00001
00002 #ifndef RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H
00003 #define RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015
00016
00017 #include "sensor_msgs/PointCloud2.h"
00018 #include "sensor_msgs/Image.h"
00019 #include "stereo_msgs/DisparityImage.h"
00020 #include "sensor_msgs/CameraInfo.h"
00021
00022 namespace rgbd_assembler
00023 {
00024 template <class ContainerAllocator>
00025 struct RgbdAssemblyRequest_ : public ros::Message
00026 {
00027 typedef RgbdAssemblyRequest_<ContainerAllocator> Type;
00028
00029 RgbdAssemblyRequest_()
00030 {
00031 }
00032
00033 RgbdAssemblyRequest_(const ContainerAllocator& _alloc)
00034 {
00035 }
00036
00037
00038 private:
00039 static const char* __s_getDataType_() { return "rgbd_assembler/RgbdAssemblyRequest"; }
00040 public:
00041 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00042
00043 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00044
00045 private:
00046 static const char* __s_getMD5Sum_() { return "d41d8cd98f00b204e9800998ecf8427e"; }
00047 public:
00048 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00049
00050 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00051
00052 private:
00053 static const char* __s_getServerMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; }
00054 public:
00055 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00056
00057 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00058
00059 private:
00060 static const char* __s_getMessageDefinition_() { return "\n\
00061 \n\
00062 \n\
00063 "; }
00064 public:
00065 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00066
00067 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00068
00069 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00070 {
00071 ros::serialization::OStream stream(write_ptr, 1000000000);
00072 return stream.getData();
00073 }
00074
00075 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00076 {
00077 ros::serialization::IStream stream(read_ptr, 1000000000);
00078 return stream.getData();
00079 }
00080
00081 ROS_DEPRECATED virtual uint32_t serializationLength() const
00082 {
00083 uint32_t size = 0;
00084 return size;
00085 }
00086
00087 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > Ptr;
00088 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> const> ConstPtr;
00089 };
00090 typedef ::rgbd_assembler::RgbdAssemblyRequest_<std::allocator<void> > RgbdAssemblyRequest;
00091
00092 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest> RgbdAssemblyRequestPtr;
00093 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyRequest const> RgbdAssemblyRequestConstPtr;
00094
00095
00096 template <class ContainerAllocator>
00097 struct RgbdAssemblyResponse_ : public ros::Message
00098 {
00099 typedef RgbdAssemblyResponse_<ContainerAllocator> Type;
00100
00101 RgbdAssemblyResponse_()
00102 : point_cloud()
00103 , image()
00104 , disparity_image()
00105 , camera_info()
00106 , result(0)
00107 {
00108 }
00109
00110 RgbdAssemblyResponse_(const ContainerAllocator& _alloc)
00111 : point_cloud(_alloc)
00112 , image(_alloc)
00113 , disparity_image(_alloc)
00114 , camera_info(_alloc)
00115 , result(0)
00116 {
00117 }
00118
00119 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _point_cloud_type;
00120 ::sensor_msgs::PointCloud2_<ContainerAllocator> point_cloud;
00121
00122 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00123 ::sensor_msgs::Image_<ContainerAllocator> image;
00124
00125 typedef ::stereo_msgs::DisparityImage_<ContainerAllocator> _disparity_image_type;
00126 ::stereo_msgs::DisparityImage_<ContainerAllocator> disparity_image;
00127
00128 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00129 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00130
00131 typedef int32_t _result_type;
00132 int32_t result;
00133
00134 enum { OTHER_ERROR = 1 };
00135 enum { SUCCESS = 2 };
00136
00137 private:
00138 static const char* __s_getDataType_() { return "rgbd_assembler/RgbdAssemblyResponse"; }
00139 public:
00140 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00141
00142 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00143
00144 private:
00145 static const char* __s_getMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; }
00146 public:
00147 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00148
00149 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00150
00151 private:
00152 static const char* __s_getServerMD5Sum_() { return "258b6f93e1876c2777ab914303667a41"; }
00153 public:
00154 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00155
00156 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00157
00158 private:
00159 static const char* __s_getMessageDefinition_() { return "\n\
00160 \n\
00161 \n\
00162 \n\
00163 sensor_msgs/PointCloud2 point_cloud\n\
00164 \n\
00165 \n\
00166 sensor_msgs/Image image\n\
00167 \n\
00168 \n\
00169 stereo_msgs/DisparityImage disparity_image\n\
00170 \n\
00171 \n\
00172 sensor_msgs/CameraInfo camera_info\n\
00173 \n\
00174 \n\
00175 int32 OTHER_ERROR = 1\n\
00176 int32 SUCCESS = 2\n\
00177 int32 result\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: sensor_msgs/PointCloud2\n\
00181 # This message holds a collection of N-dimensional points, which may\n\
00182 # contain additional information such as normals, intensity, etc. The\n\
00183 # point data is stored as a binary blob, its layout described by the\n\
00184 # contents of the \"fields\" array.\n\
00185 \n\
00186 # The point cloud data may be organized 2d (image-like) or 1d\n\
00187 # (unordered). Point clouds organized as 2d images may be produced by\n\
00188 # camera depth sensors such as stereo or time-of-flight.\n\
00189 \n\
00190 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00191 # points).\n\
00192 Header header\n\
00193 \n\
00194 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00195 # 1 and width is the length of the point cloud.\n\
00196 uint32 height\n\
00197 uint32 width\n\
00198 \n\
00199 # Describes the channels and their layout in the binary data blob.\n\
00200 PointField[] fields\n\
00201 \n\
00202 bool is_bigendian # Is this data bigendian?\n\
00203 uint32 point_step # Length of a point in bytes\n\
00204 uint32 row_step # Length of a row in bytes\n\
00205 uint8[] data # Actual point data, size is (row_step*height)\n\
00206 \n\
00207 bool is_dense # True if there are no invalid points\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: std_msgs/Header\n\
00211 # Standard metadata for higher-level stamped data types.\n\
00212 # This is generally used to communicate timestamped data \n\
00213 # in a particular coordinate frame.\n\
00214 # \n\
00215 # sequence ID: consecutively increasing ID \n\
00216 uint32 seq\n\
00217 #Two-integer timestamp that is expressed as:\n\
00218 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00219 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00220 # time-handling sugar is provided by the client library\n\
00221 time stamp\n\
00222 #Frame this data is associated with\n\
00223 # 0: no frame\n\
00224 # 1: global frame\n\
00225 string frame_id\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: sensor_msgs/PointField\n\
00229 # This message holds the description of one point entry in the\n\
00230 # PointCloud2 message format.\n\
00231 uint8 INT8 = 1\n\
00232 uint8 UINT8 = 2\n\
00233 uint8 INT16 = 3\n\
00234 uint8 UINT16 = 4\n\
00235 uint8 INT32 = 5\n\
00236 uint8 UINT32 = 6\n\
00237 uint8 FLOAT32 = 7\n\
00238 uint8 FLOAT64 = 8\n\
00239 \n\
00240 string name # Name of field\n\
00241 uint32 offset # Offset from start of point struct\n\
00242 uint8 datatype # Datatype enumeration, see above\n\
00243 uint32 count # How many elements in the field\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: sensor_msgs/Image\n\
00247 # This message contains an uncompressed image\n\
00248 # (0, 0) is at top-left corner of image\n\
00249 #\n\
00250 \n\
00251 Header header # Header timestamp should be acquisition time of image\n\
00252 # Header frame_id should be optical frame of camera\n\
00253 # origin of frame should be optical center of cameara\n\
00254 # +x should point to the right in the image\n\
00255 # +y should point down in the image\n\
00256 # +z should point into to plane of the image\n\
00257 # If the frame_id here and the frame_id of the CameraInfo\n\
00258 # message associated with the image conflict\n\
00259 # the behavior is undefined\n\
00260 \n\
00261 uint32 height # image height, that is, number of rows\n\
00262 uint32 width # image width, that is, number of columns\n\
00263 \n\
00264 # The legal values for encoding are in file src/image_encodings.cpp\n\
00265 # If you want to standardize a new string format, join\n\
00266 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00267 \n\
00268 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00269 # taken from the list of strings in src/image_encodings.cpp\n\
00270 \n\
00271 uint8 is_bigendian # is this data bigendian?\n\
00272 uint32 step # Full row length in bytes\n\
00273 uint8[] data # actual matrix data, size is (step * rows)\n\
00274 \n\
00275 ================================================================================\n\
00276 MSG: stereo_msgs/DisparityImage\n\
00277 # Separate header for compatibility with current TimeSynchronizer.\n\
00278 # Likely to be removed in a later release, use image.header instead.\n\
00279 Header header\n\
00280 \n\
00281 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00282 # x-offset between the principal points of the two cameras (in the case\n\
00283 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00284 sensor_msgs/Image image\n\
00285 \n\
00286 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00287 float32 f # Focal length, pixels\n\
00288 float32 T # Baseline, world units\n\
00289 \n\
00290 # Subwindow of (potentially) valid disparity values.\n\
00291 sensor_msgs/RegionOfInterest valid_window\n\
00292 \n\
00293 # The range of disparities searched.\n\
00294 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00295 # The disparity search range defines the horopter, or 3D volume that the\n\
00296 # stereo algorithm can \"see\". Points with Z outside of:\n\
00297 # Z_min = fT / max_disparity\n\
00298 # Z_max = fT / min_disparity\n\
00299 # could not be found.\n\
00300 float32 min_disparity\n\
00301 float32 max_disparity\n\
00302 \n\
00303 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00304 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00305 float32 delta_d\n\
00306 \n\
00307 ================================================================================\n\
00308 MSG: sensor_msgs/RegionOfInterest\n\
00309 # This message is used to specify a region of interest within an image.\n\
00310 #\n\
00311 # When used to specify the ROI setting of the camera when the image was\n\
00312 # taken, the height and width fields should either match the height and\n\
00313 # width fields for the associated image; or height = width = 0\n\
00314 # indicates that the full resolution image was captured.\n\
00315 \n\
00316 uint32 x_offset # Leftmost pixel of the ROI\n\
00317 # (0 if the ROI includes the left edge of the image)\n\
00318 uint32 y_offset # Topmost pixel of the ROI\n\
00319 # (0 if the ROI includes the top edge of the image)\n\
00320 uint32 height # Height of ROI\n\
00321 uint32 width # Width of ROI\n\
00322 \n\
00323 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00324 # ROI in this message. Typically this should be False if the full image\n\
00325 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00326 # used).\n\
00327 bool do_rectify\n\
00328 \n\
00329 ================================================================================\n\
00330 MSG: sensor_msgs/CameraInfo\n\
00331 # This message defines meta information for a camera. It should be in a\n\
00332 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00333 # image topics named:\n\
00334 #\n\
00335 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00336 # image - monochrome, distorted\n\
00337 # image_color - color, distorted\n\
00338 # image_rect - monochrome, rectified\n\
00339 # image_rect_color - color, rectified\n\
00340 #\n\
00341 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00342 # for producing the four processed image topics from image_raw and\n\
00343 # camera_info. The meaning of the camera parameters are described in\n\
00344 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00345 #\n\
00346 # The image_geometry package provides a user-friendly interface to\n\
00347 # common operations using this meta information. If you want to, e.g.,\n\
00348 # project a 3d point into image coordinates, we strongly recommend\n\
00349 # using image_geometry.\n\
00350 #\n\
00351 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00352 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00353 # indicates an uncalibrated camera.\n\
00354 \n\
00355 #######################################################################\n\
00356 # Image acquisition info #\n\
00357 #######################################################################\n\
00358 \n\
00359 # Time of image acquisition, camera coordinate frame ID\n\
00360 Header header # Header timestamp should be acquisition time of image\n\
00361 # Header frame_id should be optical frame of camera\n\
00362 # origin of frame should be optical center of camera\n\
00363 # +x should point to the right in the image\n\
00364 # +y should point down in the image\n\
00365 # +z should point into the plane of the image\n\
00366 \n\
00367 \n\
00368 #######################################################################\n\
00369 # Calibration Parameters #\n\
00370 #######################################################################\n\
00371 # These are fixed during camera calibration. Their values will be the #\n\
00372 # same in all messages until the camera is recalibrated. Note that #\n\
00373 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00374 # #\n\
00375 # The internal parameters can be used to warp a raw (distorted) image #\n\
00376 # to: #\n\
00377 # 1. An undistorted image (requires D and K) #\n\
00378 # 2. A rectified image (requires D, K, R) #\n\
00379 # The projection matrix P projects 3D points into the rectified image.#\n\
00380 #######################################################################\n\
00381 \n\
00382 # The image dimensions with which the camera was calibrated. Normally\n\
00383 # this will be the full camera resolution in pixels.\n\
00384 uint32 height\n\
00385 uint32 width\n\
00386 \n\
00387 # The distortion model used. Supported models are listed in\n\
00388 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00389 # simple model of radial and tangential distortion - is sufficent.\n\
00390 string distortion_model\n\
00391 \n\
00392 # The distortion parameters, size depending on the distortion model.\n\
00393 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00394 float64[] D\n\
00395 \n\
00396 # Intrinsic camera matrix for the raw (distorted) images.\n\
00397 # [fx 0 cx]\n\
00398 # K = [ 0 fy cy]\n\
00399 # [ 0 0 1]\n\
00400 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00401 # coordinates using the focal lengths (fx, fy) and principal point\n\
00402 # (cx, cy).\n\
00403 float64[9] K # 3x3 row-major matrix\n\
00404 \n\
00405 # Rectification matrix (stereo cameras only)\n\
00406 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00407 # stereo image plane so that epipolar lines in both stereo images are\n\
00408 # parallel.\n\
00409 float64[9] R # 3x3 row-major matrix\n\
00410 \n\
00411 # Projection/camera matrix\n\
00412 # [fx' 0 cx' Tx]\n\
00413 # P = [ 0 fy' cy' Ty]\n\
00414 # [ 0 0 1 0]\n\
00415 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00416 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00417 # is the normal camera intrinsic matrix for the rectified image.\n\
00418 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00419 # coordinates using the focal lengths (fx', fy') and principal point\n\
00420 # (cx', cy') - these may differ from the values in K.\n\
00421 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00422 # also have R = the identity and P[1:3,1:3] = K.\n\
00423 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00424 # position of the optical center of the second camera in the first\n\
00425 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00426 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00427 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00428 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00429 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00430 # the rectified image is given by:\n\
00431 # [u v w]' = P * [X Y Z 1]'\n\
00432 # x = u / w\n\
00433 # y = v / w\n\
00434 # This holds for both images of a stereo pair.\n\
00435 float64[12] P # 3x4 row-major matrix\n\
00436 \n\
00437 \n\
00438 #######################################################################\n\
00439 # Operational Parameters #\n\
00440 #######################################################################\n\
00441 # These define the image region actually captured by the camera #\n\
00442 # driver. Although they affect the geometry of the output image, they #\n\
00443 # may be changed freely without recalibrating the camera. #\n\
00444 #######################################################################\n\
00445 \n\
00446 # Binning refers here to any camera setting which combines rectangular\n\
00447 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00448 # resolution of the output image to\n\
00449 # (width / binning_x) x (height / binning_y).\n\
00450 # The default values binning_x = binning_y = 0 is considered the same\n\
00451 # as binning_x = binning_y = 1 (no subsampling).\n\
00452 uint32 binning_x\n\
00453 uint32 binning_y\n\
00454 \n\
00455 # Region of interest (subwindow of full camera resolution), given in\n\
00456 # full resolution (unbinned) image coordinates. A particular ROI\n\
00457 # always denotes the same window of pixels on the camera sensor,\n\
00458 # regardless of binning settings.\n\
00459 # The default setting of roi (all values 0) is considered the same as\n\
00460 # full resolution (roi.width = width, roi.height = height).\n\
00461 RegionOfInterest roi\n\
00462 \n\
00463 "; }
00464 public:
00465 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00466
00467 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00468
00469 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00470 {
00471 ros::serialization::OStream stream(write_ptr, 1000000000);
00472 ros::serialization::serialize(stream, point_cloud);
00473 ros::serialization::serialize(stream, image);
00474 ros::serialization::serialize(stream, disparity_image);
00475 ros::serialization::serialize(stream, camera_info);
00476 ros::serialization::serialize(stream, result);
00477 return stream.getData();
00478 }
00479
00480 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00481 {
00482 ros::serialization::IStream stream(read_ptr, 1000000000);
00483 ros::serialization::deserialize(stream, point_cloud);
00484 ros::serialization::deserialize(stream, image);
00485 ros::serialization::deserialize(stream, disparity_image);
00486 ros::serialization::deserialize(stream, camera_info);
00487 ros::serialization::deserialize(stream, result);
00488 return stream.getData();
00489 }
00490
00491 ROS_DEPRECATED virtual uint32_t serializationLength() const
00492 {
00493 uint32_t size = 0;
00494 size += ros::serialization::serializationLength(point_cloud);
00495 size += ros::serialization::serializationLength(image);
00496 size += ros::serialization::serializationLength(disparity_image);
00497 size += ros::serialization::serializationLength(camera_info);
00498 size += ros::serialization::serializationLength(result);
00499 return size;
00500 }
00501
00502 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > Ptr;
00503 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> const> ConstPtr;
00504 };
00505 typedef ::rgbd_assembler::RgbdAssemblyResponse_<std::allocator<void> > RgbdAssemblyResponse;
00506
00507 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse> RgbdAssemblyResponsePtr;
00508 typedef boost::shared_ptr< ::rgbd_assembler::RgbdAssemblyResponse const> RgbdAssemblyResponseConstPtr;
00509
00510 struct RgbdAssembly
00511 {
00512
00513 typedef RgbdAssemblyRequest Request;
00514 typedef RgbdAssemblyResponse Response;
00515 Request request;
00516 Response response;
00517
00518 typedef Request RequestType;
00519 typedef Response ResponseType;
00520 };
00521 }
00522
00523 namespace ros
00524 {
00525 namespace message_traits
00526 {
00527 template<class ContainerAllocator>
00528 struct MD5Sum< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > {
00529 static const char* value()
00530 {
00531 return "d41d8cd98f00b204e9800998ecf8427e";
00532 }
00533
00534 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); }
00535 static const uint64_t static_value1 = 0xd41d8cd98f00b204ULL;
00536 static const uint64_t static_value2 = 0xe9800998ecf8427eULL;
00537 };
00538
00539 template<class ContainerAllocator>
00540 struct DataType< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > {
00541 static const char* value()
00542 {
00543 return "rgbd_assembler/RgbdAssemblyRequest";
00544 }
00545
00546 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); }
00547 };
00548
00549 template<class ContainerAllocator>
00550 struct Definition< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > {
00551 static const char* value()
00552 {
00553 return "\n\
00554 \n\
00555 \n\
00556 ";
00557 }
00558
00559 static const char* value(const ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); }
00560 };
00561
00562 template<class ContainerAllocator> struct IsFixedSize< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > : public TrueType {};
00563 }
00564 }
00565
00566
00567 namespace ros
00568 {
00569 namespace message_traits
00570 {
00571 template<class ContainerAllocator>
00572 struct MD5Sum< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > {
00573 static const char* value()
00574 {
00575 return "258b6f93e1876c2777ab914303667a41";
00576 }
00577
00578 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); }
00579 static const uint64_t static_value1 = 0x258b6f93e1876c27ULL;
00580 static const uint64_t static_value2 = 0x77ab914303667a41ULL;
00581 };
00582
00583 template<class ContainerAllocator>
00584 struct DataType< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > {
00585 static const char* value()
00586 {
00587 return "rgbd_assembler/RgbdAssemblyResponse";
00588 }
00589
00590 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); }
00591 };
00592
00593 template<class ContainerAllocator>
00594 struct Definition< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > {
00595 static const char* value()
00596 {
00597 return "\n\
00598 \n\
00599 \n\
00600 \n\
00601 sensor_msgs/PointCloud2 point_cloud\n\
00602 \n\
00603 \n\
00604 sensor_msgs/Image image\n\
00605 \n\
00606 \n\
00607 stereo_msgs/DisparityImage disparity_image\n\
00608 \n\
00609 \n\
00610 sensor_msgs/CameraInfo camera_info\n\
00611 \n\
00612 \n\
00613 int32 OTHER_ERROR = 1\n\
00614 int32 SUCCESS = 2\n\
00615 int32 result\n\
00616 \n\
00617 ================================================================================\n\
00618 MSG: sensor_msgs/PointCloud2\n\
00619 # This message holds a collection of N-dimensional points, which may\n\
00620 # contain additional information such as normals, intensity, etc. The\n\
00621 # point data is stored as a binary blob, its layout described by the\n\
00622 # contents of the \"fields\" array.\n\
00623 \n\
00624 # The point cloud data may be organized 2d (image-like) or 1d\n\
00625 # (unordered). Point clouds organized as 2d images may be produced by\n\
00626 # camera depth sensors such as stereo or time-of-flight.\n\
00627 \n\
00628 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00629 # points).\n\
00630 Header header\n\
00631 \n\
00632 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00633 # 1 and width is the length of the point cloud.\n\
00634 uint32 height\n\
00635 uint32 width\n\
00636 \n\
00637 # Describes the channels and their layout in the binary data blob.\n\
00638 PointField[] fields\n\
00639 \n\
00640 bool is_bigendian # Is this data bigendian?\n\
00641 uint32 point_step # Length of a point in bytes\n\
00642 uint32 row_step # Length of a row in bytes\n\
00643 uint8[] data # Actual point data, size is (row_step*height)\n\
00644 \n\
00645 bool is_dense # True if there are no invalid points\n\
00646 \n\
00647 ================================================================================\n\
00648 MSG: std_msgs/Header\n\
00649 # Standard metadata for higher-level stamped data types.\n\
00650 # This is generally used to communicate timestamped data \n\
00651 # in a particular coordinate frame.\n\
00652 # \n\
00653 # sequence ID: consecutively increasing ID \n\
00654 uint32 seq\n\
00655 #Two-integer timestamp that is expressed as:\n\
00656 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00657 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00658 # time-handling sugar is provided by the client library\n\
00659 time stamp\n\
00660 #Frame this data is associated with\n\
00661 # 0: no frame\n\
00662 # 1: global frame\n\
00663 string frame_id\n\
00664 \n\
00665 ================================================================================\n\
00666 MSG: sensor_msgs/PointField\n\
00667 # This message holds the description of one point entry in the\n\
00668 # PointCloud2 message format.\n\
00669 uint8 INT8 = 1\n\
00670 uint8 UINT8 = 2\n\
00671 uint8 INT16 = 3\n\
00672 uint8 UINT16 = 4\n\
00673 uint8 INT32 = 5\n\
00674 uint8 UINT32 = 6\n\
00675 uint8 FLOAT32 = 7\n\
00676 uint8 FLOAT64 = 8\n\
00677 \n\
00678 string name # Name of field\n\
00679 uint32 offset # Offset from start of point struct\n\
00680 uint8 datatype # Datatype enumeration, see above\n\
00681 uint32 count # How many elements in the field\n\
00682 \n\
00683 ================================================================================\n\
00684 MSG: sensor_msgs/Image\n\
00685 # This message contains an uncompressed image\n\
00686 # (0, 0) is at top-left corner of image\n\
00687 #\n\
00688 \n\
00689 Header header # Header timestamp should be acquisition time of image\n\
00690 # Header frame_id should be optical frame of camera\n\
00691 # origin of frame should be optical center of cameara\n\
00692 # +x should point to the right in the image\n\
00693 # +y should point down in the image\n\
00694 # +z should point into to plane of the image\n\
00695 # If the frame_id here and the frame_id of the CameraInfo\n\
00696 # message associated with the image conflict\n\
00697 # the behavior is undefined\n\
00698 \n\
00699 uint32 height # image height, that is, number of rows\n\
00700 uint32 width # image width, that is, number of columns\n\
00701 \n\
00702 # The legal values for encoding are in file src/image_encodings.cpp\n\
00703 # If you want to standardize a new string format, join\n\
00704 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00705 \n\
00706 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00707 # taken from the list of strings in src/image_encodings.cpp\n\
00708 \n\
00709 uint8 is_bigendian # is this data bigendian?\n\
00710 uint32 step # Full row length in bytes\n\
00711 uint8[] data # actual matrix data, size is (step * rows)\n\
00712 \n\
00713 ================================================================================\n\
00714 MSG: stereo_msgs/DisparityImage\n\
00715 # Separate header for compatibility with current TimeSynchronizer.\n\
00716 # Likely to be removed in a later release, use image.header instead.\n\
00717 Header header\n\
00718 \n\
00719 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00720 # x-offset between the principal points of the two cameras (in the case\n\
00721 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00722 sensor_msgs/Image image\n\
00723 \n\
00724 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00725 float32 f # Focal length, pixels\n\
00726 float32 T # Baseline, world units\n\
00727 \n\
00728 # Subwindow of (potentially) valid disparity values.\n\
00729 sensor_msgs/RegionOfInterest valid_window\n\
00730 \n\
00731 # The range of disparities searched.\n\
00732 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00733 # The disparity search range defines the horopter, or 3D volume that the\n\
00734 # stereo algorithm can \"see\". Points with Z outside of:\n\
00735 # Z_min = fT / max_disparity\n\
00736 # Z_max = fT / min_disparity\n\
00737 # could not be found.\n\
00738 float32 min_disparity\n\
00739 float32 max_disparity\n\
00740 \n\
00741 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00742 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00743 float32 delta_d\n\
00744 \n\
00745 ================================================================================\n\
00746 MSG: sensor_msgs/RegionOfInterest\n\
00747 # This message is used to specify a region of interest within an image.\n\
00748 #\n\
00749 # When used to specify the ROI setting of the camera when the image was\n\
00750 # taken, the height and width fields should either match the height and\n\
00751 # width fields for the associated image; or height = width = 0\n\
00752 # indicates that the full resolution image was captured.\n\
00753 \n\
00754 uint32 x_offset # Leftmost pixel of the ROI\n\
00755 # (0 if the ROI includes the left edge of the image)\n\
00756 uint32 y_offset # Topmost pixel of the ROI\n\
00757 # (0 if the ROI includes the top edge of the image)\n\
00758 uint32 height # Height of ROI\n\
00759 uint32 width # Width of ROI\n\
00760 \n\
00761 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00762 # ROI in this message. Typically this should be False if the full image\n\
00763 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00764 # used).\n\
00765 bool do_rectify\n\
00766 \n\
00767 ================================================================================\n\
00768 MSG: sensor_msgs/CameraInfo\n\
00769 # This message defines meta information for a camera. It should be in a\n\
00770 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00771 # image topics named:\n\
00772 #\n\
00773 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00774 # image - monochrome, distorted\n\
00775 # image_color - color, distorted\n\
00776 # image_rect - monochrome, rectified\n\
00777 # image_rect_color - color, rectified\n\
00778 #\n\
00779 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00780 # for producing the four processed image topics from image_raw and\n\
00781 # camera_info. The meaning of the camera parameters are described in\n\
00782 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00783 #\n\
00784 # The image_geometry package provides a user-friendly interface to\n\
00785 # common operations using this meta information. If you want to, e.g.,\n\
00786 # project a 3d point into image coordinates, we strongly recommend\n\
00787 # using image_geometry.\n\
00788 #\n\
00789 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00790 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00791 # indicates an uncalibrated camera.\n\
00792 \n\
00793 #######################################################################\n\
00794 # Image acquisition info #\n\
00795 #######################################################################\n\
00796 \n\
00797 # Time of image acquisition, camera coordinate frame ID\n\
00798 Header header # Header timestamp should be acquisition time of image\n\
00799 # Header frame_id should be optical frame of camera\n\
00800 # origin of frame should be optical center of camera\n\
00801 # +x should point to the right in the image\n\
00802 # +y should point down in the image\n\
00803 # +z should point into the plane of the image\n\
00804 \n\
00805 \n\
00806 #######################################################################\n\
00807 # Calibration Parameters #\n\
00808 #######################################################################\n\
00809 # These are fixed during camera calibration. Their values will be the #\n\
00810 # same in all messages until the camera is recalibrated. Note that #\n\
00811 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00812 # #\n\
00813 # The internal parameters can be used to warp a raw (distorted) image #\n\
00814 # to: #\n\
00815 # 1. An undistorted image (requires D and K) #\n\
00816 # 2. A rectified image (requires D, K, R) #\n\
00817 # The projection matrix P projects 3D points into the rectified image.#\n\
00818 #######################################################################\n\
00819 \n\
00820 # The image dimensions with which the camera was calibrated. Normally\n\
00821 # this will be the full camera resolution in pixels.\n\
00822 uint32 height\n\
00823 uint32 width\n\
00824 \n\
00825 # The distortion model used. Supported models are listed in\n\
00826 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00827 # simple model of radial and tangential distortion - is sufficent.\n\
00828 string distortion_model\n\
00829 \n\
00830 # The distortion parameters, size depending on the distortion model.\n\
00831 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00832 float64[] D\n\
00833 \n\
00834 # Intrinsic camera matrix for the raw (distorted) images.\n\
00835 # [fx 0 cx]\n\
00836 # K = [ 0 fy cy]\n\
00837 # [ 0 0 1]\n\
00838 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00839 # coordinates using the focal lengths (fx, fy) and principal point\n\
00840 # (cx, cy).\n\
00841 float64[9] K # 3x3 row-major matrix\n\
00842 \n\
00843 # Rectification matrix (stereo cameras only)\n\
00844 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00845 # stereo image plane so that epipolar lines in both stereo images are\n\
00846 # parallel.\n\
00847 float64[9] R # 3x3 row-major matrix\n\
00848 \n\
00849 # Projection/camera matrix\n\
00850 # [fx' 0 cx' Tx]\n\
00851 # P = [ 0 fy' cy' Ty]\n\
00852 # [ 0 0 1 0]\n\
00853 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00854 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00855 # is the normal camera intrinsic matrix for the rectified image.\n\
00856 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00857 # coordinates using the focal lengths (fx', fy') and principal point\n\
00858 # (cx', cy') - these may differ from the values in K.\n\
00859 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00860 # also have R = the identity and P[1:3,1:3] = K.\n\
00861 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00862 # position of the optical center of the second camera in the first\n\
00863 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00864 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00865 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00866 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00867 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00868 # the rectified image is given by:\n\
00869 # [u v w]' = P * [X Y Z 1]'\n\
00870 # x = u / w\n\
00871 # y = v / w\n\
00872 # This holds for both images of a stereo pair.\n\
00873 float64[12] P # 3x4 row-major matrix\n\
00874 \n\
00875 \n\
00876 #######################################################################\n\
00877 # Operational Parameters #\n\
00878 #######################################################################\n\
00879 # These define the image region actually captured by the camera #\n\
00880 # driver. Although they affect the geometry of the output image, they #\n\
00881 # may be changed freely without recalibrating the camera. #\n\
00882 #######################################################################\n\
00883 \n\
00884 # Binning refers here to any camera setting which combines rectangular\n\
00885 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00886 # resolution of the output image to\n\
00887 # (width / binning_x) x (height / binning_y).\n\
00888 # The default values binning_x = binning_y = 0 is considered the same\n\
00889 # as binning_x = binning_y = 1 (no subsampling).\n\
00890 uint32 binning_x\n\
00891 uint32 binning_y\n\
00892 \n\
00893 # Region of interest (subwindow of full camera resolution), given in\n\
00894 # full resolution (unbinned) image coordinates. A particular ROI\n\
00895 # always denotes the same window of pixels on the camera sensor,\n\
00896 # regardless of binning settings.\n\
00897 # The default setting of roi (all values 0) is considered the same as\n\
00898 # full resolution (roi.width = width, roi.height = height).\n\
00899 RegionOfInterest roi\n\
00900 \n\
00901 ";
00902 }
00903
00904 static const char* value(const ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); }
00905 };
00906
00907 }
00908 }
00909
00910 namespace ros
00911 {
00912 namespace serialization
00913 {
00914
00915 template<class ContainerAllocator> struct Serializer< ::rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> >
00916 {
00917 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00918 {
00919 }
00920
00921 ROS_DECLARE_ALLINONE_SERIALIZER;
00922 };
00923 }
00924 }
00925
00926
00927 namespace ros
00928 {
00929 namespace serialization
00930 {
00931
00932 template<class ContainerAllocator> struct Serializer< ::rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> >
00933 {
00934 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00935 {
00936 stream.next(m.point_cloud);
00937 stream.next(m.image);
00938 stream.next(m.disparity_image);
00939 stream.next(m.camera_info);
00940 stream.next(m.result);
00941 }
00942
00943 ROS_DECLARE_ALLINONE_SERIALIZER;
00944 };
00945 }
00946 }
00947
00948 namespace ros
00949 {
00950 namespace service_traits
00951 {
00952 template<>
00953 struct MD5Sum<rgbd_assembler::RgbdAssembly> {
00954 static const char* value()
00955 {
00956 return "258b6f93e1876c2777ab914303667a41";
00957 }
00958
00959 static const char* value(const rgbd_assembler::RgbdAssembly&) { return value(); }
00960 };
00961
00962 template<>
00963 struct DataType<rgbd_assembler::RgbdAssembly> {
00964 static const char* value()
00965 {
00966 return "rgbd_assembler/RgbdAssembly";
00967 }
00968
00969 static const char* value(const rgbd_assembler::RgbdAssembly&) { return value(); }
00970 };
00971
00972 template<class ContainerAllocator>
00973 struct MD5Sum<rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > {
00974 static const char* value()
00975 {
00976 return "258b6f93e1876c2777ab914303667a41";
00977 }
00978
00979 static const char* value(const rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); }
00980 };
00981
00982 template<class ContainerAllocator>
00983 struct DataType<rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> > {
00984 static const char* value()
00985 {
00986 return "rgbd_assembler/RgbdAssembly";
00987 }
00988
00989 static const char* value(const rgbd_assembler::RgbdAssemblyRequest_<ContainerAllocator> &) { return value(); }
00990 };
00991
00992 template<class ContainerAllocator>
00993 struct MD5Sum<rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > {
00994 static const char* value()
00995 {
00996 return "258b6f93e1876c2777ab914303667a41";
00997 }
00998
00999 static const char* value(const rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); }
01000 };
01001
01002 template<class ContainerAllocator>
01003 struct DataType<rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> > {
01004 static const char* value()
01005 {
01006 return "rgbd_assembler/RgbdAssembly";
01007 }
01008
01009 static const char* value(const rgbd_assembler::RgbdAssemblyResponse_<ContainerAllocator> &) { return value(); }
01010 };
01011
01012 }
01013 }
01014
01015 #endif // RGBD_ASSEMBLER_SERVICE_RGBDASSEMBLY_H
01016