00001 /* ========================================================================= */ 00002 /* === AMD: approximate minimum degree ordering =========================== */ 00003 /* ========================================================================= */ 00004 00005 /* ------------------------------------------------------------------------- */ 00006 /* AMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, */ 00007 /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ 00008 /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ 00009 /* web: http://www.cise.ufl.edu/research/sparse/amd */ 00010 /* ------------------------------------------------------------------------- */ 00011 00012 /* AMD finds a symmetric ordering P of a matrix A so that the Cholesky 00013 * factorization of P*A*P' has fewer nonzeros and takes less work than the 00014 * Cholesky factorization of A. If A is not symmetric, then it performs its 00015 * ordering on the matrix A+A'. Two sets of user-callable routines are 00016 * provided, one for int integers and the other for UF_long integers. 00017 * 00018 * The method is based on the approximate minimum degree algorithm, discussed 00019 * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm", 00020 * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp. 00021 * 886-905, 1996. This package can perform both the AMD ordering (with 00022 * aggressive absorption), and the AMDBAR ordering (without aggressive 00023 * absorption) discussed in the above paper. This package differs from the 00024 * Fortran codes discussed in the paper: 00025 * 00026 * (1) it can ignore "dense" rows and columns, leading to faster run times 00027 * (2) it computes the ordering of A+A' if A is not symmetric 00028 * (3) it is followed by a depth-first post-ordering of the assembly tree 00029 * (or supernodal elimination tree) 00030 * 00031 * For historical reasons, the Fortran versions, amd.f and amdbar.f, have 00032 * been left (nearly) unchanged. They compute the identical ordering as 00033 * described in the above paper. 00034 */ 00035 00036 #ifndef AMD_H 00037 #define AMD_H 00038 00039 /* make it easy for C++ programs to include AMD */ 00040 #ifdef __cplusplus 00041 extern "C" { 00042 #endif 00043 00044 /* get the definition of size_t: */ 00045 #include <stddef.h> 00046 00047 /* define UF_long */ 00048 #include "UFconfig.h" 00049 00050 int amd_order /* returns AMD_OK, AMD_OK_BUT_JUMBLED, 00051 * AMD_INVALID, or AMD_OUT_OF_MEMORY */ 00052 ( 00053 int n, /* A is n-by-n. n must be >= 0. */ 00054 const int Ap [ ], /* column pointers for A, of size n+1 */ 00055 const int Ai [ ], /* row indices of A, of size nz = Ap [n] */ 00056 int P [ ], /* output permutation, of size n */ 00057 double Control [ ], /* input Control settings, of size AMD_CONTROL */ 00058 double Info [ ] /* output Info statistics, of size AMD_INFO */ 00059 ) ; 00060 00061 UF_long amd_l_order /* see above for description of arguments */ 00062 ( 00063 UF_long n, 00064 const UF_long Ap [ ], 00065 const UF_long Ai [ ], 00066 UF_long P [ ], 00067 double Control [ ], 00068 double Info [ ] 00069 ) ; 00070 00071 /* Input arguments (not modified): 00072 * 00073 * n: the matrix A is n-by-n. 00074 * Ap: an int/UF_long array of size n+1, containing column pointers of A. 00075 * Ai: an int/UF_long array of size nz, containing the row indices of A, 00076 * where nz = Ap [n]. 00077 * Control: a double array of size AMD_CONTROL, containing control 00078 * parameters. Defaults are used if Control is NULL. 00079 * 00080 * Output arguments (not defined on input): 00081 * 00082 * P: an int/UF_long array of size n, containing the output permutation. If 00083 * row i is the kth pivot row, then P [k] = i. In MATLAB notation, 00084 * the reordered matrix is A (P,P). 00085 * Info: a double array of size AMD_INFO, containing statistical 00086 * information. Ignored if Info is NULL. 00087 * 00088 * On input, the matrix A is stored in column-oriented form. The row indices 00089 * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1]. 00090 * 00091 * If the row indices appear in ascending order in each column, and there 00092 * are no duplicate entries, then amd_order is slightly more efficient in 00093 * terms of time and memory usage. If this condition does not hold, a copy 00094 * of the matrix is created (where these conditions do hold), and the copy is 00095 * ordered. This feature is new to v2.0 (v1.2 and earlier required this 00096 * condition to hold for the input matrix). 00097 * 00098 * Row indices must be in the range 0 to 00099 * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros 00100 * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n]. 00101 * The matrix does not need to be symmetric, and the diagonal does not need to 00102 * be present (if diagonal entries are present, they are ignored except for 00103 * the output statistic Info [AMD_NZDIAG]). The arrays Ai and Ap are not 00104 * modified. This form of the Ap and Ai arrays to represent the nonzero 00105 * pattern of the matrix A is the same as that used internally by MATLAB. 00106 * If you wish to use a more flexible input structure, please see the 00107 * umfpack_*_triplet_to_col routines in the UMFPACK package, at 00108 * http://www.cise.ufl.edu/research/sparse/umfpack. 00109 * 00110 * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the 00111 * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0 00112 * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these 00113 * restrictions are not met, AMD returns AMD_INVALID. 00114 * 00115 * AMD returns: 00116 * 00117 * AMD_OK if the matrix is valid and sufficient memory can be allocated to 00118 * perform the ordering. 00119 * 00120 * AMD_OUT_OF_MEMORY if not enough memory can be allocated. 00121 * 00122 * AMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is 00123 * NULL. 00124 * 00125 * AMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate 00126 * entries, but was otherwise valid. 00127 * 00128 * The AMD routine first forms the pattern of the matrix A+A', and then 00129 * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of 00130 * the original is the kth pivotal row. In MATLAB notation, the permuted 00131 * matrix is A (P,P), except that 0-based indexing is used instead of the 00132 * 1-based indexing in MATLAB. 00133 * 00134 * The Control array is used to set various parameters for AMD. If a NULL 00135 * pointer is passed, default values are used. The Control array is not 00136 * modified. 00137 * 00138 * Control [AMD_DENSE]: controls the threshold for "dense" rows/columns. 00139 * A dense row/column in A+A' can cause AMD to spend a lot of time in 00140 * ordering the matrix. If Control [AMD_DENSE] >= 0, rows/columns 00141 * with more than Control [AMD_DENSE] * sqrt (n) entries are ignored 00142 * during the ordering, and placed last in the output order. The 00143 * default value of Control [AMD_DENSE] is 10. If negative, no 00144 * rows/columns are treated as "dense". Rows/columns with 16 or 00145 * fewer off-diagonal entries are never considered "dense". 00146 * 00147 * Control [AMD_AGGRESSIVE]: controls whether or not to use aggressive 00148 * absorption, in which a prior element is absorbed into the current 00149 * element if is a subset of the current element, even if it is not 00150 * adjacent to the current pivot element (refer to Amestoy, Davis, 00151 * & Duff, 1996, for more details). The default value is nonzero, 00152 * which means to perform aggressive absorption. This nearly always 00153 * leads to a better ordering (because the approximate degrees are 00154 * more accurate) and a lower execution time. There are cases where 00155 * it can lead to a slightly worse ordering, however. To turn it off, 00156 * set Control [AMD_AGGRESSIVE] to 0. 00157 * 00158 * Control [2..4] are not used in the current version, but may be used in 00159 * future versions. 00160 * 00161 * The Info array provides statistics about the ordering on output. If it is 00162 * not present, the statistics are not returned. This is not an error 00163 * condition. 00164 * 00165 * Info [AMD_STATUS]: the return value of AMD, either AMD_OK, 00166 * AMD_OK_BUT_JUMBLED, AMD_OUT_OF_MEMORY, or AMD_INVALID. 00167 * 00168 * Info [AMD_N]: n, the size of the input matrix 00169 * 00170 * Info [AMD_NZ]: the number of nonzeros in A, nz = Ap [n] 00171 * 00172 * Info [AMD_SYMMETRY]: the symmetry of the matrix A. It is the number 00173 * of "matched" off-diagonal entries divided by the total number of 00174 * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also 00175 * an entry, for any pair (i,j) for which i != j. In MATLAB notation, 00176 * S = spones (A) ; 00177 * B = tril (S, -1) + triu (S, 1) ; 00178 * symmetry = nnz (B & B') / nnz (B) ; 00179 * 00180 * Info [AMD_NZDIAG]: the number of entries on the diagonal of A. 00181 * 00182 * Info [AMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the 00183 * diagonal. If A is perfectly symmetric (Info [AMD_SYMMETRY] = 1) 00184 * with a fully nonzero diagonal, then Info [AMD_NZ_A_PLUS_AT] = nz-n 00185 * (the smallest possible value). If A is perfectly unsymmetric 00186 * (Info [AMD_SYMMETRY] = 0, for an upper triangular matrix, for 00187 * example) with no diagonal, then Info [AMD_NZ_A_PLUS_AT] = 2*nz 00188 * (the largest possible value). 00189 * 00190 * Info [AMD_NDENSE]: the number of "dense" rows/columns of A+A' that were 00191 * removed from A prior to ordering. These are placed last in the 00192 * output order P. 00193 * 00194 * Info [AMD_MEMORY]: the amount of memory used by AMD, in bytes. In the 00195 * current version, this is 1.2 * Info [AMD_NZ_A_PLUS_AT] + 9*n 00196 * times the size of an integer. This is at most 2.4nz + 9n. This 00197 * excludes the size of the input arguments Ai, Ap, and P, which have 00198 * a total size of nz + 2*n + 1 integers. 00199 * 00200 * Info [AMD_NCMPA]: the number of garbage collections performed. 00201 * 00202 * Info [AMD_LNZ]: the number of nonzeros in L (excluding the diagonal). 00203 * This is a slight upper bound because mass elimination is combined 00204 * with the approximate degree update. It is a rough upper bound if 00205 * there are many "dense" rows/columns. The rest of the statistics, 00206 * below, are also slight or rough upper bounds, for the same reasons. 00207 * The post-ordering of the assembly tree might also not exactly 00208 * correspond to a true elimination tree postordering. 00209 * 00210 * Info [AMD_NDIV]: the number of divide operations for a subsequent LDL' 00211 * or LU factorization of the permuted matrix A (P,P). 00212 * 00213 * Info [AMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a 00214 * subsequent LDL' factorization of A (P,P). 00215 * 00216 * Info [AMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a 00217 * subsequent LU factorization of A (P,P), assuming that no numerical 00218 * pivoting is required. 00219 * 00220 * Info [AMD_DMAX]: the maximum number of nonzeros in any column of L, 00221 * including the diagonal. 00222 * 00223 * Info [14..19] are not used in the current version, but may be used in 00224 * future versions. 00225 */ 00226 00227 /* ------------------------------------------------------------------------- */ 00228 /* direct interface to AMD */ 00229 /* ------------------------------------------------------------------------- */ 00230 00231 /* amd_2 is the primary AMD ordering routine. It is not meant to be 00232 * user-callable because of its restrictive inputs and because it destroys 00233 * the user's input matrix. It does not check its inputs for errors, either. 00234 * However, if you can work with these restrictions it can be faster than 00235 * amd_order and use less memory (assuming that you can create your own copy 00236 * of the matrix for AMD to destroy). Refer to AMD/Source/amd_2.c for a 00237 * description of each parameter. */ 00238 00239 void amd_2 00240 ( 00241 int n, 00242 int Pe [ ], 00243 int Iw [ ], 00244 int Len [ ], 00245 int iwlen, 00246 int pfree, 00247 int Nv [ ], 00248 int Next [ ], 00249 int Last [ ], 00250 int Head [ ], 00251 int Elen [ ], 00252 int Degree [ ], 00253 int W [ ], 00254 double Control [ ], 00255 double Info [ ] 00256 ) ; 00257 00258 void amd_l2 00259 ( 00260 UF_long n, 00261 UF_long Pe [ ], 00262 UF_long Iw [ ], 00263 UF_long Len [ ], 00264 UF_long iwlen, 00265 UF_long pfree, 00266 UF_long Nv [ ], 00267 UF_long Next [ ], 00268 UF_long Last [ ], 00269 UF_long Head [ ], 00270 UF_long Elen [ ], 00271 UF_long Degree [ ], 00272 UF_long W [ ], 00273 double Control [ ], 00274 double Info [ ] 00275 ) ; 00276 00277 /* ------------------------------------------------------------------------- */ 00278 /* amd_valid */ 00279 /* ------------------------------------------------------------------------- */ 00280 00281 /* Returns AMD_OK or AMD_OK_BUT_JUMBLED if the matrix is valid as input to 00282 * amd_order; the latter is returned if the matrix has unsorted and/or 00283 * duplicate row indices in one or more columns. Returns AMD_INVALID if the 00284 * matrix cannot be passed to amd_order. For amd_order, the matrix must also 00285 * be square. The first two arguments are the number of rows and the number 00286 * of columns of the matrix. For its use in AMD, these must both equal n. 00287 * 00288 * NOTE: this routine returned TRUE/FALSE in v1.2 and earlier. 00289 */ 00290 00291 int amd_valid 00292 ( 00293 int n_row, /* # of rows */ 00294 int n_col, /* # of columns */ 00295 const int Ap [ ], /* column pointers, of size n_col+1 */ 00296 const int Ai [ ] /* row indices, of size Ap [n_col] */ 00297 ) ; 00298 00299 UF_long amd_l_valid 00300 ( 00301 UF_long n_row, 00302 UF_long n_col, 00303 const UF_long Ap [ ], 00304 const UF_long Ai [ ] 00305 ) ; 00306 00307 /* ------------------------------------------------------------------------- */ 00308 /* AMD memory manager and printf routines */ 00309 /* ------------------------------------------------------------------------- */ 00310 00311 /* The user can redefine these to change the malloc, free, and printf routines 00312 * that AMD uses. */ 00313 00314 #ifndef EXTERN 00315 #define EXTERN extern 00316 #endif 00317 00318 EXTERN void *(*amd_malloc) (size_t) ; /* pointer to malloc */ 00319 EXTERN void (*amd_free) (void *) ; /* pointer to free */ 00320 EXTERN void *(*amd_realloc) (void *, size_t) ; /* pointer to realloc */ 00321 EXTERN void *(*amd_calloc) (size_t, size_t) ; /* pointer to calloc */ 00322 EXTERN int (*amd_printf) (const char *, ...) ; /* pointer to printf */ 00323 00324 /* ------------------------------------------------------------------------- */ 00325 /* AMD Control and Info arrays */ 00326 /* ------------------------------------------------------------------------- */ 00327 00328 /* amd_defaults: sets the default control settings */ 00329 void amd_defaults (double Control [ ]) ; 00330 void amd_l_defaults (double Control [ ]) ; 00331 00332 /* amd_control: prints the control settings */ 00333 void amd_control (double Control [ ]) ; 00334 void amd_l_control (double Control [ ]) ; 00335 00336 /* amd_info: prints the statistics */ 00337 void amd_info (double Info [ ]) ; 00338 void amd_l_info (double Info [ ]) ; 00339 00340 #define AMD_CONTROL 5 /* size of Control array */ 00341 #define AMD_INFO 20 /* size of Info array */ 00342 00343 /* contents of Control */ 00344 #define AMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */ 00345 #define AMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */ 00346 00347 /* default Control settings */ 00348 #define AMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */ 00349 #define AMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */ 00350 00351 /* contents of Info */ 00352 #define AMD_STATUS 0 /* return value of amd_order and amd_l_order */ 00353 #define AMD_N 1 /* A is n-by-n */ 00354 #define AMD_NZ 2 /* number of nonzeros in A */ 00355 #define AMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */ 00356 #define AMD_NZDIAG 4 /* # of entries on diagonal */ 00357 #define AMD_NZ_A_PLUS_AT 5 /* nz in A+A' */ 00358 #define AMD_NDENSE 6 /* number of "dense" rows/columns in A */ 00359 #define AMD_MEMORY 7 /* amount of memory used by AMD */ 00360 #define AMD_NCMPA 8 /* number of garbage collections in AMD */ 00361 #define AMD_LNZ 9 /* approx. nz in L, excluding the diagonal */ 00362 #define AMD_NDIV 10 /* number of fl. point divides for LU and LDL' */ 00363 #define AMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */ 00364 #define AMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */ 00365 #define AMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */ 00366 00367 /* ------------------------------------------------------------------------- */ 00368 /* return values of AMD */ 00369 /* ------------------------------------------------------------------------- */ 00370 00371 #define AMD_OK 0 /* success */ 00372 #define AMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */ 00373 #define AMD_INVALID -2 /* input arguments are not valid */ 00374 #define AMD_OK_BUT_JUMBLED 1 /* input matrix is OK for amd_order, but 00375 * columns were not sorted, and/or duplicate entries were present. AMD had 00376 * to do extra work before ordering the matrix. This is a warning, not an 00377 * error. */ 00378 00379 /* ========================================================================== */ 00380 /* === AMD version ========================================================== */ 00381 /* ========================================================================== */ 00382 00383 /* AMD Version 1.2 and later include the following definitions. 00384 * As an example, to test if the version you are using is 1.2 or later: 00385 * 00386 * #ifdef AMD_VERSION 00387 * if (AMD_VERSION >= AMD_VERSION_CODE (1,2)) ... 00388 * #endif 00389 * 00390 * This also works during compile-time: 00391 * 00392 * #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE (1,2)) 00393 * printf ("This is version 1.2 or later\n") ; 00394 * #else 00395 * printf ("This is an early version\n") ; 00396 * #endif 00397 * 00398 * Versions 1.1 and earlier of AMD do not include a #define'd version number. 00399 */ 00400 00401 #define AMD_DATE "May 31, 2007" 00402 #define AMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub)) 00403 #define AMD_MAIN_VERSION 2 00404 #define AMD_SUB_VERSION 2 00405 #define AMD_SUBSUB_VERSION 0 00406 #define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION,AMD_SUB_VERSION) 00407 00408 #ifdef __cplusplus 00409 } 00410 #endif 00411 00412 #endif