00001
00002
00003 import sys, time, optparse
00004 import itertools
00005 import collections
00006 from numpy import *
00007 import random
00008
00009 import roslib
00010 roslib.load_manifest('camera_pose_calibration')
00011 import PyKDL
00012 from tf_conversions import posemath
00013
00014 from geometry_msgs.msg import Point32
00015 from calibration_msgs.msg import ImagePoint, CalibrationPattern
00016 from camera_pose_calibration.msg import CalibrationEstimate, CameraPose, RobotMeasurement, CameraMeasurement
00017
00018 from camera_pose_calibration import init_optimization_prior
00019 from camera_pose_calibration import estimate
00020
00021
00022
00023
00024 check_points = []
00025 for x in range(0, 2):
00026 for y in range(-1, 1):
00027 check_points.append(PyKDL.Vector(x, y, 1))
00028
00029
00030
00031 cal_estimate = CalibrationEstimate()
00032
00033 camera_a = CameraPose()
00034 camera_a.camera_id = 'cam_a'
00035
00036 camera_a.pose = posemath.toMsg(PyKDL.Frame(PyKDL.Vector(0, 0 ,0)))
00037
00038 camera_b = CameraPose()
00039 camera_b.camera_id = 'cam_b'
00040
00041 camera_b.pose = posemath.toMsg(PyKDL.Frame(PyKDL.Vector(0, -1, 0)))
00042
00043
00044 target_1 = posemath.toMsg(PyKDL.Frame(PyKDL.Vector(0, -2, 1)))
00045
00046 target_2 = posemath.toMsg(PyKDL.Frame(PyKDL.Vector(0, 2, 1)))
00047
00048 cal_estimate.cameras = [camera_a, camera_b]
00049 cal_estimate.targets = [target_1, target_2]
00050 print cal_estimate
00051
00052
00053
00054 noise = 5.0
00055 offset = PyKDL.Frame(PyKDL.Rotation.RPY(0.1, 0.1, 0), PyKDL.Vector(0, 0.1, 0))
00056
00057
00058 P = [525, 0, 319.5, 0, 0, 525, 239.5, 0, 0, 0, 1, 0]
00059 P_mat = reshape( matrix(P, float), (3,4) )
00060
00061 cal_pattern = CalibrationPattern()
00062 for c in check_points:
00063 pnt = Point32()
00064 pnt.x = c[0]
00065 pnt.y = c[1]
00066 pnt.z = c[2]
00067 cal_pattern.object_points.append(pnt)
00068
00069 cal_samples = []
00070 for target in cal_estimate.targets:
00071 cal_sample = RobotMeasurement()
00072 for camera in cal_estimate.cameras:
00073 meas = CameraMeasurement()
00074 meas.camera_id = camera.camera_id
00075 for pnt_c in check_points:
00076 pnt_msg = posemath.fromMsg(camera.pose).Inverse() * posemath.fromMsg(target) * pnt_c
00077 pnt_mat = P_mat * matrix([pnt_msg[0], pnt_msg[1], pnt_msg[2], 1]).T
00078 pnt = ImagePoint()
00079 pnt.x = (pnt_mat[0]/pnt_mat[2]) + random.random()*noise
00080 pnt.y = (pnt_mat[1]/pnt_mat[2]) + random.random()*noise
00081 pnt.d = 1
00082 meas.image_points.append(pnt)
00083 meas.cam_info.P = P
00084 meas.features = cal_pattern
00085 cal_sample.M_cam.append(meas)
00086 cal_samples.append(cal_sample)
00087 print cal_samples
00088
00089
00090
00091 cal_estimate.cameras[0].pose = posemath.toMsg(posemath.fromMsg(cal_estimate.cameras[0].pose) * offset)
00092
00093
00094
00095 estimate.enhance(cal_samples, cal_estimate)
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107