00001 //---------------------------------------------------------------------- 00002 // File: ANN.h 00003 // Programmer: Sunil Arya and David Mount 00004 // Last modified: 05/03/05 (Release 1.1) 00005 // Description: Basic include file for approximate nearest 00006 // neighbor searching. 00007 //---------------------------------------------------------------------- 00008 // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and 00009 // David Mount. All Rights Reserved. 00010 // 00011 // This software and related documentation is part of the Approximate 00012 // Nearest Neighbor Library (ANN). This software is provided under 00013 // the provisions of the Lesser GNU Public License (LGPL). See the 00014 // file ../ReadMe.txt for further information. 00015 // 00016 // The University of Maryland (U.M.) and the authors make no 00017 // representations about the suitability or fitness of this software for 00018 // any purpose. It is provided "as is" without express or implied 00019 // warranty. 00020 //---------------------------------------------------------------------- 00021 // History: 00022 // Revision 0.1 03/04/98 00023 // Initial release 00024 // Revision 1.0 04/01/05 00025 // Added copyright and revision information 00026 // Added ANNcoordPrec for coordinate precision. 00027 // Added methods theDim, nPoints, maxPoints, thePoints to ANNpointSet. 00028 // Cleaned up C++ structure for modern compilers 00029 // Revision 1.1 05/03/05 00030 // Added fixed-radius k-NN searching 00031 //---------------------------------------------------------------------- 00032 00033 //---------------------------------------------------------------------- 00034 // ANN - approximate nearest neighbor searching 00035 // ANN is a library for approximate nearest neighbor searching, 00036 // based on the use of standard and priority search in kd-trees 00037 // and balanced box-decomposition (bbd) trees. Here are some 00038 // references to the main algorithmic techniques used here: 00039 // 00040 // kd-trees: 00041 // Friedman, Bentley, and Finkel, ``An algorithm for finding 00042 // best matches in logarithmic expected time,'' ACM 00043 // Transactions on Mathematical Software, 3(3):209-226, 1977. 00044 // 00045 // Priority search in kd-trees: 00046 // Arya and Mount, ``Algorithms for fast vector quantization,'' 00047 // Proc. of DCC '93: Data Compression Conference, eds. J. A. 00048 // Storer and M. Cohn, IEEE Press, 1993, 381-390. 00049 // 00050 // Approximate nearest neighbor search and bbd-trees: 00051 // Arya, Mount, Netanyahu, Silverman, and Wu, ``An optimal 00052 // algorithm for approximate nearest neighbor searching,'' 00053 // 5th Ann. ACM-SIAM Symposium on Discrete Algorithms, 00054 // 1994, 573-582. 00055 //---------------------------------------------------------------------- 00056 00057 #ifndef ANN_H 00058 #define ANN_H 00059 00060 #ifdef WIN32 00061 //---------------------------------------------------------------------- 00062 // For Microsoft Visual C++, externally accessible symbols must be 00063 // explicitly indicated with DLL_API, which is somewhat like "extern." 00064 // 00065 // The following ifdef block is the standard way of creating macros 00066 // which make exporting from a DLL simpler. All files within this DLL 00067 // are compiled with the DLL_EXPORTS preprocessor symbol defined on the 00068 // command line. In contrast, projects that use (or import) the DLL 00069 // objects do not define the DLL_EXPORTS symbol. This way any other 00070 // project whose source files include this file see DLL_API functions as 00071 // being imported from a DLL, wheras this DLL sees symbols defined with 00072 // this macro as being exported. 00073 //---------------------------------------------------------------------- 00074 #ifdef DLL_EXPORTS 00075 #define DLL_API __declspec(dllexport) 00076 #else 00077 #define DLL_API __declspec(dllimport) 00078 #endif 00079 //---------------------------------------------------------------------- 00080 // DLL_API is ignored for all other systems 00081 //---------------------------------------------------------------------- 00082 #else 00083 #define DLL_API 00084 #endif 00085 00086 //---------------------------------------------------------------------- 00087 // basic includes 00088 //---------------------------------------------------------------------- 00089 00090 #include <cmath> // math includes 00091 #include <iostream> // I/O streams 00092 00093 //---------------------------------------------------------------------- 00094 // Limits 00095 // There are a number of places where we use the maximum double value as 00096 // default initializers (and others may be used, depending on the 00097 // data/distance representation). These can usually be found in limits.h 00098 // (as LONG_MAX, INT_MAX) or in float.h (as DBL_MAX, FLT_MAX). 00099 // 00100 // Not all systems have these files. If you are using such a system, 00101 // you should set the preprocessor symbol ANN_NO_LIMITS_H when 00102 // compiling, and modify the statements below to generate the 00103 // appropriate value. For practical purposes, this does not need to be 00104 // the maximum double value. It is sufficient that it be at least as 00105 // large than the maximum squared distance between between any two 00106 // points. 00107 //---------------------------------------------------------------------- 00108 #ifdef ANN_NO_LIMITS_H // limits.h unavailable 00109 #include <cvalues> // replacement for limits.h 00110 const double ANN_DBL_MAX = MAXDOUBLE; // insert maximum double 00111 #else 00112 #include <climits> 00113 #include <cfloat> 00114 const double ANN_DBL_MAX = DBL_MAX; 00115 #endif 00116 00117 #define ANNversion "1.1.1" // ANN version and information 00118 #define ANNversionCmt "" 00119 #define ANNcopyright "David M. Mount and Sunil Arya" 00120 #define ANNlatestRev "Aug 4, 2006" 00121 00122 //---------------------------------------------------------------------- 00123 // ANNbool 00124 // This is a simple boolean type. Although ANSI C++ is supposed 00125 // to support the type bool, some compilers do not have it. 00126 //---------------------------------------------------------------------- 00127 00128 enum ANNbool {ANNfalse = 0, ANNtrue = 1}; // ANN boolean type (non ANSI C++) 00129 00130 //---------------------------------------------------------------------- 00131 // ANNcoord, ANNdist 00132 // ANNcoord and ANNdist are the types used for representing 00133 // point coordinates and distances. They can be modified by the 00134 // user, with some care. It is assumed that they are both numeric 00135 // types, and that ANNdist is generally of an equal or higher type 00136 // from ANNcoord. A variable of type ANNdist should be large 00137 // enough to store the sum of squared components of a variable 00138 // of type ANNcoord for the number of dimensions needed in the 00139 // application. For example, the following combinations are 00140 // legal: 00141 // 00142 // ANNcoord ANNdist 00143 // --------- ------------------------------- 00144 // short short, int, long, float, double 00145 // int int, long, float, double 00146 // long long, float, double 00147 // float float, double 00148 // double double 00149 // 00150 // It is the user's responsibility to make sure that overflow does 00151 // not occur in distance calculation. 00152 //---------------------------------------------------------------------- 00153 00154 typedef float ANNcoord; // coordinate data type 00155 typedef float ANNdist; // distance data type 00156 00157 //---------------------------------------------------------------------- 00158 // ANNidx 00159 // ANNidx is a point index. When the data structure is built, the 00160 // points are given as an array. Nearest neighbor results are 00161 // returned as an integer index into this array. To make it 00162 // clearer when this is happening, we define the integer type 00163 // ANNidx. Indexing starts from 0. 00164 // 00165 // For fixed-radius near neighbor searching, it is possible that 00166 // there are not k nearest neighbors within the search radius. To 00167 // indicate this, the algorithm returns ANN_NULL_IDX as its result. 00168 // It should be distinguishable from any valid array index. 00169 //---------------------------------------------------------------------- 00170 00171 typedef int ANNidx; // point index 00172 const ANNidx ANN_NULL_IDX = -1; // a NULL point index 00173 00174 //---------------------------------------------------------------------- 00175 // Infinite distance: 00176 // The code assumes that there is an "infinite distance" which it 00177 // uses to initialize distances before performing nearest neighbor 00178 // searches. It should be as larger or larger than any legitimate 00179 // nearest neighbor distance. 00180 // 00181 // On most systems, these should be found in the standard include 00182 // file <limits.h> or possibly <float.h>. If you do not have these 00183 // file, some suggested values are listed below, assuming 64-bit 00184 // long, 32-bit int and 16-bit short. 00185 // 00186 // ANNdist ANN_DIST_INF Values (see <limits.h> or <float.h>) 00187 // ------- ------------ ------------------------------------ 00188 // double DBL_MAX 1.79769313486231570e+308 00189 // float FLT_MAX 3.40282346638528860e+38 00190 // long LONG_MAX 0x7fffffffffffffff 00191 // int INT_MAX 0x7fffffff 00192 // short SHRT_MAX 0x7fff 00193 //---------------------------------------------------------------------- 00194 00195 const ANNdist ANN_DIST_INF = ANN_DBL_MAX; 00196 00197 //---------------------------------------------------------------------- 00198 // Significant digits for tree dumps: 00199 // When floating point coordinates are used, the routine that dumps 00200 // a tree needs to know roughly how many significant digits there 00201 // are in a ANNcoord, so it can output points to full precision. 00202 // This is defined to be ANNcoordPrec. On most systems these 00203 // values can be found in the standard include files <limits.h> or 00204 // <float.h>. For integer types, the value is essentially ignored. 00205 // 00206 // ANNcoord ANNcoordPrec Values (see <limits.h> or <float.h>) 00207 // -------- ------------ ------------------------------------ 00208 // double DBL_DIG 15 00209 // float FLT_DIG 6 00210 // long doesn't matter 19 00211 // int doesn't matter 10 00212 // short doesn't matter 5 00213 //---------------------------------------------------------------------- 00214 00215 #ifdef DBL_DIG // number of sig. bits in ANNcoord 00216 const int ANNcoordPrec = DBL_DIG; 00217 #else 00218 const int ANNcoordPrec = 15; // default precision 00219 #endif 00220 00221 //---------------------------------------------------------------------- 00222 // Self match? 00223 // In some applications, the nearest neighbor of a point is not 00224 // allowed to be the point itself. This occurs, for example, when 00225 // computing all nearest neighbors in a set. By setting the 00226 // parameter ANN_ALLOW_SELF_MATCH to ANNfalse, the nearest neighbor 00227 // is the closest point whose distance from the query point is 00228 // strictly positive. 00229 //---------------------------------------------------------------------- 00230 00231 const ANNbool ANN_ALLOW_SELF_MATCH = ANNtrue; 00232 00233 //---------------------------------------------------------------------- 00234 // Norms and metrics: 00235 // ANN supports any Minkowski norm for defining distance. In 00236 // particular, for any p >= 1, the L_p Minkowski norm defines the 00237 // length of a d-vector (v0, v1, ..., v(d-1)) to be 00238 // 00239 // (|v0|^p + |v1|^p + ... + |v(d-1)|^p)^(1/p), 00240 // 00241 // (where ^ denotes exponentiation, and |.| denotes absolute 00242 // value). The distance between two points is defined to be the 00243 // norm of the vector joining them. Some common distance metrics 00244 // include 00245 // 00246 // Euclidean metric p = 2 00247 // Manhattan metric p = 1 00248 // Max metric p = infinity 00249 // 00250 // In the case of the max metric, the norm is computed by taking 00251 // the maxima of the absolute values of the components. ANN is 00252 // highly "coordinate-based" and does not support general distances 00253 // functions (e.g. those obeying just the triangle inequality). It 00254 // also does not support distance functions based on 00255 // inner-products. 00256 // 00257 // For the purpose of computing nearest neighbors, it is not 00258 // necessary to compute the final power (1/p). Thus the only 00259 // component that is used by the program is |v(i)|^p. 00260 // 00261 // ANN parameterizes the distance computation through the following 00262 // macros. (Macros are used rather than procedures for 00263 // efficiency.) Recall that the distance between two points is 00264 // given by the length of the vector joining them, and the length 00265 // or norm of a vector v is given by formula: 00266 // 00267 // |v| = ROOT(POW(v0) # POW(v1) # ... # POW(v(d-1))) 00268 // 00269 // where ROOT, POW are unary functions and # is an associative and 00270 // commutative binary operator mapping the following types: 00271 // 00272 // ** POW: ANNcoord --> ANNdist 00273 // ** #: ANNdist x ANNdist --> ANNdist 00274 // ** ROOT: ANNdist (>0) --> double 00275 // 00276 // For early termination in distance calculation (partial distance 00277 // calculation) we assume that POW and # together are monotonically 00278 // increasing on sequences of arguments, meaning that for all 00279 // v0..vk and y: 00280 // 00281 // POW(v0) #...# POW(vk) <= (POW(v0) #...# POW(vk)) # POW(y). 00282 // 00283 // Incremental Distance Calculation: 00284 // The program uses an optimized method of computing distances for 00285 // kd-trees and bd-trees, called incremental distance calculation. 00286 // It is used when distances are to be updated when only a single 00287 // coordinate of a point has been changed. In order to use this, 00288 // we assume that there is an incremental update function DIFF(x,y) 00289 // for #, such that if: 00290 // 00291 // s = x0 # ... # xi # ... # xk 00292 // 00293 // then if s' is equal to s but with xi replaced by y, that is, 00294 // 00295 // s' = x0 # ... # y # ... # xk 00296 // 00297 // then the length of s' can be computed by: 00298 // 00299 // |s'| = |s| # DIFF(xi,y). 00300 // 00301 // Thus, if # is + then DIFF(xi,y) is (yi-x). For the L_infinity 00302 // norm we make use of the fact that in the program this function 00303 // is only invoked when y > xi, and hence DIFF(xi,y)=y. 00304 // 00305 // Finally, for approximate nearest neighbor queries we assume 00306 // that POW and ROOT are related such that 00307 // 00308 // v*ROOT(x) = ROOT(POW(v)*x) 00309 // 00310 // Here are the values for the various Minkowski norms: 00311 // 00312 // L_p: p even: p odd: 00313 // ------------------------- ------------------------ 00314 // POW(v) = v^p POW(v) = |v|^p 00315 // ROOT(x) = x^(1/p) ROOT(x) = x^(1/p) 00316 // # = + # = + 00317 // DIFF(x,y) = y - x DIFF(x,y) = y - x 00318 // 00319 // L_inf: 00320 // POW(v) = |v| 00321 // ROOT(x) = x 00322 // # = max 00323 // DIFF(x,y) = y 00324 // 00325 // By default the Euclidean norm is assumed. To change the norm, 00326 // uncomment the appropriate set of macros below. 00327 //---------------------------------------------------------------------- 00328 00329 //---------------------------------------------------------------------- 00330 // Use the following for the Euclidean norm 00331 //---------------------------------------------------------------------- 00332 #define ANN_POW(v) ((v)*(v)) 00333 #define ANN_ROOT(x) sqrt(x) 00334 #define ANN_SUM(x,y) ((x) + (y)) 00335 #define ANN_DIFF(x,y) ((y) - (x)) 00336 00337 //---------------------------------------------------------------------- 00338 // Use the following for the L_1 (Manhattan) norm 00339 //---------------------------------------------------------------------- 00340 // #define ANN_POW(v) fabs(v) 00341 // #define ANN_ROOT(x) (x) 00342 // #define ANN_SUM(x,y) ((x) + (y)) 00343 // #define ANN_DIFF(x,y) ((y) - (x)) 00344 00345 //---------------------------------------------------------------------- 00346 // Use the following for a general L_p norm 00347 //---------------------------------------------------------------------- 00348 // #define ANN_POW(v) pow(fabs(v),p) 00349 // #define ANN_ROOT(x) pow(fabs(x),1/p) 00350 // #define ANN_SUM(x,y) ((x) + (y)) 00351 // #define ANN_DIFF(x,y) ((y) - (x)) 00352 00353 //---------------------------------------------------------------------- 00354 // Use the following for the L_infinity (Max) norm 00355 //---------------------------------------------------------------------- 00356 // #define ANN_POW(v) fabs(v) 00357 // #define ANN_ROOT(x) (x) 00358 // #define ANN_SUM(x,y) ((x) > (y) ? (x) : (y)) 00359 // #define ANN_DIFF(x,y) (y) 00360 00361 //---------------------------------------------------------------------- 00362 // Array types 00363 // The following array types are of basic interest. A point is 00364 // just a dimensionless array of coordinates, a point array is a 00365 // dimensionless array of points. A distance array is a 00366 // dimensionless array of distances and an index array is a 00367 // dimensionless array of point indices. The latter two are used 00368 // when returning the results of k-nearest neighbor queries. 00369 //---------------------------------------------------------------------- 00370 00371 typedef ANNcoord* ANNpoint; // a point 00372 typedef ANNpoint* ANNpointArray; // an array of points 00373 typedef ANNdist* ANNdistArray; // an array of distances 00374 typedef ANNidx* ANNidxArray; // an array of point indices 00375 00376 //---------------------------------------------------------------------- 00377 // Basic point and array utilities: 00378 // The following procedures are useful supplements to ANN's nearest 00379 // neighbor capabilities. 00380 // 00381 // annDist(): 00382 // Computes the (squared) distance between a pair of points. 00383 // Note that this routine is not used internally by ANN for 00384 // computing distance calculations. For reasons of efficiency 00385 // this is done using incremental distance calculation. Thus, 00386 // this routine cannot be modified as a method of changing the 00387 // metric. 00388 // 00389 // Because points (somewhat like strings in C) are stored as 00390 // pointers. Consequently, creating and destroying copies of 00391 // points may require storage allocation. These procedures do 00392 // this. 00393 // 00394 // annAllocPt() and annDeallocPt(): 00395 // Allocate a deallocate storage for a single point, and 00396 // return a pointer to it. The argument to AllocPt() is 00397 // used to initialize all components. 00398 // 00399 // annAllocPts() and annDeallocPts(): 00400 // Allocate and deallocate an array of points as well a 00401 // place to store their coordinates, and initializes the 00402 // points to point to their respective coordinates. It 00403 // allocates point storage in a contiguous block large 00404 // enough to store all the points. It performs no 00405 // initialization. 00406 // 00407 // annCopyPt(): 00408 // Creates a copy of a given point, allocating space for 00409 // the new point. It returns a pointer to the newly 00410 // allocated copy. 00411 //---------------------------------------------------------------------- 00412 00413 DLL_API ANNdist annDist( 00414 int dim, // dimension of space 00415 ANNpoint p, // points 00416 ANNpoint q); 00417 00418 DLL_API ANNpoint annAllocPt( 00419 int dim, // dimension 00420 ANNcoord c = 0); // coordinate value (all equal) 00421 00422 DLL_API ANNpointArray annAllocPts( 00423 int n, // number of points 00424 int dim); // dimension 00425 00426 DLL_API void annDeallocPt( 00427 ANNpoint &p); // deallocate 1 point 00428 00429 DLL_API void annDeallocPts( 00430 ANNpointArray &pa); // point array 00431 00432 DLL_API ANNpoint annCopyPt( 00433 int dim, // dimension 00434 ANNpoint source); // point to copy 00435 00436 //---------------------------------------------------------------------- 00437 //Overall structure: ANN supports a number of different data structures 00438 //for approximate and exact nearest neighbor searching. These are: 00439 // 00440 // ANNbruteForce A simple brute-force search structure. 00441 // ANNkd_tree A kd-tree tree search structure. ANNbd_tree 00442 // A bd-tree tree search structure (a kd-tree with shrink 00443 // capabilities). 00444 // 00445 // At a minimum, each of these data structures support k-nearest 00446 // neighbor queries. The nearest neighbor query, annkSearch, 00447 // returns an integer identifier and the distance to the nearest 00448 // neighbor(s) and annRangeSearch returns the nearest points that 00449 // lie within a given query ball. 00450 // 00451 // Each structure is built by invoking the appropriate constructor 00452 // and passing it (at a minimum) the array of points, the total 00453 // number of points and the dimension of the space. Each structure 00454 // is also assumed to support a destructor and member functions 00455 // that return basic information about the point set. 00456 // 00457 // Note that the array of points is not copied by the data 00458 // structure (for reasons of space efficiency), and it is assumed 00459 // to be constant throughout the lifetime of the search structure. 00460 // 00461 // The search algorithm, annkSearch, is given the query point (q), 00462 // and the desired number of nearest neighbors to report (k), and 00463 // the error bound (eps) (whose default value is 0, implying exact 00464 // nearest neighbors). It returns two arrays which are assumed to 00465 // contain at least k elements: one (nn_idx) contains the indices 00466 // (within the point array) of the nearest neighbors and the other 00467 // (dd) contains the squared distances to these nearest neighbors. 00468 // 00469 // The search algorithm, annkFRSearch, is a fixed-radius kNN 00470 // search. In addition to a query point, it is given a (squared) 00471 // radius bound. (This is done for consistency, because the search 00472 // returns distances as squared quantities.) It does two things. 00473 // First, it computes the k nearest neighbors within the radius 00474 // bound, and second, it returns the total number of points lying 00475 // within the radius bound. It is permitted to set k = 0, in which 00476 // case it effectively answers a range counting query. If the 00477 // error bound epsilon is positive, then the search is approximate 00478 // in the sense that it is free to ignore any point that lies 00479 // outside a ball of radius r/(1+epsilon), where r is the given 00480 // (unsquared) radius bound. 00481 // 00482 // The generic object from which all the search structures are 00483 // dervied is given below. It is a virtual object, and is useless 00484 // by itself. 00485 //---------------------------------------------------------------------- 00486 00487 class DLL_API ANNpointSet { 00488 public: 00489 virtual ~ANNpointSet() {} // virtual distructor 00490 00491 virtual void annkSearch( // approx k near neighbor search 00492 ANNpoint q, // query point 00493 int k, // number of near neighbors to return 00494 ANNidxArray nn_idx, // nearest neighbor array (modified) 00495 ANNdistArray dd, // dist to near neighbors (modified) 00496 double eps=0.0 // error bound 00497 ) = 0; // pure virtual (defined elsewhere) 00498 00499 virtual int annkFRSearch( // approx fixed-radius kNN search 00500 ANNpoint q, // query point 00501 ANNdist sqRad, // squared radius 00502 int k = 0, // number of near neighbors to return 00503 ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) 00504 ANNdistArray dd = NULL, // dist to near neighbors (modified) 00505 double eps=0.0 // error bound 00506 ) = 0; // pure virtual (defined elsewhere) 00507 00508 virtual int theDim() = 0; // return dimension of space 00509 virtual int nPoints() = 0; // return number of points 00510 // return pointer to points 00511 virtual ANNpointArray thePoints() = 0; 00512 }; 00513 00514 //---------------------------------------------------------------------- 00515 // Brute-force nearest neighbor search: 00516 // The brute-force search structure is very simple but inefficient. 00517 // It has been provided primarily for the sake of comparison with 00518 // and validation of the more complex search structures. 00519 // 00520 // Query processing is the same as described above, but the value 00521 // of epsilon is ignored, since all distance calculations are 00522 // performed exactly. 00523 // 00524 // WARNING: This data structure is very slow, and should not be 00525 // used unless the number of points is very small. 00526 // 00527 // Internal information: 00528 // --------------------- 00529 // This data structure bascially consists of the array of points 00530 // (each a pointer to an array of coordinates). The search is 00531 // performed by a simple linear scan of all the points. 00532 //---------------------------------------------------------------------- 00533 00534 class DLL_API ANNbruteForce: public ANNpointSet { 00535 int dim; // dimension 00536 int n_pts; // number of points 00537 ANNpointArray pts; // point array 00538 public: 00539 ANNbruteForce( // constructor from point array 00540 ANNpointArray pa, // point array 00541 int n, // number of points 00542 int dd); // dimension 00543 00544 ~ANNbruteForce(); // destructor 00545 00546 void annkSearch( // approx k near neighbor search 00547 ANNpoint q, // query point 00548 int k, // number of near neighbors to return 00549 ANNidxArray nn_idx, // nearest neighbor array (modified) 00550 ANNdistArray dd, // dist to near neighbors (modified) 00551 double eps=0.0); // error bound 00552 00553 int annkFRSearch( // approx fixed-radius kNN search 00554 ANNpoint q, // query point 00555 ANNdist sqRad, // squared radius 00556 int k = 0, // number of near neighbors to return 00557 ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) 00558 ANNdistArray dd = NULL, // dist to near neighbors (modified) 00559 double eps=0.0); // error bound 00560 00561 int theDim() // return dimension of space 00562 { return dim; } 00563 00564 int nPoints() // return number of points 00565 { return n_pts; } 00566 00567 ANNpointArray thePoints() // return pointer to points 00568 { return pts; } 00569 }; 00570 00571 //---------------------------------------------------------------------- 00572 // kd- and bd-tree splitting and shrinking rules 00573 // kd-trees supports a collection of different splitting rules. 00574 // In addition to the standard kd-tree splitting rule proposed 00575 // by Friedman, Bentley, and Finkel, we have introduced a 00576 // number of other splitting rules, which seem to perform 00577 // as well or better (for the distributions we have tested). 00578 // 00579 // The splitting methods given below allow the user to tailor 00580 // the data structure to the particular data set. They are 00581 // are described in greater details in the kd_split.cc source 00582 // file. The method ANN_KD_SUGGEST is the method chosen (rather 00583 // subjectively) by the implementors as the one giving the 00584 // fastest performance, and is the default splitting method. 00585 // 00586 // As with splitting rules, there are a number of different 00587 // shrinking rules. The shrinking rule ANN_BD_NONE does no 00588 // shrinking (and hence produces a kd-tree tree). The rule 00589 // ANN_BD_SUGGEST uses the implementors favorite rule. 00590 //---------------------------------------------------------------------- 00591 00592 enum ANNsplitRule { 00593 ANN_KD_STD = 0, // the optimized kd-splitting rule 00594 ANN_KD_MIDPT = 1, // midpoint split 00595 ANN_KD_FAIR = 2, // fair split 00596 ANN_KD_SL_MIDPT = 3, // sliding midpoint splitting method 00597 ANN_KD_SL_FAIR = 4, // sliding fair split method 00598 ANN_KD_SUGGEST = 5}; // the authors' suggestion for best 00599 const int ANN_N_SPLIT_RULES = 6; // number of split rules 00600 00601 enum ANNshrinkRule { 00602 ANN_BD_NONE = 0, // no shrinking at all (just kd-tree) 00603 ANN_BD_SIMPLE = 1, // simple splitting 00604 ANN_BD_CENTROID = 2, // centroid splitting 00605 ANN_BD_SUGGEST = 3}; // the authors' suggested choice 00606 const int ANN_N_SHRINK_RULES = 4; // number of shrink rules 00607 00608 //---------------------------------------------------------------------- 00609 // kd-tree: 00610 // The main search data structure supported by ANN is a kd-tree. 00611 // The main constructor is given a set of points and a choice of 00612 // splitting method to use in building the tree. 00613 // 00614 // Construction: 00615 // ------------- 00616 // The constructor is given the point array, number of points, 00617 // dimension, bucket size (default = 1), and the splitting rule 00618 // (default = ANN_KD_SUGGEST). The point array is not copied, and 00619 // is assumed to be kept constant throughout the lifetime of the 00620 // search structure. There is also a "load" constructor that 00621 // builds a tree from a file description that was created by the 00622 // Dump operation. 00623 // 00624 // Search: 00625 // ------- 00626 // There are two search methods: 00627 // 00628 // Standard search (annkSearch()): 00629 // Searches nodes in tree-traversal order, always visiting 00630 // the closer child first. 00631 // Priority search (annkPriSearch()): 00632 // Searches nodes in order of increasing distance of the 00633 // associated cell from the query point. For many 00634 // distributions the standard search seems to work just 00635 // fine, but priority search is safer for worst-case 00636 // performance. 00637 // 00638 // Printing: 00639 // --------- 00640 // There are two methods provided for printing the tree. Print() 00641 // is used to produce a "human-readable" display of the tree, with 00642 // indenation, which is handy for debugging. Dump() produces a 00643 // format that is suitable reading by another program. There is a 00644 // "load" constructor, which constructs a tree which is assumed to 00645 // have been saved by the Dump() procedure. 00646 // 00647 // Performance and Structure Statistics: 00648 // ------------------------------------- 00649 // The procedure getStats() collects statistics information on the 00650 // tree (its size, height, etc.) See ANNperf.h for information on 00651 // the stats structure it returns. 00652 // 00653 // Internal information: 00654 // --------------------- 00655 // The data structure consists of three major chunks of storage. 00656 // The first (implicit) storage are the points themselves (pts), 00657 // which have been provided by the users as an argument to the 00658 // constructor, or are allocated dynamically if the tree is built 00659 // using the load constructor). These should not be changed during 00660 // the lifetime of the search structure. It is the user's 00661 // responsibility to delete these after the tree is destroyed. 00662 // 00663 // The second is the tree itself (which is dynamically allocated in 00664 // the constructor) and is given as a pointer to its root node 00665 // (root). These nodes are automatically deallocated when the tree 00666 // is deleted. See the file src/kd_tree.h for further information 00667 // on the structure of the tree nodes. 00668 // 00669 // Each leaf of the tree does not contain a pointer directly to a 00670 // point, but rather contains a pointer to a "bucket", which is an 00671 // array consisting of point indices. The third major chunk of 00672 // storage is an array (pidx), which is a large array in which all 00673 // these bucket subarrays reside. (The reason for storing them 00674 // separately is the buckets are typically small, but of varying 00675 // sizes. This was done to avoid fragmentation.) This array is 00676 // also deallocated when the tree is deleted. 00677 // 00678 // In addition to this, the tree consists of a number of other 00679 // pieces of information which are used in searching and for 00680 // subsequent tree operations. These consist of the following: 00681 // 00682 // dim Dimension of space 00683 // n_pts Number of points currently in the tree 00684 // n_max Maximum number of points that are allowed 00685 // in the tree 00686 // bkt_size Maximum bucket size (no. of points per leaf) 00687 // bnd_box_lo Bounding box low point 00688 // bnd_box_hi Bounding box high point 00689 // splitRule Splitting method used 00690 // 00691 //---------------------------------------------------------------------- 00692 00693 //---------------------------------------------------------------------- 00694 // Some types and objects used by kd-tree functions 00695 // See src/kd_tree.h and src/kd_tree.cpp for definitions 00696 //---------------------------------------------------------------------- 00697 class ANNkdStats; // stats on kd-tree 00698 class ANNkd_node; // generic node in a kd-tree 00699 typedef ANNkd_node* ANNkd_ptr; // pointer to a kd-tree node 00700 00701 class DLL_API ANNkd_tree: public ANNpointSet { 00702 protected: 00703 int dim; // dimension of space 00704 int n_pts; // number of points in tree 00705 int bkt_size; // bucket size 00706 ANNpointArray pts; // the points 00707 ANNidxArray pidx; // point indices (to pts array) 00708 ANNkd_ptr root; // root of kd-tree 00709 ANNpoint bnd_box_lo; // bounding box low point 00710 ANNpoint bnd_box_hi; // bounding box high point 00711 00712 void SkeletonTree( // construct skeleton tree 00713 int n, // number of points 00714 int dd, // dimension 00715 int bs, // bucket size 00716 ANNpointArray pa = NULL, // point array (optional) 00717 ANNidxArray pi = NULL); // point indices (optional) 00718 00719 public: 00720 ANNkd_tree( // build skeleton tree 00721 int n = 0, // number of points 00722 int dd = 0, // dimension 00723 int bs = 1); // bucket size 00724 00725 ANNkd_tree( // build from point array 00726 ANNpointArray pa, // point array 00727 int n, // number of points 00728 int dd, // dimension 00729 int bs = 1, // bucket size 00730 ANNsplitRule split = ANN_KD_SUGGEST); // splitting method 00731 00732 ANNkd_tree( // build from dump file 00733 std::istream& in); // input stream for dump file 00734 00735 ~ANNkd_tree(); // tree destructor 00736 00737 void annkSearch( // approx k near neighbor search 00738 ANNpoint q, // query point 00739 int k, // number of near neighbors to return 00740 ANNidxArray nn_idx, // nearest neighbor array (modified) 00741 ANNdistArray dd, // dist to near neighbors (modified) 00742 double eps=0.0); // error bound 00743 00744 void annkPriSearch( // priority k near neighbor search 00745 ANNpoint q, // query point 00746 int k, // number of near neighbors to return 00747 ANNidxArray nn_idx, // nearest neighbor array (modified) 00748 ANNdistArray dd, // dist to near neighbors (modified) 00749 double eps=0.0); // error bound 00750 00751 int annkFRSearch( // approx fixed-radius kNN search 00752 ANNpoint q, // the query point 00753 ANNdist sqRad, // squared radius of query ball 00754 int k, // number of neighbors to return 00755 ANNidxArray nn_idx = NULL, // nearest neighbor array (modified) 00756 ANNdistArray dd = NULL, // dist to near neighbors (modified) 00757 double eps=0.0); // error bound 00758 00759 int theDim() // return dimension of space 00760 { return dim; } 00761 00762 int nPoints() // return number of points 00763 { return n_pts; } 00764 00765 ANNpointArray thePoints() // return pointer to points 00766 { return pts; } 00767 00768 virtual void Print( // print the tree (for debugging) 00769 ANNbool with_pts, // print points as well? 00770 std::ostream& out); // output stream 00771 00772 virtual void Dump( // dump entire tree 00773 ANNbool with_pts, // print points as well? 00774 std::ostream& out); // output stream 00775 00776 virtual void getStats( // compute tree statistics 00777 ANNkdStats& st); // the statistics (modified) 00778 }; 00779 00780 //---------------------------------------------------------------------- 00781 // Box decomposition tree (bd-tree) 00782 // The bd-tree is inherited from a kd-tree. The main difference 00783 // in the bd-tree and the kd-tree is a new type of internal node 00784 // called a shrinking node (in the kd-tree there is only one type 00785 // of internal node, a splitting node). The shrinking node 00786 // makes it possible to generate balanced trees in which the 00787 // cells have bounded aspect ratio, by allowing the decomposition 00788 // to zoom in on regions of dense point concentration. Although 00789 // this is a nice idea in theory, few point distributions are so 00790 // densely clustered that this is really needed. 00791 //---------------------------------------------------------------------- 00792 00793 class DLL_API ANNbd_tree: public ANNkd_tree { 00794 public: 00795 ANNbd_tree( // build skeleton tree 00796 int n, // number of points 00797 int dd, // dimension 00798 int bs = 1) // bucket size 00799 : ANNkd_tree(n, dd, bs) {} // build base kd-tree 00800 00801 ANNbd_tree( // build from point array 00802 ANNpointArray pa, // point array 00803 int n, // number of points 00804 int dd, // dimension 00805 int bs = 1, // bucket size 00806 ANNsplitRule split = ANN_KD_SUGGEST, // splitting rule 00807 ANNshrinkRule shrink = ANN_BD_SUGGEST); // shrinking rule 00808 00809 ANNbd_tree( // build from dump file 00810 std::istream& in); // input stream for dump file 00811 }; 00812 00813 //---------------------------------------------------------------------- 00814 // Other functions 00815 // annMaxPtsVisit Sets a limit on the maximum number of points 00816 // to visit in the search. 00817 // annClose Can be called when all use of ANN is finished. 00818 // It clears up a minor memory leak. 00819 //---------------------------------------------------------------------- 00820 00821 DLL_API void annMaxPtsVisit( // max. pts to visit in search 00822 int maxPts); // the limit 00823 00824 DLL_API void annClose(); // called to end use of ANN 00825 00826 #endif