00001
00002 #ifndef CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00003 #define CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "camera_pose_calibration/CameraMeasurement.h"
00015
00016 namespace camera_pose_calibration
00017 {
00018 template <class ContainerAllocator>
00019 struct RobotMeasurement_ : public ros::Message
00020 {
00021 typedef RobotMeasurement_<ContainerAllocator> Type;
00022
00023 RobotMeasurement_()
00024 : header()
00025 , M_cam()
00026 {
00027 }
00028
00029 RobotMeasurement_(const ContainerAllocator& _alloc)
00030 : header(_alloc)
00031 , M_cam(_alloc)
00032 {
00033 }
00034
00035 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00036 ::std_msgs::Header_<ContainerAllocator> header;
00037
00038 typedef std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > _M_cam_type;
00039 std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > M_cam;
00040
00041
00042 ROS_DEPRECATED uint32_t get_M_cam_size() const { return (uint32_t)M_cam.size(); }
00043 ROS_DEPRECATED void set_M_cam_size(uint32_t size) { M_cam.resize((size_t)size); }
00044 ROS_DEPRECATED void get_M_cam_vec(std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > & vec) const { vec = this->M_cam; }
00045 ROS_DEPRECATED void set_M_cam_vec(const std::vector< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::other > & vec) { this->M_cam = vec; }
00046 private:
00047 static const char* __s_getDataType_() { return "camera_pose_calibration/RobotMeasurement"; }
00048 public:
00049 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00050
00051 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00052
00053 private:
00054 static const char* __s_getMD5Sum_() { return "c1a18b7e641c3a5dbf96f32a5c580575"; }
00055 public:
00056 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00057
00058 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00059
00060 private:
00061 static const char* __s_getMessageDefinition_() { return "Header header\n\
00062 CameraMeasurement[] M_cam\n\
00063 \n\
00064 ================================================================================\n\
00065 MSG: std_msgs/Header\n\
00066 # Standard metadata for higher-level stamped data types.\n\
00067 # This is generally used to communicate timestamped data \n\
00068 # in a particular coordinate frame.\n\
00069 # \n\
00070 # sequence ID: consecutively increasing ID \n\
00071 uint32 seq\n\
00072 #Two-integer timestamp that is expressed as:\n\
00073 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00074 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00075 # time-handling sugar is provided by the client library\n\
00076 time stamp\n\
00077 #Frame this data is associated with\n\
00078 # 0: no frame\n\
00079 # 1: global frame\n\
00080 string frame_id\n\
00081 \n\
00082 ================================================================================\n\
00083 MSG: camera_pose_calibration/CameraMeasurement\n\
00084 Header header\n\
00085 string camera_id\n\
00086 calibration_msgs/CalibrationPattern features\n\
00087 sensor_msgs/CameraInfo cam_info\n\
00088 \n\
00089 ================================================================================\n\
00090 MSG: calibration_msgs/CalibrationPattern\n\
00091 Header header\n\
00092 geometry_msgs/Point32[] object_points\n\
00093 ImagePoint[] image_points\n\
00094 uint8 success\n\
00095 \n\
00096 ================================================================================\n\
00097 MSG: geometry_msgs/Point32\n\
00098 # This contains the position of a point in free space(with 32 bits of precision).\n\
00099 # It is recommeded to use Point wherever possible instead of Point32. \n\
00100 # \n\
00101 # This recommendation is to promote interoperability. \n\
00102 #\n\
00103 # This message is designed to take up less space when sending\n\
00104 # lots of points at once, as in the case of a PointCloud. \n\
00105 \n\
00106 float32 x\n\
00107 float32 y\n\
00108 float32 z\n\
00109 ================================================================================\n\
00110 MSG: calibration_msgs/ImagePoint\n\
00111 float32 x\n\
00112 float32 y\n\
00113 \n\
00114 ================================================================================\n\
00115 MSG: sensor_msgs/CameraInfo\n\
00116 # This message defines meta information for a camera. It should be in a\n\
00117 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00118 # image topics named:\n\
00119 #\n\
00120 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00121 # image - monochrome, distorted\n\
00122 # image_color - color, distorted\n\
00123 # image_rect - monochrome, rectified\n\
00124 # image_rect_color - color, rectified\n\
00125 #\n\
00126 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00127 # for producing the four processed image topics from image_raw and\n\
00128 # camera_info. The meaning of the camera parameters are described in\n\
00129 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00130 #\n\
00131 # The image_geometry package provides a user-friendly interface to\n\
00132 # common operations using this meta information. If you want to, e.g.,\n\
00133 # project a 3d point into image coordinates, we strongly recommend\n\
00134 # using image_geometry.\n\
00135 #\n\
00136 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00137 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00138 # indicates an uncalibrated camera.\n\
00139 \n\
00140 #######################################################################\n\
00141 # Image acquisition info #\n\
00142 #######################################################################\n\
00143 \n\
00144 # Time of image acquisition, camera coordinate frame ID\n\
00145 Header header # Header timestamp should be acquisition time of image\n\
00146 # Header frame_id should be optical frame of camera\n\
00147 # origin of frame should be optical center of camera\n\
00148 # +x should point to the right in the image\n\
00149 # +y should point down in the image\n\
00150 # +z should point into the plane of the image\n\
00151 \n\
00152 \n\
00153 #######################################################################\n\
00154 # Calibration Parameters #\n\
00155 #######################################################################\n\
00156 # These are fixed during camera calibration. Their values will be the #\n\
00157 # same in all messages until the camera is recalibrated. Note that #\n\
00158 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00159 # #\n\
00160 # The internal parameters can be used to warp a raw (distorted) image #\n\
00161 # to: #\n\
00162 # 1. An undistorted image (requires D and K) #\n\
00163 # 2. A rectified image (requires D, K, R) #\n\
00164 # The projection matrix P projects 3D points into the rectified image.#\n\
00165 #######################################################################\n\
00166 \n\
00167 # The image dimensions with which the camera was calibrated. Normally\n\
00168 # this will be the full camera resolution in pixels.\n\
00169 uint32 height\n\
00170 uint32 width\n\
00171 \n\
00172 # The distortion model used. Supported models are listed in\n\
00173 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00174 # simple model of radial and tangential distortion - is sufficent.\n\
00175 string distortion_model\n\
00176 \n\
00177 # The distortion parameters, size depending on the distortion model.\n\
00178 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00179 float64[] D\n\
00180 \n\
00181 # Intrinsic camera matrix for the raw (distorted) images.\n\
00182 # [fx 0 cx]\n\
00183 # K = [ 0 fy cy]\n\
00184 # [ 0 0 1]\n\
00185 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00186 # coordinates using the focal lengths (fx, fy) and principal point\n\
00187 # (cx, cy).\n\
00188 float64[9] K # 3x3 row-major matrix\n\
00189 \n\
00190 # Rectification matrix (stereo cameras only)\n\
00191 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00192 # stereo image plane so that epipolar lines in both stereo images are\n\
00193 # parallel.\n\
00194 float64[9] R # 3x3 row-major matrix\n\
00195 \n\
00196 # Projection/camera matrix\n\
00197 # [fx' 0 cx' Tx]\n\
00198 # P = [ 0 fy' cy' Ty]\n\
00199 # [ 0 0 1 0]\n\
00200 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00201 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00202 # is the normal camera intrinsic matrix for the rectified image.\n\
00203 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00204 # coordinates using the focal lengths (fx', fy') and principal point\n\
00205 # (cx', cy') - these may differ from the values in K.\n\
00206 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00207 # also have R = the identity and P[1:3,1:3] = K.\n\
00208 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00209 # position of the optical center of the second camera in the first\n\
00210 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00211 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00212 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00213 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00214 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00215 # the rectified image is given by:\n\
00216 # [u v w]' = P * [X Y Z 1]'\n\
00217 # x = u / w\n\
00218 # y = v / w\n\
00219 # This holds for both images of a stereo pair.\n\
00220 float64[12] P # 3x4 row-major matrix\n\
00221 \n\
00222 \n\
00223 #######################################################################\n\
00224 # Operational Parameters #\n\
00225 #######################################################################\n\
00226 # These define the image region actually captured by the camera #\n\
00227 # driver. Although they affect the geometry of the output image, they #\n\
00228 # may be changed freely without recalibrating the camera. #\n\
00229 #######################################################################\n\
00230 \n\
00231 # Binning refers here to any camera setting which combines rectangular\n\
00232 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00233 # resolution of the output image to\n\
00234 # (width / binning_x) x (height / binning_y).\n\
00235 # The default values binning_x = binning_y = 0 is considered the same\n\
00236 # as binning_x = binning_y = 1 (no subsampling).\n\
00237 uint32 binning_x\n\
00238 uint32 binning_y\n\
00239 \n\
00240 # Region of interest (subwindow of full camera resolution), given in\n\
00241 # full resolution (unbinned) image coordinates. A particular ROI\n\
00242 # always denotes the same window of pixels on the camera sensor,\n\
00243 # regardless of binning settings.\n\
00244 # The default setting of roi (all values 0) is considered the same as\n\
00245 # full resolution (roi.width = width, roi.height = height).\n\
00246 RegionOfInterest roi\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: sensor_msgs/RegionOfInterest\n\
00250 # This message is used to specify a region of interest within an image.\n\
00251 #\n\
00252 # When used to specify the ROI setting of the camera when the image was\n\
00253 # taken, the height and width fields should either match the height and\n\
00254 # width fields for the associated image; or height = width = 0\n\
00255 # indicates that the full resolution image was captured.\n\
00256 \n\
00257 uint32 x_offset # Leftmost pixel of the ROI\n\
00258 # (0 if the ROI includes the left edge of the image)\n\
00259 uint32 y_offset # Topmost pixel of the ROI\n\
00260 # (0 if the ROI includes the top edge of the image)\n\
00261 uint32 height # Height of ROI\n\
00262 uint32 width # Width of ROI\n\
00263 \n\
00264 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00265 # ROI in this message. Typically this should be False if the full image\n\
00266 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00267 # used).\n\
00268 bool do_rectify\n\
00269 \n\
00270 "; }
00271 public:
00272 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00273
00274 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00275
00276 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00277 {
00278 ros::serialization::OStream stream(write_ptr, 1000000000);
00279 ros::serialization::serialize(stream, header);
00280 ros::serialization::serialize(stream, M_cam);
00281 return stream.getData();
00282 }
00283
00284 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00285 {
00286 ros::serialization::IStream stream(read_ptr, 1000000000);
00287 ros::serialization::deserialize(stream, header);
00288 ros::serialization::deserialize(stream, M_cam);
00289 return stream.getData();
00290 }
00291
00292 ROS_DEPRECATED virtual uint32_t serializationLength() const
00293 {
00294 uint32_t size = 0;
00295 size += ros::serialization::serializationLength(header);
00296 size += ros::serialization::serializationLength(M_cam);
00297 return size;
00298 }
00299
00300 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > Ptr;
00301 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> const> ConstPtr;
00302 };
00303 typedef ::camera_pose_calibration::RobotMeasurement_<std::allocator<void> > RobotMeasurement;
00304
00305 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement> RobotMeasurementPtr;
00306 typedef boost::shared_ptr< ::camera_pose_calibration::RobotMeasurement const> RobotMeasurementConstPtr;
00307
00308
00309 template<typename ContainerAllocator>
00310 std::ostream& operator<<(std::ostream& s, const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> & v)
00311 {
00312 ros::message_operations::Printer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >::stream(s, "", v);
00313 return s;}
00314
00315 }
00316
00317 namespace ros
00318 {
00319 namespace message_traits
00320 {
00321 template<class ContainerAllocator>
00322 struct MD5Sum< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00323 static const char* value()
00324 {
00325 return "c1a18b7e641c3a5dbf96f32a5c580575";
00326 }
00327
00328 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00329 static const uint64_t static_value1 = 0xc1a18b7e641c3a5dULL;
00330 static const uint64_t static_value2 = 0xbf96f32a5c580575ULL;
00331 };
00332
00333 template<class ContainerAllocator>
00334 struct DataType< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00335 static const char* value()
00336 {
00337 return "camera_pose_calibration/RobotMeasurement";
00338 }
00339
00340 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00341 };
00342
00343 template<class ContainerAllocator>
00344 struct Definition< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > {
00345 static const char* value()
00346 {
00347 return "Header header\n\
00348 CameraMeasurement[] M_cam\n\
00349 \n\
00350 ================================================================================\n\
00351 MSG: std_msgs/Header\n\
00352 # Standard metadata for higher-level stamped data types.\n\
00353 # This is generally used to communicate timestamped data \n\
00354 # in a particular coordinate frame.\n\
00355 # \n\
00356 # sequence ID: consecutively increasing ID \n\
00357 uint32 seq\n\
00358 #Two-integer timestamp that is expressed as:\n\
00359 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00360 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00361 # time-handling sugar is provided by the client library\n\
00362 time stamp\n\
00363 #Frame this data is associated with\n\
00364 # 0: no frame\n\
00365 # 1: global frame\n\
00366 string frame_id\n\
00367 \n\
00368 ================================================================================\n\
00369 MSG: camera_pose_calibration/CameraMeasurement\n\
00370 Header header\n\
00371 string camera_id\n\
00372 calibration_msgs/CalibrationPattern features\n\
00373 sensor_msgs/CameraInfo cam_info\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: calibration_msgs/CalibrationPattern\n\
00377 Header header\n\
00378 geometry_msgs/Point32[] object_points\n\
00379 ImagePoint[] image_points\n\
00380 uint8 success\n\
00381 \n\
00382 ================================================================================\n\
00383 MSG: geometry_msgs/Point32\n\
00384 # This contains the position of a point in free space(with 32 bits of precision).\n\
00385 # It is recommeded to use Point wherever possible instead of Point32. \n\
00386 # \n\
00387 # This recommendation is to promote interoperability. \n\
00388 #\n\
00389 # This message is designed to take up less space when sending\n\
00390 # lots of points at once, as in the case of a PointCloud. \n\
00391 \n\
00392 float32 x\n\
00393 float32 y\n\
00394 float32 z\n\
00395 ================================================================================\n\
00396 MSG: calibration_msgs/ImagePoint\n\
00397 float32 x\n\
00398 float32 y\n\
00399 \n\
00400 ================================================================================\n\
00401 MSG: sensor_msgs/CameraInfo\n\
00402 # This message defines meta information for a camera. It should be in a\n\
00403 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00404 # image topics named:\n\
00405 #\n\
00406 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00407 # image - monochrome, distorted\n\
00408 # image_color - color, distorted\n\
00409 # image_rect - monochrome, rectified\n\
00410 # image_rect_color - color, rectified\n\
00411 #\n\
00412 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00413 # for producing the four processed image topics from image_raw and\n\
00414 # camera_info. The meaning of the camera parameters are described in\n\
00415 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00416 #\n\
00417 # The image_geometry package provides a user-friendly interface to\n\
00418 # common operations using this meta information. If you want to, e.g.,\n\
00419 # project a 3d point into image coordinates, we strongly recommend\n\
00420 # using image_geometry.\n\
00421 #\n\
00422 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00423 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00424 # indicates an uncalibrated camera.\n\
00425 \n\
00426 #######################################################################\n\
00427 # Image acquisition info #\n\
00428 #######################################################################\n\
00429 \n\
00430 # Time of image acquisition, camera coordinate frame ID\n\
00431 Header header # Header timestamp should be acquisition time of image\n\
00432 # Header frame_id should be optical frame of camera\n\
00433 # origin of frame should be optical center of camera\n\
00434 # +x should point to the right in the image\n\
00435 # +y should point down in the image\n\
00436 # +z should point into the plane of the image\n\
00437 \n\
00438 \n\
00439 #######################################################################\n\
00440 # Calibration Parameters #\n\
00441 #######################################################################\n\
00442 # These are fixed during camera calibration. Their values will be the #\n\
00443 # same in all messages until the camera is recalibrated. Note that #\n\
00444 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00445 # #\n\
00446 # The internal parameters can be used to warp a raw (distorted) image #\n\
00447 # to: #\n\
00448 # 1. An undistorted image (requires D and K) #\n\
00449 # 2. A rectified image (requires D, K, R) #\n\
00450 # The projection matrix P projects 3D points into the rectified image.#\n\
00451 #######################################################################\n\
00452 \n\
00453 # The image dimensions with which the camera was calibrated. Normally\n\
00454 # this will be the full camera resolution in pixels.\n\
00455 uint32 height\n\
00456 uint32 width\n\
00457 \n\
00458 # The distortion model used. Supported models are listed in\n\
00459 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00460 # simple model of radial and tangential distortion - is sufficent.\n\
00461 string distortion_model\n\
00462 \n\
00463 # The distortion parameters, size depending on the distortion model.\n\
00464 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00465 float64[] D\n\
00466 \n\
00467 # Intrinsic camera matrix for the raw (distorted) images.\n\
00468 # [fx 0 cx]\n\
00469 # K = [ 0 fy cy]\n\
00470 # [ 0 0 1]\n\
00471 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00472 # coordinates using the focal lengths (fx, fy) and principal point\n\
00473 # (cx, cy).\n\
00474 float64[9] K # 3x3 row-major matrix\n\
00475 \n\
00476 # Rectification matrix (stereo cameras only)\n\
00477 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00478 # stereo image plane so that epipolar lines in both stereo images are\n\
00479 # parallel.\n\
00480 float64[9] R # 3x3 row-major matrix\n\
00481 \n\
00482 # Projection/camera matrix\n\
00483 # [fx' 0 cx' Tx]\n\
00484 # P = [ 0 fy' cy' Ty]\n\
00485 # [ 0 0 1 0]\n\
00486 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00487 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00488 # is the normal camera intrinsic matrix for the rectified image.\n\
00489 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00490 # coordinates using the focal lengths (fx', fy') and principal point\n\
00491 # (cx', cy') - these may differ from the values in K.\n\
00492 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00493 # also have R = the identity and P[1:3,1:3] = K.\n\
00494 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00495 # position of the optical center of the second camera in the first\n\
00496 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00497 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00498 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00499 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00500 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00501 # the rectified image is given by:\n\
00502 # [u v w]' = P * [X Y Z 1]'\n\
00503 # x = u / w\n\
00504 # y = v / w\n\
00505 # This holds for both images of a stereo pair.\n\
00506 float64[12] P # 3x4 row-major matrix\n\
00507 \n\
00508 \n\
00509 #######################################################################\n\
00510 # Operational Parameters #\n\
00511 #######################################################################\n\
00512 # These define the image region actually captured by the camera #\n\
00513 # driver. Although they affect the geometry of the output image, they #\n\
00514 # may be changed freely without recalibrating the camera. #\n\
00515 #######################################################################\n\
00516 \n\
00517 # Binning refers here to any camera setting which combines rectangular\n\
00518 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00519 # resolution of the output image to\n\
00520 # (width / binning_x) x (height / binning_y).\n\
00521 # The default values binning_x = binning_y = 0 is considered the same\n\
00522 # as binning_x = binning_y = 1 (no subsampling).\n\
00523 uint32 binning_x\n\
00524 uint32 binning_y\n\
00525 \n\
00526 # Region of interest (subwindow of full camera resolution), given in\n\
00527 # full resolution (unbinned) image coordinates. A particular ROI\n\
00528 # always denotes the same window of pixels on the camera sensor,\n\
00529 # regardless of binning settings.\n\
00530 # The default setting of roi (all values 0) is considered the same as\n\
00531 # full resolution (roi.width = width, roi.height = height).\n\
00532 RegionOfInterest roi\n\
00533 \n\
00534 ================================================================================\n\
00535 MSG: sensor_msgs/RegionOfInterest\n\
00536 # This message is used to specify a region of interest within an image.\n\
00537 #\n\
00538 # When used to specify the ROI setting of the camera when the image was\n\
00539 # taken, the height and width fields should either match the height and\n\
00540 # width fields for the associated image; or height = width = 0\n\
00541 # indicates that the full resolution image was captured.\n\
00542 \n\
00543 uint32 x_offset # Leftmost pixel of the ROI\n\
00544 # (0 if the ROI includes the left edge of the image)\n\
00545 uint32 y_offset # Topmost pixel of the ROI\n\
00546 # (0 if the ROI includes the top edge of the image)\n\
00547 uint32 height # Height of ROI\n\
00548 uint32 width # Width of ROI\n\
00549 \n\
00550 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00551 # ROI in this message. Typically this should be False if the full image\n\
00552 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00553 # used).\n\
00554 bool do_rectify\n\
00555 \n\
00556 ";
00557 }
00558
00559 static const char* value(const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> &) { return value(); }
00560 };
00561
00562 template<class ContainerAllocator> struct HasHeader< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00563 template<class ContainerAllocator> struct HasHeader< const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> > : public TrueType {};
00564 }
00565 }
00566
00567 namespace ros
00568 {
00569 namespace serialization
00570 {
00571
00572 template<class ContainerAllocator> struct Serializer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >
00573 {
00574 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00575 {
00576 stream.next(m.header);
00577 stream.next(m.M_cam);
00578 }
00579
00580 ROS_DECLARE_ALLINONE_SERIALIZER;
00581 };
00582 }
00583 }
00584
00585 namespace ros
00586 {
00587 namespace message_operations
00588 {
00589
00590 template<class ContainerAllocator>
00591 struct Printer< ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> >
00592 {
00593 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::camera_pose_calibration::RobotMeasurement_<ContainerAllocator> & v)
00594 {
00595 s << indent << "header: ";
00596 s << std::endl;
00597 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00598 s << indent << "M_cam[]" << std::endl;
00599 for (size_t i = 0; i < v.M_cam.size(); ++i)
00600 {
00601 s << indent << " M_cam[" << i << "]: ";
00602 s << std::endl;
00603 s << indent;
00604 Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::stream(s, indent + " ", v.M_cam[i]);
00605 }
00606 }
00607 };
00608
00609
00610 }
00611 }
00612
00613 #endif // CAMERA_POSE_CALIBRATION_MESSAGE_ROBOTMEASUREMENT_H
00614