$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-shared_autonomy/doc_stacks/2013-03-05_12-20-03.150958/shared_autonomy/bosch_object_segmentation_gui/msg/ObjectSegmentationGuiActionGoal.msg */ 00002 #ifndef BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H 00003 #define BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "bosch_object_segmentation_gui/ObjectSegmentationGuiGoal.h" 00020 00021 namespace bosch_object_segmentation_gui 00022 { 00023 template <class ContainerAllocator> 00024 struct ObjectSegmentationGuiActionGoal_ { 00025 typedef ObjectSegmentationGuiActionGoal_<ContainerAllocator> Type; 00026 00027 ObjectSegmentationGuiActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 ObjectSegmentationGuiActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> _goal_type; 00048 ::bosch_object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "bosch_object_segmentation_gui/ObjectSegmentationGuiActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "c90d057a2cbad468bbf26bcf158e312e"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 ObjectSegmentationGuiGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 sensor_msgs/Image image\n\ 00107 sensor_msgs/CameraInfo camera_info\n\ 00108 sensor_msgs/Image wide_field\n\ 00109 sensor_msgs/CameraInfo wide_camera_info\n\ 00110 \n\ 00111 sensor_msgs/PointCloud2 point_cloud\n\ 00112 stereo_msgs/DisparityImage disparity_image\n\ 00113 \n\ 00114 \n\ 00115 ================================================================================\n\ 00116 MSG: sensor_msgs/Image\n\ 00117 # This message contains an uncompressed image\n\ 00118 # (0, 0) is at top-left corner of image\n\ 00119 #\n\ 00120 \n\ 00121 Header header # Header timestamp should be acquisition time of image\n\ 00122 # Header frame_id should be optical frame of camera\n\ 00123 # origin of frame should be optical center of cameara\n\ 00124 # +x should point to the right in the image\n\ 00125 # +y should point down in the image\n\ 00126 # +z should point into to plane of the image\n\ 00127 # If the frame_id here and the frame_id of the CameraInfo\n\ 00128 # message associated with the image conflict\n\ 00129 # the behavior is undefined\n\ 00130 \n\ 00131 uint32 height # image height, that is, number of rows\n\ 00132 uint32 width # image width, that is, number of columns\n\ 00133 \n\ 00134 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00135 # If you want to standardize a new string format, join\n\ 00136 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00137 \n\ 00138 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00139 # taken from the list of strings in src/image_encodings.cpp\n\ 00140 \n\ 00141 uint8 is_bigendian # is this data bigendian?\n\ 00142 uint32 step # Full row length in bytes\n\ 00143 uint8[] data # actual matrix data, size is (step * rows)\n\ 00144 \n\ 00145 ================================================================================\n\ 00146 MSG: sensor_msgs/CameraInfo\n\ 00147 # This message defines meta information for a camera. It should be in a\n\ 00148 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00149 # image topics named:\n\ 00150 #\n\ 00151 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00152 # image - monochrome, distorted\n\ 00153 # image_color - color, distorted\n\ 00154 # image_rect - monochrome, rectified\n\ 00155 # image_rect_color - color, rectified\n\ 00156 #\n\ 00157 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00158 # for producing the four processed image topics from image_raw and\n\ 00159 # camera_info. The meaning of the camera parameters are described in\n\ 00160 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00161 #\n\ 00162 # The image_geometry package provides a user-friendly interface to\n\ 00163 # common operations using this meta information. If you want to, e.g.,\n\ 00164 # project a 3d point into image coordinates, we strongly recommend\n\ 00165 # using image_geometry.\n\ 00166 #\n\ 00167 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00168 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00169 # indicates an uncalibrated camera.\n\ 00170 \n\ 00171 #######################################################################\n\ 00172 # Image acquisition info #\n\ 00173 #######################################################################\n\ 00174 \n\ 00175 # Time of image acquisition, camera coordinate frame ID\n\ 00176 Header header # Header timestamp should be acquisition time of image\n\ 00177 # Header frame_id should be optical frame of camera\n\ 00178 # origin of frame should be optical center of camera\n\ 00179 # +x should point to the right in the image\n\ 00180 # +y should point down in the image\n\ 00181 # +z should point into the plane of the image\n\ 00182 \n\ 00183 \n\ 00184 #######################################################################\n\ 00185 # Calibration Parameters #\n\ 00186 #######################################################################\n\ 00187 # These are fixed during camera calibration. Their values will be the #\n\ 00188 # same in all messages until the camera is recalibrated. Note that #\n\ 00189 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00190 # #\n\ 00191 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00192 # to: #\n\ 00193 # 1. An undistorted image (requires D and K) #\n\ 00194 # 2. A rectified image (requires D, K, R) #\n\ 00195 # The projection matrix P projects 3D points into the rectified image.#\n\ 00196 #######################################################################\n\ 00197 \n\ 00198 # The image dimensions with which the camera was calibrated. Normally\n\ 00199 # this will be the full camera resolution in pixels.\n\ 00200 uint32 height\n\ 00201 uint32 width\n\ 00202 \n\ 00203 # The distortion model used. Supported models are listed in\n\ 00204 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00205 # simple model of radial and tangential distortion - is sufficent.\n\ 00206 string distortion_model\n\ 00207 \n\ 00208 # The distortion parameters, size depending on the distortion model.\n\ 00209 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00210 float64[] D\n\ 00211 \n\ 00212 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00213 # [fx 0 cx]\n\ 00214 # K = [ 0 fy cy]\n\ 00215 # [ 0 0 1]\n\ 00216 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00217 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00218 # (cx, cy).\n\ 00219 float64[9] K # 3x3 row-major matrix\n\ 00220 \n\ 00221 # Rectification matrix (stereo cameras only)\n\ 00222 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00223 # stereo image plane so that epipolar lines in both stereo images are\n\ 00224 # parallel.\n\ 00225 float64[9] R # 3x3 row-major matrix\n\ 00226 \n\ 00227 # Projection/camera matrix\n\ 00228 # [fx' 0 cx' Tx]\n\ 00229 # P = [ 0 fy' cy' Ty]\n\ 00230 # [ 0 0 1 0]\n\ 00231 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00232 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00233 # is the normal camera intrinsic matrix for the rectified image.\n\ 00234 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00235 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00236 # (cx', cy') - these may differ from the values in K.\n\ 00237 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00238 # also have R = the identity and P[1:3,1:3] = K.\n\ 00239 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00240 # position of the optical center of the second camera in the first\n\ 00241 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00242 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00243 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00244 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00245 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00246 # the rectified image is given by:\n\ 00247 # [u v w]' = P * [X Y Z 1]'\n\ 00248 # x = u / w\n\ 00249 # y = v / w\n\ 00250 # This holds for both images of a stereo pair.\n\ 00251 float64[12] P # 3x4 row-major matrix\n\ 00252 \n\ 00253 \n\ 00254 #######################################################################\n\ 00255 # Operational Parameters #\n\ 00256 #######################################################################\n\ 00257 # These define the image region actually captured by the camera #\n\ 00258 # driver. Although they affect the geometry of the output image, they #\n\ 00259 # may be changed freely without recalibrating the camera. #\n\ 00260 #######################################################################\n\ 00261 \n\ 00262 # Binning refers here to any camera setting which combines rectangular\n\ 00263 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00264 # resolution of the output image to\n\ 00265 # (width / binning_x) x (height / binning_y).\n\ 00266 # The default values binning_x = binning_y = 0 is considered the same\n\ 00267 # as binning_x = binning_y = 1 (no subsampling).\n\ 00268 uint32 binning_x\n\ 00269 uint32 binning_y\n\ 00270 \n\ 00271 # Region of interest (subwindow of full camera resolution), given in\n\ 00272 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00273 # always denotes the same window of pixels on the camera sensor,\n\ 00274 # regardless of binning settings.\n\ 00275 # The default setting of roi (all values 0) is considered the same as\n\ 00276 # full resolution (roi.width = width, roi.height = height).\n\ 00277 RegionOfInterest roi\n\ 00278 \n\ 00279 ================================================================================\n\ 00280 MSG: sensor_msgs/RegionOfInterest\n\ 00281 # This message is used to specify a region of interest within an image.\n\ 00282 #\n\ 00283 # When used to specify the ROI setting of the camera when the image was\n\ 00284 # taken, the height and width fields should either match the height and\n\ 00285 # width fields for the associated image; or height = width = 0\n\ 00286 # indicates that the full resolution image was captured.\n\ 00287 \n\ 00288 uint32 x_offset # Leftmost pixel of the ROI\n\ 00289 # (0 if the ROI includes the left edge of the image)\n\ 00290 uint32 y_offset # Topmost pixel of the ROI\n\ 00291 # (0 if the ROI includes the top edge of the image)\n\ 00292 uint32 height # Height of ROI\n\ 00293 uint32 width # Width of ROI\n\ 00294 \n\ 00295 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00296 # ROI in this message. Typically this should be False if the full image\n\ 00297 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00298 # used).\n\ 00299 bool do_rectify\n\ 00300 \n\ 00301 ================================================================================\n\ 00302 MSG: sensor_msgs/PointCloud2\n\ 00303 # This message holds a collection of N-dimensional points, which may\n\ 00304 # contain additional information such as normals, intensity, etc. The\n\ 00305 # point data is stored as a binary blob, its layout described by the\n\ 00306 # contents of the \"fields\" array.\n\ 00307 \n\ 00308 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00309 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00310 # camera depth sensors such as stereo or time-of-flight.\n\ 00311 \n\ 00312 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00313 # points).\n\ 00314 Header header\n\ 00315 \n\ 00316 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00317 # 1 and width is the length of the point cloud.\n\ 00318 uint32 height\n\ 00319 uint32 width\n\ 00320 \n\ 00321 # Describes the channels and their layout in the binary data blob.\n\ 00322 PointField[] fields\n\ 00323 \n\ 00324 bool is_bigendian # Is this data bigendian?\n\ 00325 uint32 point_step # Length of a point in bytes\n\ 00326 uint32 row_step # Length of a row in bytes\n\ 00327 uint8[] data # Actual point data, size is (row_step*height)\n\ 00328 \n\ 00329 bool is_dense # True if there are no invalid points\n\ 00330 \n\ 00331 ================================================================================\n\ 00332 MSG: sensor_msgs/PointField\n\ 00333 # This message holds the description of one point entry in the\n\ 00334 # PointCloud2 message format.\n\ 00335 uint8 INT8 = 1\n\ 00336 uint8 UINT8 = 2\n\ 00337 uint8 INT16 = 3\n\ 00338 uint8 UINT16 = 4\n\ 00339 uint8 INT32 = 5\n\ 00340 uint8 UINT32 = 6\n\ 00341 uint8 FLOAT32 = 7\n\ 00342 uint8 FLOAT64 = 8\n\ 00343 \n\ 00344 string name # Name of field\n\ 00345 uint32 offset # Offset from start of point struct\n\ 00346 uint8 datatype # Datatype enumeration, see above\n\ 00347 uint32 count # How many elements in the field\n\ 00348 \n\ 00349 ================================================================================\n\ 00350 MSG: stereo_msgs/DisparityImage\n\ 00351 # Separate header for compatibility with current TimeSynchronizer.\n\ 00352 # Likely to be removed in a later release, use image.header instead.\n\ 00353 Header header\n\ 00354 \n\ 00355 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00356 # x-offset between the principal points of the two cameras (in the case\n\ 00357 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00358 sensor_msgs/Image image\n\ 00359 \n\ 00360 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00361 float32 f # Focal length, pixels\n\ 00362 float32 T # Baseline, world units\n\ 00363 \n\ 00364 # Subwindow of (potentially) valid disparity values.\n\ 00365 sensor_msgs/RegionOfInterest valid_window\n\ 00366 \n\ 00367 # The range of disparities searched.\n\ 00368 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00369 # The disparity search range defines the horopter, or 3D volume that the\n\ 00370 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00371 # Z_min = fT / max_disparity\n\ 00372 # Z_max = fT / min_disparity\n\ 00373 # could not be found.\n\ 00374 float32 min_disparity\n\ 00375 float32 max_disparity\n\ 00376 \n\ 00377 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00378 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00379 float32 delta_d\n\ 00380 \n\ 00381 "; } 00382 public: 00383 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00384 00385 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00386 00387 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00388 { 00389 ros::serialization::OStream stream(write_ptr, 1000000000); 00390 ros::serialization::serialize(stream, header); 00391 ros::serialization::serialize(stream, goal_id); 00392 ros::serialization::serialize(stream, goal); 00393 return stream.getData(); 00394 } 00395 00396 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00397 { 00398 ros::serialization::IStream stream(read_ptr, 1000000000); 00399 ros::serialization::deserialize(stream, header); 00400 ros::serialization::deserialize(stream, goal_id); 00401 ros::serialization::deserialize(stream, goal); 00402 return stream.getData(); 00403 } 00404 00405 ROS_DEPRECATED virtual uint32_t serializationLength() const 00406 { 00407 uint32_t size = 0; 00408 size += ros::serialization::serializationLength(header); 00409 size += ros::serialization::serializationLength(goal_id); 00410 size += ros::serialization::serializationLength(goal); 00411 return size; 00412 } 00413 00414 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > Ptr; 00415 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> const> ConstPtr; 00416 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00417 }; // struct ObjectSegmentationGuiActionGoal 00418 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<std::allocator<void> > ObjectSegmentationGuiActionGoal; 00419 00420 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal> ObjectSegmentationGuiActionGoalPtr; 00421 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal const> ObjectSegmentationGuiActionGoalConstPtr; 00422 00423 00424 template<typename ContainerAllocator> 00425 std::ostream& operator<<(std::ostream& s, const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v) 00426 { 00427 ros::message_operations::Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, "", v); 00428 return s;} 00429 00430 } // namespace bosch_object_segmentation_gui 00431 00432 namespace ros 00433 { 00434 namespace message_traits 00435 { 00436 template<class ContainerAllocator> struct IsMessage< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00437 template<class ContainerAllocator> struct IsMessage< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> const> : public TrueType {}; 00438 template<class ContainerAllocator> 00439 struct MD5Sum< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > { 00440 static const char* value() 00441 { 00442 return "c90d057a2cbad468bbf26bcf158e312e"; 00443 } 00444 00445 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); } 00446 static const uint64_t static_value1 = 0xc90d057a2cbad468ULL; 00447 static const uint64_t static_value2 = 0xbbf26bcf158e312eULL; 00448 }; 00449 00450 template<class ContainerAllocator> 00451 struct DataType< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > { 00452 static const char* value() 00453 { 00454 return "bosch_object_segmentation_gui/ObjectSegmentationGuiActionGoal"; 00455 } 00456 00457 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); } 00458 }; 00459 00460 template<class ContainerAllocator> 00461 struct Definition< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > { 00462 static const char* value() 00463 { 00464 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00465 \n\ 00466 Header header\n\ 00467 actionlib_msgs/GoalID goal_id\n\ 00468 ObjectSegmentationGuiGoal goal\n\ 00469 \n\ 00470 ================================================================================\n\ 00471 MSG: std_msgs/Header\n\ 00472 # Standard metadata for higher-level stamped data types.\n\ 00473 # This is generally used to communicate timestamped data \n\ 00474 # in a particular coordinate frame.\n\ 00475 # \n\ 00476 # sequence ID: consecutively increasing ID \n\ 00477 uint32 seq\n\ 00478 #Two-integer timestamp that is expressed as:\n\ 00479 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00480 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00481 # time-handling sugar is provided by the client library\n\ 00482 time stamp\n\ 00483 #Frame this data is associated with\n\ 00484 # 0: no frame\n\ 00485 # 1: global frame\n\ 00486 string frame_id\n\ 00487 \n\ 00488 ================================================================================\n\ 00489 MSG: actionlib_msgs/GoalID\n\ 00490 # The stamp should store the time at which this goal was requested.\n\ 00491 # It is used by an action server when it tries to preempt all\n\ 00492 # goals that were requested before a certain time\n\ 00493 time stamp\n\ 00494 \n\ 00495 # The id provides a way to associate feedback and\n\ 00496 # result message with specific goal requests. The id\n\ 00497 # specified must be unique.\n\ 00498 string id\n\ 00499 \n\ 00500 \n\ 00501 ================================================================================\n\ 00502 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiGoal\n\ 00503 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00504 sensor_msgs/Image image\n\ 00505 sensor_msgs/CameraInfo camera_info\n\ 00506 sensor_msgs/Image wide_field\n\ 00507 sensor_msgs/CameraInfo wide_camera_info\n\ 00508 \n\ 00509 sensor_msgs/PointCloud2 point_cloud\n\ 00510 stereo_msgs/DisparityImage disparity_image\n\ 00511 \n\ 00512 \n\ 00513 ================================================================================\n\ 00514 MSG: sensor_msgs/Image\n\ 00515 # This message contains an uncompressed image\n\ 00516 # (0, 0) is at top-left corner of image\n\ 00517 #\n\ 00518 \n\ 00519 Header header # Header timestamp should be acquisition time of image\n\ 00520 # Header frame_id should be optical frame of camera\n\ 00521 # origin of frame should be optical center of cameara\n\ 00522 # +x should point to the right in the image\n\ 00523 # +y should point down in the image\n\ 00524 # +z should point into to plane of the image\n\ 00525 # If the frame_id here and the frame_id of the CameraInfo\n\ 00526 # message associated with the image conflict\n\ 00527 # the behavior is undefined\n\ 00528 \n\ 00529 uint32 height # image height, that is, number of rows\n\ 00530 uint32 width # image width, that is, number of columns\n\ 00531 \n\ 00532 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00533 # If you want to standardize a new string format, join\n\ 00534 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00535 \n\ 00536 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00537 # taken from the list of strings in src/image_encodings.cpp\n\ 00538 \n\ 00539 uint8 is_bigendian # is this data bigendian?\n\ 00540 uint32 step # Full row length in bytes\n\ 00541 uint8[] data # actual matrix data, size is (step * rows)\n\ 00542 \n\ 00543 ================================================================================\n\ 00544 MSG: sensor_msgs/CameraInfo\n\ 00545 # This message defines meta information for a camera. It should be in a\n\ 00546 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00547 # image topics named:\n\ 00548 #\n\ 00549 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00550 # image - monochrome, distorted\n\ 00551 # image_color - color, distorted\n\ 00552 # image_rect - monochrome, rectified\n\ 00553 # image_rect_color - color, rectified\n\ 00554 #\n\ 00555 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00556 # for producing the four processed image topics from image_raw and\n\ 00557 # camera_info. The meaning of the camera parameters are described in\n\ 00558 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00559 #\n\ 00560 # The image_geometry package provides a user-friendly interface to\n\ 00561 # common operations using this meta information. If you want to, e.g.,\n\ 00562 # project a 3d point into image coordinates, we strongly recommend\n\ 00563 # using image_geometry.\n\ 00564 #\n\ 00565 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00566 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00567 # indicates an uncalibrated camera.\n\ 00568 \n\ 00569 #######################################################################\n\ 00570 # Image acquisition info #\n\ 00571 #######################################################################\n\ 00572 \n\ 00573 # Time of image acquisition, camera coordinate frame ID\n\ 00574 Header header # Header timestamp should be acquisition time of image\n\ 00575 # Header frame_id should be optical frame of camera\n\ 00576 # origin of frame should be optical center of camera\n\ 00577 # +x should point to the right in the image\n\ 00578 # +y should point down in the image\n\ 00579 # +z should point into the plane of the image\n\ 00580 \n\ 00581 \n\ 00582 #######################################################################\n\ 00583 # Calibration Parameters #\n\ 00584 #######################################################################\n\ 00585 # These are fixed during camera calibration. Their values will be the #\n\ 00586 # same in all messages until the camera is recalibrated. Note that #\n\ 00587 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00588 # #\n\ 00589 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00590 # to: #\n\ 00591 # 1. An undistorted image (requires D and K) #\n\ 00592 # 2. A rectified image (requires D, K, R) #\n\ 00593 # The projection matrix P projects 3D points into the rectified image.#\n\ 00594 #######################################################################\n\ 00595 \n\ 00596 # The image dimensions with which the camera was calibrated. Normally\n\ 00597 # this will be the full camera resolution in pixels.\n\ 00598 uint32 height\n\ 00599 uint32 width\n\ 00600 \n\ 00601 # The distortion model used. Supported models are listed in\n\ 00602 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00603 # simple model of radial and tangential distortion - is sufficent.\n\ 00604 string distortion_model\n\ 00605 \n\ 00606 # The distortion parameters, size depending on the distortion model.\n\ 00607 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00608 float64[] D\n\ 00609 \n\ 00610 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00611 # [fx 0 cx]\n\ 00612 # K = [ 0 fy cy]\n\ 00613 # [ 0 0 1]\n\ 00614 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00615 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00616 # (cx, cy).\n\ 00617 float64[9] K # 3x3 row-major matrix\n\ 00618 \n\ 00619 # Rectification matrix (stereo cameras only)\n\ 00620 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00621 # stereo image plane so that epipolar lines in both stereo images are\n\ 00622 # parallel.\n\ 00623 float64[9] R # 3x3 row-major matrix\n\ 00624 \n\ 00625 # Projection/camera matrix\n\ 00626 # [fx' 0 cx' Tx]\n\ 00627 # P = [ 0 fy' cy' Ty]\n\ 00628 # [ 0 0 1 0]\n\ 00629 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00630 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00631 # is the normal camera intrinsic matrix for the rectified image.\n\ 00632 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00633 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00634 # (cx', cy') - these may differ from the values in K.\n\ 00635 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00636 # also have R = the identity and P[1:3,1:3] = K.\n\ 00637 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00638 # position of the optical center of the second camera in the first\n\ 00639 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00640 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00641 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00642 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00643 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00644 # the rectified image is given by:\n\ 00645 # [u v w]' = P * [X Y Z 1]'\n\ 00646 # x = u / w\n\ 00647 # y = v / w\n\ 00648 # This holds for both images of a stereo pair.\n\ 00649 float64[12] P # 3x4 row-major matrix\n\ 00650 \n\ 00651 \n\ 00652 #######################################################################\n\ 00653 # Operational Parameters #\n\ 00654 #######################################################################\n\ 00655 # These define the image region actually captured by the camera #\n\ 00656 # driver. Although they affect the geometry of the output image, they #\n\ 00657 # may be changed freely without recalibrating the camera. #\n\ 00658 #######################################################################\n\ 00659 \n\ 00660 # Binning refers here to any camera setting which combines rectangular\n\ 00661 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00662 # resolution of the output image to\n\ 00663 # (width / binning_x) x (height / binning_y).\n\ 00664 # The default values binning_x = binning_y = 0 is considered the same\n\ 00665 # as binning_x = binning_y = 1 (no subsampling).\n\ 00666 uint32 binning_x\n\ 00667 uint32 binning_y\n\ 00668 \n\ 00669 # Region of interest (subwindow of full camera resolution), given in\n\ 00670 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00671 # always denotes the same window of pixels on the camera sensor,\n\ 00672 # regardless of binning settings.\n\ 00673 # The default setting of roi (all values 0) is considered the same as\n\ 00674 # full resolution (roi.width = width, roi.height = height).\n\ 00675 RegionOfInterest roi\n\ 00676 \n\ 00677 ================================================================================\n\ 00678 MSG: sensor_msgs/RegionOfInterest\n\ 00679 # This message is used to specify a region of interest within an image.\n\ 00680 #\n\ 00681 # When used to specify the ROI setting of the camera when the image was\n\ 00682 # taken, the height and width fields should either match the height and\n\ 00683 # width fields for the associated image; or height = width = 0\n\ 00684 # indicates that the full resolution image was captured.\n\ 00685 \n\ 00686 uint32 x_offset # Leftmost pixel of the ROI\n\ 00687 # (0 if the ROI includes the left edge of the image)\n\ 00688 uint32 y_offset # Topmost pixel of the ROI\n\ 00689 # (0 if the ROI includes the top edge of the image)\n\ 00690 uint32 height # Height of ROI\n\ 00691 uint32 width # Width of ROI\n\ 00692 \n\ 00693 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00694 # ROI in this message. Typically this should be False if the full image\n\ 00695 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00696 # used).\n\ 00697 bool do_rectify\n\ 00698 \n\ 00699 ================================================================================\n\ 00700 MSG: sensor_msgs/PointCloud2\n\ 00701 # This message holds a collection of N-dimensional points, which may\n\ 00702 # contain additional information such as normals, intensity, etc. The\n\ 00703 # point data is stored as a binary blob, its layout described by the\n\ 00704 # contents of the \"fields\" array.\n\ 00705 \n\ 00706 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00707 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00708 # camera depth sensors such as stereo or time-of-flight.\n\ 00709 \n\ 00710 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00711 # points).\n\ 00712 Header header\n\ 00713 \n\ 00714 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00715 # 1 and width is the length of the point cloud.\n\ 00716 uint32 height\n\ 00717 uint32 width\n\ 00718 \n\ 00719 # Describes the channels and their layout in the binary data blob.\n\ 00720 PointField[] fields\n\ 00721 \n\ 00722 bool is_bigendian # Is this data bigendian?\n\ 00723 uint32 point_step # Length of a point in bytes\n\ 00724 uint32 row_step # Length of a row in bytes\n\ 00725 uint8[] data # Actual point data, size is (row_step*height)\n\ 00726 \n\ 00727 bool is_dense # True if there are no invalid points\n\ 00728 \n\ 00729 ================================================================================\n\ 00730 MSG: sensor_msgs/PointField\n\ 00731 # This message holds the description of one point entry in the\n\ 00732 # PointCloud2 message format.\n\ 00733 uint8 INT8 = 1\n\ 00734 uint8 UINT8 = 2\n\ 00735 uint8 INT16 = 3\n\ 00736 uint8 UINT16 = 4\n\ 00737 uint8 INT32 = 5\n\ 00738 uint8 UINT32 = 6\n\ 00739 uint8 FLOAT32 = 7\n\ 00740 uint8 FLOAT64 = 8\n\ 00741 \n\ 00742 string name # Name of field\n\ 00743 uint32 offset # Offset from start of point struct\n\ 00744 uint8 datatype # Datatype enumeration, see above\n\ 00745 uint32 count # How many elements in the field\n\ 00746 \n\ 00747 ================================================================================\n\ 00748 MSG: stereo_msgs/DisparityImage\n\ 00749 # Separate header for compatibility with current TimeSynchronizer.\n\ 00750 # Likely to be removed in a later release, use image.header instead.\n\ 00751 Header header\n\ 00752 \n\ 00753 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00754 # x-offset between the principal points of the two cameras (in the case\n\ 00755 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00756 sensor_msgs/Image image\n\ 00757 \n\ 00758 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00759 float32 f # Focal length, pixels\n\ 00760 float32 T # Baseline, world units\n\ 00761 \n\ 00762 # Subwindow of (potentially) valid disparity values.\n\ 00763 sensor_msgs/RegionOfInterest valid_window\n\ 00764 \n\ 00765 # The range of disparities searched.\n\ 00766 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00767 # The disparity search range defines the horopter, or 3D volume that the\n\ 00768 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00769 # Z_min = fT / max_disparity\n\ 00770 # Z_max = fT / min_disparity\n\ 00771 # could not be found.\n\ 00772 float32 min_disparity\n\ 00773 float32 max_disparity\n\ 00774 \n\ 00775 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00776 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00777 float32 delta_d\n\ 00778 \n\ 00779 "; 00780 } 00781 00782 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); } 00783 }; 00784 00785 template<class ContainerAllocator> struct HasHeader< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00786 template<class ContainerAllocator> struct HasHeader< const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00787 } // namespace message_traits 00788 } // namespace ros 00789 00790 namespace ros 00791 { 00792 namespace serialization 00793 { 00794 00795 template<class ContainerAllocator> struct Serializer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > 00796 { 00797 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00798 { 00799 stream.next(m.header); 00800 stream.next(m.goal_id); 00801 stream.next(m.goal); 00802 } 00803 00804 ROS_DECLARE_ALLINONE_SERIALIZER; 00805 }; // struct ObjectSegmentationGuiActionGoal_ 00806 } // namespace serialization 00807 } // namespace ros 00808 00809 namespace ros 00810 { 00811 namespace message_operations 00812 { 00813 00814 template<class ContainerAllocator> 00815 struct Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > 00816 { 00817 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v) 00818 { 00819 s << indent << "header: "; 00820 s << std::endl; 00821 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00822 s << indent << "goal_id: "; 00823 s << std::endl; 00824 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 00825 s << indent << "goal: "; 00826 s << std::endl; 00827 Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 00828 } 00829 }; 00830 00831 00832 } // namespace message_operations 00833 } // namespace ros 00834 00835 #endif // BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H 00836