00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024 #ifndef __VCGLIB_PERLIN_NOISE
00025 #define __VCGLIB_PERLIN_NOISE
00026
00027 namespace vcg
00028 {
00029 namespace math {
00030
00031
00032
00033
00034
00035 class Perlin
00036 {
00037 public:
00038
00041 static double Noise(double x, double y, double z) {
00042 int X = (int)floor(x) & 255,
00043 Y = (int)floor(y) & 255,
00044 Z = (int)floor(z) & 255;
00045 x -= floor(x);
00046 y -= floor(y);
00047 z -= floor(z);
00048 double u = fade(x),
00049 v = fade(y),
00050 w = fade(z);
00051 int A = P(X )+Y, AA = P(A)+Z, AB = P(A+1)+Z,
00052 B = P(X+1)+Y, BA = P(B)+Z, BB = P(B+1)+Z;
00053
00054 return lerp(w, lerp(v, lerp(u, grad(P(AA ), x , y , z ),
00055 grad(P(BA ), x-1, y , z )),
00056 lerp(u, grad(P(AB ), x , y-1, z ),
00057 grad(P(BB ), x-1, y-1, z ))),
00058 lerp(v, lerp(u, grad(P(AA+1), x , y , z-1 ),
00059 grad(P(BA+1), x-1, y , z-1 )),
00060 lerp(u, grad(P(AB+1), x , y-1, z-1 ),
00061 grad(P(BB+1), x-1, y-1, z-1 ))));
00062 }
00063 static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
00064 static double lerp(double t, double a, double b) { return a + t * (b - a); }
00065 static double grad(int hash, double x, double y, double z) {
00066 int h = hash & 15;
00067 double u = h<8 ? x : y,
00068 v = h<4 ? y : h==12||h==14 ? x : z;
00069 return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
00070 }
00071 static int P(int i)
00072 {
00073 static int p[512]= { 151,160,137,91,90,15,
00074 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
00075 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
00076 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
00077 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
00078 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
00079 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
00080 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
00081 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
00082 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
00083 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
00084 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
00085 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
00086 151,160,137,91,90,15,
00087 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
00088 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
00089 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
00090 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
00091 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
00092 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
00093 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
00094 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
00095 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
00096 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
00097 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
00098 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
00099 };
00100 return p[i];
00101 }
00102 };
00103
00104 }
00105 }
00106 #endif