00556 RegionOfInterest roi\n\ 00557 \n\ 00558 ================================================================================\n\ 00559 MSG: sensor_msgs/RegionOfInterest\n\ 00560 # This message is used to specify a region of interest within an image.\n\ 00561 #\n\ 00562 # When used to specify the ROI setting of the camera when the image was\n\ 00563 # taken, the height and width fields should either match the height and\n\ 00564 # width fields for the associated image; or height = width = 0\n\ 00565 # indicates that the full resolution image was captured.\n\ 00566 \n\ 00567 uint32 x_offset # Leftmost pixel of the ROI\n\ 00568 # (0 if the ROI includes the left edge of the image)\n\ 00569 uint32 y_offset # Topmost pixel of the ROI\n\ 00570 # (0 if the ROI includes the top edge of the image)\n\ 00571 uint32 height # Height of ROI\n\ 00572 uint32 width # Width of ROI\n\ 00573 \n\ 00574 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00575 # ROI in this message. Typically this should be False if the full image\n\ 00576 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00577 # used).\n\ 00578 bool do_rectify\n\ 00579 \n\ 00580 ================================================================================\n\ 00581 MSG: geometry_msgs/Vector3\n\ 00582 # This represents a vector in free space. \n\ 00583 \n\ 00584 float64 x\n\ 00585 float64 y\n\ 00586 float64 z\n\ 00587 ================================================================================\n\ 00588 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionResult\n\ 00589 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00590 \n\ 00591 Header header\n\ 00592 actionlib_msgs/GoalStatus status\n\ 00593 GraspHandPostureExecutionResult result\n\ 00594 \n\ 00595 ================================================================================\n\ 00596 MSG: actionlib_msgs/GoalStatus\n\ 00597 GoalID goal_id\n\ 00598 uint8 status\n\ 00599 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00600 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00601 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00602 # and has since completed its execution (Terminal State)\n\ 00603 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00604 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00605 # to some failure (Terminal State)\n\ 00606 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00607 # because the goal was unattainable or invalid (Terminal State)\n\ 00608 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00609 # and has not yet completed execution\n\ 00610 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00611 # but the action server has not yet confirmed that the goal is canceled\n\ 00612 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00613 # and was successfully cancelled (Terminal State)\n\ 00614 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00615 # sent over the wire by an action server\n\ 00616 \n\ 00617 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00618 string text\n\ 00619 \n\ 00620 \n\ 00621 ================================================================================\n\ 00622 MSG: object_manipulation_msgs/GraspHandPostureExecutionResult\n\ 00623 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00624 # the result of the action\n\ 00625 ManipulationResult result\n\ 00626 \n\ 00627 \n\ 00628 ================================================================================\n\ 00629 MSG: object_manipulation_msgs/ManipulationResult\n\ 00630 # Result codes for manipulation tasks\n\ 00631 \n\ 00632 # task completed as expected\n\ 00633 # generally means you can proceed as planned\n\ 00634 int32 SUCCESS = 1\n\ 00635 \n\ 00636 # task not possible (e.g. out of reach or obstacles in the way)\n\ 00637 # generally means that the world was not disturbed, so you can try another task\n\ 00638 int32 UNFEASIBLE = -1\n\ 00639 \n\ 00640 # task was thought possible, but failed due to unexpected events during execution\n\ 00641 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 00642 # your sensed world model before proceeding to another task\n\ 00643 int32 FAILED = -2\n\ 00644 \n\ 00645 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 00646 # generally requires human attention\n\ 00647 int32 ERROR = -3\n\ 00648 \n\ 00649 # means that at some point during execution we ended up in a state that the collision-aware\n\ 00650 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 00651 # probably need a new collision map to move the arm out of the stuck position\n\ 00652 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 00653 \n\ 00654 # specific to grasp actions\n\ 00655 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 00656 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 00657 int32 LIFT_FAILED = -5\n\ 00658 \n\ 00659 # specific to place actions\n\ 00660 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 00661 # it is likely that the collision environment will see collisions between the hand and the object\n\ 00662 int32 RETREAT_FAILED = -6\n\ 00663 \n\ 00664 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 00665 int32 CANCELLED = -7\n\ 00666 \n\ 00667 # the actual value of this error code\n\ 00668 int32 value\n\ 00669 \n\ 00670 ================================================================================\n\ 00671 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionFeedback\n\ 00672 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00673 \n\ 00674 Header header\n\ 00675 actionlib_msgs/GoalStatus status\n\ 00676 GraspHandPostureExecutionFeedback feedback\n\ 00677 \n\ 00678 ================================================================================\n\ 00679 MSG: object_manipulation_msgs/GraspHandPostureExecutionFeedback\n\ 00680 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00681 # empty for now\n\ 00682 \n\ 00683 \n\ 00684 \n\ 00685 "; } 00686 public: 00687 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00688 00689 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00690 00691 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00692 { 00693 ros::serialization::OStream stream(write_ptr, 1000000000); 00694 ros::serialization::serialize(stream, action_goal); 00695 ros::serialization::serialize(stream, action_result); 00696 ros::serialization::serialize(stream, action_feedback); 00697 return stream.getData(); 00698 } 00699 00700 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00701 { 00702 ros::serialization::IStream stream(read_ptr, 1000000000); 00703 ros::serialization::deserialize(stream, action_goal); 00704 ros::serialization::deserialize(stream, action_result); 00705 ros::serialization::deserialize(stream, action_feedback); 00706 return stream.getData(); 00707 } 00708 00709 ROS_DEPRECATED virtual uint32_t serializationLength() const 00710 { 00711 uint32_t size = 0; 00712 size += ros::serialization::serializationLength(action_goal); 00713 size += ros::serialization::serializationLength(action_result); 00714 size += ros::serialization::serializationLength(action_feedback); 00715 return size; 00716 } 00717 00718 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > Ptr; 00719 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> const> ConstPtr; 00720 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00721 }; // struct GraspHandPostureExecutionAction 00722 typedef ::object_manipulation_msgs::GraspHandPostureExecutionAction_<std::allocator<void> > GraspHandPostureExecutionAction; 00723 00724 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction> GraspHandPostureExecutionActionPtr; 00725 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionAction const> GraspHandPostureExecutionActionConstPtr; 00726 00727 00728 template<typename ContainerAllocator> 00729 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> & v) 00730 { 00731 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> >::stream(s, "", v); 00732 return s;} 00733 00734 } // namespace object_manipulation_msgs 00735 00736 namespace ros 00737 { 00738 namespace message_traits 00739 { 00740 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > : public TrueType {}; 00741 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> const> : public TrueType {}; 00742 template<class ContainerAllocator> 00743 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > { 00744 static const char* value() 00745 { 00746 return "9c7b002a44b8ec73513d411e2f3befd4"; 00747 } 00748 00749 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); } 00750 static const uint64_t static_value1 = 0x9c7b002a44b8ec73ULL; 00751 static const uint64_t static_value2 = 0x513d411e2f3befd4ULL; 00752 }; 00753 00754 template<class ContainerAllocator> 00755 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > { 00756 static const char* value() 00757 { 00758 return "object_manipulation_msgs/GraspHandPostureExecutionAction"; 00759 } 00760 00761 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); } 00762 }; 00763 00764 template<class ContainerAllocator> 00765 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > { 00766 static const char* value() 00767 { 00768 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00769 \n\ 00770 GraspHandPostureExecutionActionGoal action_goal\n\ 00771 GraspHandPostureExecutionActionResult action_result\n\ 00772 GraspHandPostureExecutionActionFeedback action_feedback\n\ 00773 \n\ 00774 ================================================================================\n\ 00775 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionGoal\n\ 00776 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00777 \n\ 00778 Header header\n\ 00779 actionlib_msgs/GoalID goal_id\n\ 00780 GraspHandPostureExecutionGoal goal\n\ 00781 \n\ 00782 ================================================================================\n\ 00783 MSG: std_msgs/Header\n\ 00784 # Standard metadata for higher-level stamped data types.\n\ 00785 # This is generally used to communicate timestamped data \n\ 00786 # in a particular coordinate frame.\n\ 00787 # \n\ 00788 # sequence ID: consecutively increasing ID \n\ 00789 uint32 seq\n\ 00790 #Two-integer timestamp that is expressed as:\n\ 00791 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00792 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00793 # time-handling sugar is provided by the client library\n\ 00794 time stamp\n\ 00795 #Frame this data is associated with\n\ 00796 # 0: no frame\n\ 00797 # 1: global frame\n\ 00798 string frame_id\n\ 00799 \n\ 00800 ================================================================================\n\ 00801 MSG: actionlib_msgs/GoalID\n\ 00802 # The stamp should store the time at which this goal was requested.\n\ 00803 # It is used by an action server when it tries to preempt all\n\ 00804 # goals that were requested before a certain time\n\ 00805 time stamp\n\ 00806 \n\ 00807 # The id provides a way to associate feedback and\n\ 00808 # result message with specific goal requests. The id\n\ 00809 # specified must be unique.\n\ 00810 string id\n\ 00811 \n\ 00812 \n\ 00813 ================================================================================\n\ 00814 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\ 00815 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00816 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00817 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00818 # for each arm\n\ 00819 \n\ 00820 # the grasp to be executed\n\ 00821 Grasp grasp\n\ 00822 \n\ 00823 # the goal of this action\n\ 00824 # requests that the hand be set in the pre-grasp posture\n\ 00825 int32 PRE_GRASP=1\n\ 00826 # requests that the hand execute the actual grasp\n\ 00827 int32 GRASP=2\n\ 00828 # requests that the hand open to release the object\n\ 00829 int32 RELEASE=3\n\ 00830 int32 goal\n\ 00831 \n\ 00832 # the max contact force to use (<=0 if no desired max)\n\ 00833 float32 max_contact_force\n\ 00834 \n\ 00835 \n\ 00836 ================================================================================\n\ 00837 MSG: object_manipulation_msgs/Grasp\n\ 00838 \n\ 00839 # The internal posture of the hand for the pre-grasp\n\ 00840 # only positions are used\n\ 00841 sensor_msgs/JointState pre_grasp_posture\n\ 00842 \n\ 00843 # The internal posture of the hand for the grasp\n\ 00844 # positions and efforts are used\n\ 00845 sensor_msgs/JointState grasp_posture\n\ 00846 \n\ 00847 # The position of the end-effector for the grasp relative to a reference frame \n\ 00848 # (that is always specified elsewhere, not in this message)\n\ 00849 geometry_msgs/Pose grasp_pose\n\ 00850 \n\ 00851 # The estimated probability of success for this grasp\n\ 00852 float64 success_probability\n\ 00853 \n\ 00854 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00855 bool cluster_rep\n\ 00856 \n\ 00857 # how far the pre-grasp should ideally be away from the grasp\n\ 00858 float32 desired_approach_distance\n\ 00859 \n\ 00860 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00861 # for the grasp not to be rejected\n\ 00862 float32 min_approach_distance\n\ 00863 \n\ 00864 # an optional list of obstacles that we have semantic information about\n\ 00865 # and that we expect might move in the course of executing this grasp\n\ 00866 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00867 # execution, grasp executors will not check for collisions against these objects\n\ 00868 GraspableObject[] moved_obstacles\n\ 00869 \n\ 00870 ================================================================================\n\ 00871 MSG: sensor_msgs/JointState\n\ 00872 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00873 #\n\ 00874 # The state of each joint (revolute or prismatic) is defined by:\n\ 00875 # * the position of the joint (rad or m),\n\ 00876 # * the velocity of the joint (rad/s or m/s) and \n\ 00877 # * the effort that is applied in the joint (Nm or N).\n\ 00878 #\n\ 00879 # Each joint is uniquely identified by its name\n\ 00880 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00881 # in one message have to be recorded at the same time.\n\ 00882 #\n\ 00883 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00884 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00885 # effort associated with them, you can leave the effort array empty. \n\ 00886 #\n\ 00887 # All arrays in this message should have the same size, or be empty.\n\ 00888 # This is the only way to uniquely associate the joint name with the correct\n\ 00889 # states.\n\ 00890 \n\ 00891 \n\ 00892 Header header\n\ 00893 \n\ 00894 string[] name\n\ 00895 float64[] position\n\ 00896 float64[] velocity\n\ 00897 float64[] effort\n\ 00898 \n\ 00899 ================================================================================\n\ 00900 MSG: geometry_msgs/Pose\n\ 00901 # A representation of pose in free space, composed of postion and orientation. \n\ 00902 Point position\n\ 00903 Quaternion orientation\n\ 00904 \n\ 00905 ================================================================================\n\ 00906 MSG: geometry_msgs/Point\n\ 00907 # This contains the position of a point in free space\n\ 00908 float64 x\n\ 00909 float64 y\n\ 00910 float64 z\n\ 00911 \n\ 00912 ================================================================================\n\ 00913 MSG: geometry_msgs/Quaternion\n\ 00914 # This represents an orientation in free space in quaternion form.\n\ 00915 \n\ 00916 float64 x\n\ 00917 float64 y\n\ 00918 float64 z\n\ 00919 float64 w\n\ 00920 \n\ 00921 ================================================================================\n\ 00922 MSG: object_manipulation_msgs/GraspableObject\n\ 00923 # an object that the object_manipulator can work on\n\ 00924 \n\ 00925 # a graspable object can be represented in multiple ways. This message\n\ 00926 # can contain all of them. Which one is actually used is up to the receiver\n\ 00927 # of this message. When adding new representations, one must be careful that\n\ 00928 # they have reasonable lightweight defaults indicating that that particular\n\ 00929 # representation is not available.\n\ 00930 \n\ 00931 # the tf frame to be used as a reference frame when combining information from\n\ 00932 # the different representations below\n\ 00933 string reference_frame_id\n\ 00934 \n\ 00935 # potential recognition results from a database of models\n\ 00936 # all poses are relative to the object reference pose\n\ 00937 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00938 \n\ 00939 # the point cloud itself\n\ 00940 sensor_msgs/PointCloud cluster\n\ 00941 \n\ 00942 # a region of a PointCloud2 of interest\n\ 00943 object_manipulation_msgs/SceneRegion region\n\ 00944 \n\ 00945 # the name that this object has in the collision environment\n\ 00946 string collision_name\n\ 00947 ================================================================================\n\ 00948 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00949 # Informs that a specific model from the Model Database has been \n\ 00950 # identified at a certain location\n\ 00951 \n\ 00952 # the database id of the model\n\ 00953 int32 model_id\n\ 00954 \n\ 00955 # the pose that it can be found in\n\ 00956 geometry_msgs/PoseStamped pose\n\ 00957 \n\ 00958 # a measure of the confidence level in this detection result\n\ 00959 float32 confidence\n\ 00960 \n\ 00961 # the name of the object detector that generated this detection result\n\ 00962 string detector_name\n\ 00963 \n\ 00964 ================================================================================\n\ 00965 MSG: geometry_msgs/PoseStamped\n\ 00966 # A Pose with reference coordinate frame and timestamp\n\ 00967 Header header\n\ 00968 Pose pose\n\ 00969 \n\ 00970 ================================================================================\n\ 00971 MSG: sensor_msgs/PointCloud\n\ 00972 # This message holds a collection of 3d points, plus optional additional\n\ 00973 # information about each point.\n\ 00974 \n\ 00975 # Time of sensor data acquisition, coordinate frame ID.\n\ 00976 Header header\n\ 00977 \n\ 00978 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00979 # in the frame given in the header.\n\ 00980 geometry_msgs/Point32[] points\n\ 00981 \n\ 00982 # Each channel should have the same number of elements as points array,\n\ 00983 # and the data in each channel should correspond 1:1 with each point.\n\ 00984 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00985 ChannelFloat32[] channels\n\ 00986 \n\ 00987 ================================================================================\n\ 00988 MSG: geometry_msgs/Point32\n\ 00989 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00990 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00991 # \n\ 00992 # This recommendation is to promote interoperability. \n\ 00993 #\n\ 00994 # This message is designed to take up less space when sending\n\ 00995 # lots of points at once, as in the case of a PointCloud. \n\ 00996 \n\ 00997 float32 x\n\ 00998 float32 y\n\ 00999 float32 z\n\ 01000 ================================================================================\n\ 01001 MSG: sensor_msgs/ChannelFloat32\n\ 01002 # This message is used by the PointCloud message to hold optional data\n\ 01003 # associated with each point in the cloud. The length of the values\n\ 01004 # array should be the same as the length of the points array in the\n\ 01005 # PointCloud, and each value should be associated with the corresponding\n\ 01006 # point.\n\ 01007 \n\ 01008 # Channel names in existing practice include:\n\ 01009 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01010 # This is opposite to usual conventions but remains for\n\ 01011 # historical reasons. The newer PointCloud2 message has no\n\ 01012 # such problem.\n\ 01013 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01014 # (R,G,B) values packed into the least significant 24 bits,\n\ 01015 # in order.\n\ 01016 # \"intensity\" - laser or pixel intensity.\n\ 01017 # \"distance\"\n\ 01018 \n\ 01019 # The channel name should give semantics of the channel (e.g.\n\ 01020 # \"intensity\" instead of \"value\").\n\ 01021 string name\n\ 01022 \n\ 01023 # The values array should be 1-1 with the elements of the associated\n\ 01024 # PointCloud.\n\ 01025 float32[] values\n\ 01026 \n\ 01027 ================================================================================\n\ 01028 MSG: object_manipulation_msgs/SceneRegion\n\ 01029 # Point cloud\n\ 01030 sensor_msgs/PointCloud2 cloud\n\ 01031 \n\ 01032 # Indices for the region of interest\n\ 01033 int32[] mask\n\ 01034 \n\ 01035 # One of the corresponding 2D images, if applicable\n\ 01036 sensor_msgs/Image image\n\ 01037 \n\ 01038 # The disparity image, if applicable\n\ 01039 sensor_msgs/Image disparity_image\n\ 01040 \n\ 01041 # Camera info for the camera that took the image\n\ 01042 sensor_msgs/CameraInfo cam_info\n\ 01043 \n\ 01044 # a 3D region of interest for grasp planning\n\ 01045 geometry_msgs/PoseStamped roi_box_pose\n\ 01046 geometry_msgs/Vector3 roi_box_dims\n\ 01047 \n\ 01048 ================================================================================\n\ 01049 MSG: sensor_msgs/PointCloud2\n\ 01050 # This message holds a collection of N-dimensional points, which may\n\ 01051 # contain additional information such as normals, intensity, etc. The\n\ 01052 # point data is stored as a binary blob, its layout described by the\n\ 01053 # contents of the \"fields\" array.\n\ 01054 \n\ 01055 # The point cloud data may be organized 2d (image-like) or 1d\n\ 01056 # (unordered). Point clouds organized as 2d images may be produced by\n\ 01057 # camera depth sensors such as stereo or time-of-flight.\n\ 01058 \n\ 01059 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 01060 # points).\n\ 01061 Header header\n\ 01062 \n\ 01063 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 01064 # 1 and width is the length of the point cloud.\n\ 01065 uint32 height\n\ 01066 uint32 width\n\ 01067 \n\ 01068 # Describes the channels and their layout in the binary data blob.\n\ 01069 PointField[] fields\n\ 01070 \n\ 01071 bool is_bigendian # Is this data bigendian?\n\ 01072 uint32 point_step # Length of a point in bytes\n\ 01073 uint32 row_step # Length of a row in bytes\n\ 01074 uint8[] data # Actual point data, size is (row_step*height)\n\ 01075 \n\ 01076 bool is_dense # True if there are no invalid points\n\ 01077 \n\ 01078 ================================================================================\n\ 01079 MSG: sensor_msgs/PointField\n\ 01080 # This message holds the description of one point entry in the\n\ 01081 # PointCloud2 message format.\n\ 01082 uint8 INT8 = 1\n\ 01083 uint8 UINT8 = 2\n\ 01084 uint8 INT16 = 3\n\ 01085 uint8 UINT16 = 4\n\ 01086 uint8 INT32 = 5\n\ 01087 uint8 UINT32 = 6\n\ 01088 uint8 FLOAT32 = 7\n\ 01089 uint8 FLOAT64 = 8\n\ 01090 \n\ 01091 string name # Name of field\n\ 01092 uint32 offset # Offset from start of point struct\n\ 01093 uint8 datatype # Datatype enumeration, see above\n\ 01094 uint32 count # How many elements in the field\n\ 01095 \n\ 01096 ================================================================================\n\ 01097 MSG: sensor_msgs/Image\n\ 01098 # This message contains an uncompressed image\n\ 01099 # (0, 0) is at top-left corner of image\n\ 01100 #\n\ 01101 \n\ 01102 Header header # Header timestamp should be acquisition time of image\n\ 01103 # Header frame_id should be optical frame of camera\n\ 01104 # origin of frame should be optical center of cameara\n\ 01105 # +x should point to the right in the image\n\ 01106 # +y should point down in the image\n\ 01107 # +z should point into to plane of the image\n\ 01108 # If the frame_id here and the frame_id of the CameraInfo\n\ 01109 # message associated with the image conflict\n\ 01110 # the behavior is undefined\n\ 01111 \n\ 01112 uint32 height # image height, that is, number of rows\n\ 01113 uint32 width # image width, that is, number of columns\n\ 01114 \n\ 01115 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01116 # If you want to standardize a new string format, join\n\ 01117 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01118 \n\ 01119 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01120 # taken from the list of strings in src/image_encodings.cpp\n\ 01121 \n\ 01122 uint8 is_bigendian # is this data bigendian?\n\ 01123 uint32 step # Full row length in bytes\n\ 01124 uint8[] data # actual matrix data, size is (step * rows)\n\ 01125 \n\ 01126 ================================================================================\n\ 01127 MSG: sensor_msgs/CameraInfo\n\ 01128 # This message defines meta information for a camera. It should be in a\n\ 01129 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01130 # image topics named:\n\ 01131 #\n\ 01132 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01133 # image - monochrome, distorted\n\ 01134 # image_color - color, distorted\n\ 01135 # image_rect - monochrome, rectified\n\ 01136 # image_rect_color - color, rectified\n\ 01137 #\n\ 01138 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01139 # for producing the four processed image topics from image_raw and\n\ 01140 # camera_info. The meaning of the camera parameters are described in\n\ 01141 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01142 #\n\ 01143 # The image_geometry package provides a user-friendly interface to\n\ 01144 # common operations using this meta information. If you want to, e.g.,\n\ 01145 # project a 3d point into image coordinates, we strongly recommend\n\ 01146 # using image_geometry.\n\ 01147 #\n\ 01148 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01149 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01150 # indicates an uncalibrated camera.\n\ 01151 \n\ 01152 #######################################################################\n\ 01153 # Image acquisition info #\n\ 01154 #######################################################################\n\ 01155 \n\ 01156 # Time of image acquisition, camera coordinate frame ID\n\ 01157 Header header # Header timestamp should be acquisition time of image\n\ 01158 # Header frame_id should be optical frame of camera\n\ 01159 # origin of frame should be optical center of camera\n\ 01160 # +x should point to the right in the image\n\ 01161 # +y should point down in the image\n\ 01162 # +z should point into the plane of the image\n\ 01163 \n\ 01164 \n\ 01165 #######################################################################\n\ 01166 # Calibration Parameters #\n\ 01167 #######################################################################\n\ 01168 # These are fixed during camera calibration. Their values will be the #\n\ 01169 # same in all messages until the camera is recalibrated. Note that #\n\ 01170 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01171 # #\n\ 01172 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01173 # to: #\n\ 01174 # 1. An undistorted image (requires D and K) #\n\ 01175 # 2. A rectified image (requires D, K, R) #\n\ 01176 # The projection matrix P projects 3D points into the rectified image.#\n\ 01177 #######################################################################\n\ 01178 \n\ 01179 # The image dimensions with which the camera was calibrated. Normally\n\ 01180 # this will be the full camera resolution in pixels.\n\ 01181 uint32 height\n\ 01182 uint32 width\n\ 01183 \n\ 01184 # The distortion model used. Supported models are listed in\n\ 01185 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01186 # simple model of radial and tangential distortion - is sufficent.\n\ 01187 string distortion_model\n\ 01188 \n\ 01189 # The distortion parameters, size depending on the distortion model.\n\ 01190 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01191 float64[] D\n\ 01192 \n\ 01193 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01194 # [fx 0 cx]\n\ 01195 # K = [ 0 fy cy]\n\ 01196 # [ 0 0 1]\n\ 01197 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01198 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01199 # (cx, cy).\n\ 01200 float64[9] K # 3x3 row-major matrix\n\ 01201 \n\ 01202 # Rectification matrix (stereo cameras only)\n\ 01203 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01204 # stereo image plane so that epipolar lines in both stereo images are\n\ 01205 # parallel.\n\ 01206 float64[9] R # 3x3 row-major matrix\n\ 01207 \n\ 01208 # Projection/camera matrix\n\ 01209 # [fx' 0 cx' Tx]\n\ 01210 # P = [ 0 fy' cy' Ty]\n\ 01211 # [ 0 0 1 0]\n\ 01212 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01213 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01214 # is the normal camera intrinsic matrix for the rectified image.\n\ 01215 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01216 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01217 # (cx', cy') - these may differ from the values in K.\n\ 01218 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01219 # also have R = the identity and P[1:3,1:3] = K.\n\ 01220 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01221 # position of the optical center of the second camera in the first\n\ 01222 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01223 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01224 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01225 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01226 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01227 # the rectified image is given by:\n\ 01228 # [u v w]' = P * [X Y Z 1]'\n\ 01229 # x = u / w\n\ 01230 # y = v / w\n\ 01231 # This holds for both images of a stereo pair.\n\ 01232 float64[12] P # 3x4 row-major matrix\n\ 01233 \n\ 01234 \n\ 01235 #######################################################################\n\ 01236 # Operational Parameters #\n\ 01237 #######################################################################\n\ 01238 # These define the image region actually captured by the camera #\n\ 01239 # driver. Although they affect the geometry of the output image, they #\n\ 01240 # may be changed freely without recalibrating the camera. #\n\ 01241 #######################################################################\n\ 01242 \n\ 01243 # Binning refers here to any camera setting which combines rectangular\n\ 01244 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01245 # resolution of the output image to\n\ 01246 # (width / binning_x) x (height / binning_y).\n\ 01247 # The default values binning_x = binning_y = 0 is considered the same\n\ 01248 # as binning_x = binning_y = 1 (no subsampling).\n\ 01249 uint32 binning_x\n\ 01250 uint32 binning_y\n\ 01251 \n\ 01252 # Region of interest (subwindow of full camera resolution), given in\n\ 01253 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01254 # always denotes the same window of pixels on the camera sensor,\n\ 01255 # regardless of binning settings.\n\ 01256 # The default setting of roi (all values 0) is considered the same as\n\ 01257 # full resolution (roi.width = width, roi.height = height).\n\ 01258 RegionOfInterest roi\n\ 01259 \n\ 01260 ================================================================================\n\ 01261 MSG: sensor_msgs/RegionOfInterest\n\ 01262 # This message is used to specify a region of interest within an image.\n\ 01263 #\n\ 01264 # When used to specify the ROI setting of the camera when the image was\n\ 01265 # taken, the height and width fields should either match the height and\n\ 01266 # width fields for the associated image; or height = width = 0\n\ 01267 # indicates that the full resolution image was captured.\n\ 01268 \n\ 01269 uint32 x_offset # Leftmost pixel of the ROI\n\ 01270 # (0 if the ROI includes the left edge of the image)\n\ 01271 uint32 y_offset # Topmost pixel of the ROI\n\ 01272 # (0 if the ROI includes the top edge of the image)\n\ 01273 uint32 height # Height of ROI\n\ 01274 uint32 width # Width of ROI\n\ 01275 \n\ 01276 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01277 # ROI in this message. Typically this should be False if the full image\n\ 01278 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01279 # used).\n\ 01280 bool do_rectify\n\ 01281 \n\ 01282 ================================================================================\n\ 01283 MSG: geometry_msgs/Vector3\n\ 01284 # This represents a vector in free space. \n\ 01285 \n\ 01286 float64 x\n\ 01287 float64 y\n\ 01288 float64 z\n\ 01289 ================================================================================\n\ 01290 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionResult\n\ 01291 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01292 \n\ 01293 Header header\n\ 01294 actionlib_msgs/GoalStatus status\n\ 01295 GraspHandPostureExecutionResult result\n\ 01296 \n\ 01297 ================================================================================\n\ 01298 MSG: actionlib_msgs/GoalStatus\n\ 01299 GoalID goal_id\n\ 01300 uint8 status\n\ 01301 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01302 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01303 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01304 # and has since completed its execution (Terminal State)\n\ 01305 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01306 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01307 # to some failure (Terminal State)\n\ 01308 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01309 # because the goal was unattainable or invalid (Terminal State)\n\ 01310 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01311 # and has not yet completed execution\n\ 01312 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01313 # but the action server has not yet confirmed that the goal is canceled\n\ 01314 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01315 # and was successfully cancelled (Terminal State)\n\ 01316 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01317 # sent over the wire by an action server\n\ 01318 \n\ 01319 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01320 string text\n\ 01321 \n\ 01322 \n\ 01323 ================================================================================\n\ 01324 MSG: object_manipulation_msgs/GraspHandPostureExecutionResult\n\ 01325 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01326 # the result of the action\n\ 01327 ManipulationResult result\n\ 01328 \n\ 01329 \n\ 01330 ================================================================================\n\ 01331 MSG: object_manipulation_msgs/ManipulationResult\n\ 01332 # Result codes for manipulation tasks\n\ 01333 \n\ 01334 # task completed as expected\n\ 01335 # generally means you can proceed as planned\n\ 01336 int32 SUCCESS = 1\n\ 01337 \n\ 01338 # task not possible (e.g. out of reach or obstacles in the way)\n\ 01339 # generally means that the world was not disturbed, so you can try another task\n\ 01340 int32 UNFEASIBLE = -1\n\ 01341 \n\ 01342 # task was thought possible, but failed due to unexpected events during execution\n\ 01343 # it is likely that the world was disturbed, so you are encouraged to refresh\n\ 01344 # your sensed world model before proceeding to another task\n\ 01345 int32 FAILED = -2\n\ 01346 \n\ 01347 # a lower level error prevented task completion (e.g. joint controller not responding)\n\ 01348 # generally requires human attention\n\ 01349 int32 ERROR = -3\n\ 01350 \n\ 01351 # means that at some point during execution we ended up in a state that the collision-aware\n\ 01352 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\ 01353 # probably need a new collision map to move the arm out of the stuck position\n\ 01354 int32 ARM_MOVEMENT_PREVENTED = -4\n\ 01355 \n\ 01356 # specific to grasp actions\n\ 01357 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\ 01358 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\ 01359 int32 LIFT_FAILED = -5\n\ 01360 \n\ 01361 # specific to place actions\n\ 01362 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\ 01363 # it is likely that the collision environment will see collisions between the hand and the object\n\ 01364 int32 RETREAT_FAILED = -6\n\ 01365 \n\ 01366 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\ 01367 int32 CANCELLED = -7\n\ 01368 \n\ 01369 # the actual value of this error code\n\ 01370 int32 value\n\ 01371 \n\ 01372 ================================================================================\n\ 01373 MSG: object_manipulation_msgs/GraspHandPostureExecutionActionFeedback\n\ 01374 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01375 \n\ 01376 Header header\n\ 01377 actionlib_msgs/GoalStatus status\n\ 01378 GraspHandPostureExecutionFeedback feedback\n\ 01379 \n\ 01380 ================================================================================\n\ 01381 MSG: object_manipulation_msgs/GraspHandPostureExecutionFeedback\n\ 01382 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01383 # empty for now\n\ 01384 \n\ 01385 \n\ 01386 \n\ 01387 "; 01388 } 01389 01390 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> &) { return value(); } 01391 }; 01392 01393 } // namespace message_traits 01394 } // namespace ros 01395 01396 namespace ros 01397 { 01398 namespace serialization 01399 { 01400 01401 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > 01402 { 01403 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01404 { 01405 stream.next(m.action_goal); 01406 stream.next(m.action_result); 01407 stream.next(m.action_feedback); 01408 } 01409 01410 ROS_DECLARE_ALLINONE_SERIALIZER; 01411 }; // struct GraspHandPostureExecutionAction_ 01412 } // namespace serialization 01413 } // namespace ros 01414 01415 namespace ros 01416 { 01417 namespace message_operations 01418 { 01419 01420 template<class ContainerAllocator> 01421 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> > 01422 { 01423 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionAction_<ContainerAllocator> & v) 01424 { 01425 s << indent << "action_goal: "; 01426 s << std::endl; 01427 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01428 s << indent << "action_result: "; 01429 s << std::endl; 01430 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01431 s << indent << "action_feedback: "; 01432 s << std::endl; 01433 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01434 } 01435 }; 01436 01437 01438 } // namespace message_operations 01439 } // namespace ros 01440 01441 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTION_H 01442