00001
00002 #ifndef CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00003 #define CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "calibration_msgs/CalibrationPattern.h"
00015 #include "sensor_msgs/CameraInfo.h"
00016
00017 namespace camera_pose_calibration
00018 {
00019 template <class ContainerAllocator>
00020 struct CameraMeasurement_ : public ros::Message
00021 {
00022 typedef CameraMeasurement_<ContainerAllocator> Type;
00023
00024 CameraMeasurement_()
00025 : header()
00026 , camera_id()
00027 , features()
00028 , cam_info()
00029 {
00030 }
00031
00032 CameraMeasurement_(const ContainerAllocator& _alloc)
00033 : header(_alloc)
00034 , camera_id(_alloc)
00035 , features(_alloc)
00036 , cam_info(_alloc)
00037 {
00038 }
00039
00040 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00041 ::std_msgs::Header_<ContainerAllocator> header;
00042
00043 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _camera_id_type;
00044 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > camera_id;
00045
00046 typedef ::calibration_msgs::CalibrationPattern_<ContainerAllocator> _features_type;
00047 ::calibration_msgs::CalibrationPattern_<ContainerAllocator> features;
00048
00049 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type;
00050 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info;
00051
00052
00053 private:
00054 static const char* __s_getDataType_() { return "camera_pose_calibration/CameraMeasurement"; }
00055 public:
00056 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00057
00058 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00059
00060 private:
00061 static const char* __s_getMD5Sum_() { return "4c0854cdc23435e88220144133a1c813"; }
00062 public:
00063 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00064
00065 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00066
00067 private:
00068 static const char* __s_getMessageDefinition_() { return "Header header\n\
00069 string camera_id\n\
00070 calibration_msgs/CalibrationPattern features\n\
00071 sensor_msgs/CameraInfo cam_info\n\
00072 \n\
00073 ================================================================================\n\
00074 MSG: std_msgs/Header\n\
00075 # Standard metadata for higher-level stamped data types.\n\
00076 # This is generally used to communicate timestamped data \n\
00077 # in a particular coordinate frame.\n\
00078 # \n\
00079 # sequence ID: consecutively increasing ID \n\
00080 uint32 seq\n\
00081 #Two-integer timestamp that is expressed as:\n\
00082 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00083 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00084 # time-handling sugar is provided by the client library\n\
00085 time stamp\n\
00086 #Frame this data is associated with\n\
00087 # 0: no frame\n\
00088 # 1: global frame\n\
00089 string frame_id\n\
00090 \n\
00091 ================================================================================\n\
00092 MSG: calibration_msgs/CalibrationPattern\n\
00093 Header header\n\
00094 geometry_msgs/Point32[] object_points\n\
00095 ImagePoint[] image_points\n\
00096 uint8 success\n\
00097 \n\
00098 ================================================================================\n\
00099 MSG: geometry_msgs/Point32\n\
00100 # This contains the position of a point in free space(with 32 bits of precision).\n\
00101 # It is recommeded to use Point wherever possible instead of Point32. \n\
00102 # \n\
00103 # This recommendation is to promote interoperability. \n\
00104 #\n\
00105 # This message is designed to take up less space when sending\n\
00106 # lots of points at once, as in the case of a PointCloud. \n\
00107 \n\
00108 float32 x\n\
00109 float32 y\n\
00110 float32 z\n\
00111 ================================================================================\n\
00112 MSG: calibration_msgs/ImagePoint\n\
00113 float32 x\n\
00114 float32 y\n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: sensor_msgs/CameraInfo\n\
00118 # This message defines meta information for a camera. It should be in a\n\
00119 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00120 # image topics named:\n\
00121 #\n\
00122 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00123 # image - monochrome, distorted\n\
00124 # image_color - color, distorted\n\
00125 # image_rect - monochrome, rectified\n\
00126 # image_rect_color - color, rectified\n\
00127 #\n\
00128 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00129 # for producing the four processed image topics from image_raw and\n\
00130 # camera_info. The meaning of the camera parameters are described in\n\
00131 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00132 #\n\
00133 # The image_geometry package provides a user-friendly interface to\n\
00134 # common operations using this meta information. If you want to, e.g.,\n\
00135 # project a 3d point into image coordinates, we strongly recommend\n\
00136 # using image_geometry.\n\
00137 #\n\
00138 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00139 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00140 # indicates an uncalibrated camera.\n\
00141 \n\
00142 #######################################################################\n\
00143 # Image acquisition info #\n\
00144 #######################################################################\n\
00145 \n\
00146 # Time of image acquisition, camera coordinate frame ID\n\
00147 Header header # Header timestamp should be acquisition time of image\n\
00148 # Header frame_id should be optical frame of camera\n\
00149 # origin of frame should be optical center of camera\n\
00150 # +x should point to the right in the image\n\
00151 # +y should point down in the image\n\
00152 # +z should point into the plane of the image\n\
00153 \n\
00154 \n\
00155 #######################################################################\n\
00156 # Calibration Parameters #\n\
00157 #######################################################################\n\
00158 # These are fixed during camera calibration. Their values will be the #\n\
00159 # same in all messages until the camera is recalibrated. Note that #\n\
00160 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00161 # #\n\
00162 # The internal parameters can be used to warp a raw (distorted) image #\n\
00163 # to: #\n\
00164 # 1. An undistorted image (requires D and K) #\n\
00165 # 2. A rectified image (requires D, K, R) #\n\
00166 # The projection matrix P projects 3D points into the rectified image.#\n\
00167 #######################################################################\n\
00168 \n\
00169 # The image dimensions with which the camera was calibrated. Normally\n\
00170 # this will be the full camera resolution in pixels.\n\
00171 uint32 height\n\
00172 uint32 width\n\
00173 \n\
00174 # The distortion model used. Supported models are listed in\n\
00175 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00176 # simple model of radial and tangential distortion - is sufficent.\n\
00177 string distortion_model\n\
00178 \n\
00179 # The distortion parameters, size depending on the distortion model.\n\
00180 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00181 float64[] D\n\
00182 \n\
00183 # Intrinsic camera matrix for the raw (distorted) images.\n\
00184 # [fx 0 cx]\n\
00185 # K = [ 0 fy cy]\n\
00186 # [ 0 0 1]\n\
00187 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00188 # coordinates using the focal lengths (fx, fy) and principal point\n\
00189 # (cx, cy).\n\
00190 float64[9] K # 3x3 row-major matrix\n\
00191 \n\
00192 # Rectification matrix (stereo cameras only)\n\
00193 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00194 # stereo image plane so that epipolar lines in both stereo images are\n\
00195 # parallel.\n\
00196 float64[9] R # 3x3 row-major matrix\n\
00197 \n\
00198 # Projection/camera matrix\n\
00199 # [fx' 0 cx' Tx]\n\
00200 # P = [ 0 fy' cy' Ty]\n\
00201 # [ 0 0 1 0]\n\
00202 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00203 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00204 # is the normal camera intrinsic matrix for the rectified image.\n\
00205 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00206 # coordinates using the focal lengths (fx', fy') and principal point\n\
00207 # (cx', cy') - these may differ from the values in K.\n\
00208 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00209 # also have R = the identity and P[1:3,1:3] = K.\n\
00210 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00211 # position of the optical center of the second camera in the first\n\
00212 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00213 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00214 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00215 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00216 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00217 # the rectified image is given by:\n\
00218 # [u v w]' = P * [X Y Z 1]'\n\
00219 # x = u / w\n\
00220 # y = v / w\n\
00221 # This holds for both images of a stereo pair.\n\
00222 float64[12] P # 3x4 row-major matrix\n\
00223 \n\
00224 \n\
00225 #######################################################################\n\
00226 # Operational Parameters #\n\
00227 #######################################################################\n\
00228 # These define the image region actually captured by the camera #\n\
00229 # driver. Although they affect the geometry of the output image, they #\n\
00230 # may be changed freely without recalibrating the camera. #\n\
00231 #######################################################################\n\
00232 \n\
00233 # Binning refers here to any camera setting which combines rectangular\n\
00234 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00235 # resolution of the output image to\n\
00236 # (width / binning_x) x (height / binning_y).\n\
00237 # The default values binning_x = binning_y = 0 is considered the same\n\
00238 # as binning_x = binning_y = 1 (no subsampling).\n\
00239 uint32 binning_x\n\
00240 uint32 binning_y\n\
00241 \n\
00242 # Region of interest (subwindow of full camera resolution), given in\n\
00243 # full resolution (unbinned) image coordinates. A particular ROI\n\
00244 # always denotes the same window of pixels on the camera sensor,\n\
00245 # regardless of binning settings.\n\
00246 # The default setting of roi (all values 0) is considered the same as\n\
00247 # full resolution (roi.width = width, roi.height = height).\n\
00248 RegionOfInterest roi\n\
00249 \n\
00250 ================================================================================\n\
00251 MSG: sensor_msgs/RegionOfInterest\n\
00252 # This message is used to specify a region of interest within an image.\n\
00253 #\n\
00254 # When used to specify the ROI setting of the camera when the image was\n\
00255 # taken, the height and width fields should either match the height and\n\
00256 # width fields for the associated image; or height = width = 0\n\
00257 # indicates that the full resolution image was captured.\n\
00258 \n\
00259 uint32 x_offset # Leftmost pixel of the ROI\n\
00260 # (0 if the ROI includes the left edge of the image)\n\
00261 uint32 y_offset # Topmost pixel of the ROI\n\
00262 # (0 if the ROI includes the top edge of the image)\n\
00263 uint32 height # Height of ROI\n\
00264 uint32 width # Width of ROI\n\
00265 \n\
00266 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00267 # ROI in this message. Typically this should be False if the full image\n\
00268 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00269 # used).\n\
00270 bool do_rectify\n\
00271 \n\
00272 "; }
00273 public:
00274 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00275
00276 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00277
00278 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00279 {
00280 ros::serialization::OStream stream(write_ptr, 1000000000);
00281 ros::serialization::serialize(stream, header);
00282 ros::serialization::serialize(stream, camera_id);
00283 ros::serialization::serialize(stream, features);
00284 ros::serialization::serialize(stream, cam_info);
00285 return stream.getData();
00286 }
00287
00288 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00289 {
00290 ros::serialization::IStream stream(read_ptr, 1000000000);
00291 ros::serialization::deserialize(stream, header);
00292 ros::serialization::deserialize(stream, camera_id);
00293 ros::serialization::deserialize(stream, features);
00294 ros::serialization::deserialize(stream, cam_info);
00295 return stream.getData();
00296 }
00297
00298 ROS_DEPRECATED virtual uint32_t serializationLength() const
00299 {
00300 uint32_t size = 0;
00301 size += ros::serialization::serializationLength(header);
00302 size += ros::serialization::serializationLength(camera_id);
00303 size += ros::serialization::serializationLength(features);
00304 size += ros::serialization::serializationLength(cam_info);
00305 return size;
00306 }
00307
00308 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > Ptr;
00309 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> const> ConstPtr;
00310 };
00311 typedef ::camera_pose_calibration::CameraMeasurement_<std::allocator<void> > CameraMeasurement;
00312
00313 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement> CameraMeasurementPtr;
00314 typedef boost::shared_ptr< ::camera_pose_calibration::CameraMeasurement const> CameraMeasurementConstPtr;
00315
00316
00317 template<typename ContainerAllocator>
00318 std::ostream& operator<<(std::ostream& s, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v)
00319 {
00320 ros::message_operations::Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >::stream(s, "", v);
00321 return s;}
00322
00323 }
00324
00325 namespace ros
00326 {
00327 namespace message_traits
00328 {
00329 template<class ContainerAllocator>
00330 struct MD5Sum< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00331 static const char* value()
00332 {
00333 return "4c0854cdc23435e88220144133a1c813";
00334 }
00335
00336 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00337 static const uint64_t static_value1 = 0x4c0854cdc23435e8ULL;
00338 static const uint64_t static_value2 = 0x8220144133a1c813ULL;
00339 };
00340
00341 template<class ContainerAllocator>
00342 struct DataType< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00343 static const char* value()
00344 {
00345 return "camera_pose_calibration/CameraMeasurement";
00346 }
00347
00348 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00349 };
00350
00351 template<class ContainerAllocator>
00352 struct Definition< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > {
00353 static const char* value()
00354 {
00355 return "Header header\n\
00356 string camera_id\n\
00357 calibration_msgs/CalibrationPattern features\n\
00358 sensor_msgs/CameraInfo cam_info\n\
00359 \n\
00360 ================================================================================\n\
00361 MSG: std_msgs/Header\n\
00362 # Standard metadata for higher-level stamped data types.\n\
00363 # This is generally used to communicate timestamped data \n\
00364 # in a particular coordinate frame.\n\
00365 # \n\
00366 # sequence ID: consecutively increasing ID \n\
00367 uint32 seq\n\
00368 #Two-integer timestamp that is expressed as:\n\
00369 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00370 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00371 # time-handling sugar is provided by the client library\n\
00372 time stamp\n\
00373 #Frame this data is associated with\n\
00374 # 0: no frame\n\
00375 # 1: global frame\n\
00376 string frame_id\n\
00377 \n\
00378 ================================================================================\n\
00379 MSG: calibration_msgs/CalibrationPattern\n\
00380 Header header\n\
00381 geometry_msgs/Point32[] object_points\n\
00382 ImagePoint[] image_points\n\
00383 uint8 success\n\
00384 \n\
00385 ================================================================================\n\
00386 MSG: geometry_msgs/Point32\n\
00387 # This contains the position of a point in free space(with 32 bits of precision).\n\
00388 # It is recommeded to use Point wherever possible instead of Point32. \n\
00389 # \n\
00390 # This recommendation is to promote interoperability. \n\
00391 #\n\
00392 # This message is designed to take up less space when sending\n\
00393 # lots of points at once, as in the case of a PointCloud. \n\
00394 \n\
00395 float32 x\n\
00396 float32 y\n\
00397 float32 z\n\
00398 ================================================================================\n\
00399 MSG: calibration_msgs/ImagePoint\n\
00400 float32 x\n\
00401 float32 y\n\
00402 \n\
00403 ================================================================================\n\
00404 MSG: sensor_msgs/CameraInfo\n\
00405 # This message defines meta information for a camera. It should be in a\n\
00406 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00407 # image topics named:\n\
00408 #\n\
00409 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00410 # image - monochrome, distorted\n\
00411 # image_color - color, distorted\n\
00412 # image_rect - monochrome, rectified\n\
00413 # image_rect_color - color, rectified\n\
00414 #\n\
00415 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00416 # for producing the four processed image topics from image_raw and\n\
00417 # camera_info. The meaning of the camera parameters are described in\n\
00418 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00419 #\n\
00420 # The image_geometry package provides a user-friendly interface to\n\
00421 # common operations using this meta information. If you want to, e.g.,\n\
00422 # project a 3d point into image coordinates, we strongly recommend\n\
00423 # using image_geometry.\n\
00424 #\n\
00425 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00426 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00427 # indicates an uncalibrated camera.\n\
00428 \n\
00429 #######################################################################\n\
00430 # Image acquisition info #\n\
00431 #######################################################################\n\
00432 \n\
00433 # Time of image acquisition, camera coordinate frame ID\n\
00434 Header header # Header timestamp should be acquisition time of image\n\
00435 # Header frame_id should be optical frame of camera\n\
00436 # origin of frame should be optical center of camera\n\
00437 # +x should point to the right in the image\n\
00438 # +y should point down in the image\n\
00439 # +z should point into the plane of the image\n\
00440 \n\
00441 \n\
00442 #######################################################################\n\
00443 # Calibration Parameters #\n\
00444 #######################################################################\n\
00445 # These are fixed during camera calibration. Their values will be the #\n\
00446 # same in all messages until the camera is recalibrated. Note that #\n\
00447 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00448 # #\n\
00449 # The internal parameters can be used to warp a raw (distorted) image #\n\
00450 # to: #\n\
00451 # 1. An undistorted image (requires D and K) #\n\
00452 # 2. A rectified image (requires D, K, R) #\n\
00453 # The projection matrix P projects 3D points into the rectified image.#\n\
00454 #######################################################################\n\
00455 \n\
00456 # The image dimensions with which the camera was calibrated. Normally\n\
00457 # this will be the full camera resolution in pixels.\n\
00458 uint32 height\n\
00459 uint32 width\n\
00460 \n\
00461 # The distortion model used. Supported models are listed in\n\
00462 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00463 # simple model of radial and tangential distortion - is sufficent.\n\
00464 string distortion_model\n\
00465 \n\
00466 # The distortion parameters, size depending on the distortion model.\n\
00467 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00468 float64[] D\n\
00469 \n\
00470 # Intrinsic camera matrix for the raw (distorted) images.\n\
00471 # [fx 0 cx]\n\
00472 # K = [ 0 fy cy]\n\
00473 # [ 0 0 1]\n\
00474 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00475 # coordinates using the focal lengths (fx, fy) and principal point\n\
00476 # (cx, cy).\n\
00477 float64[9] K # 3x3 row-major matrix\n\
00478 \n\
00479 # Rectification matrix (stereo cameras only)\n\
00480 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00481 # stereo image plane so that epipolar lines in both stereo images are\n\
00482 # parallel.\n\
00483 float64[9] R # 3x3 row-major matrix\n\
00484 \n\
00485 # Projection/camera matrix\n\
00486 # [fx' 0 cx' Tx]\n\
00487 # P = [ 0 fy' cy' Ty]\n\
00488 # [ 0 0 1 0]\n\
00489 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00490 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00491 # is the normal camera intrinsic matrix for the rectified image.\n\
00492 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00493 # coordinates using the focal lengths (fx', fy') and principal point\n\
00494 # (cx', cy') - these may differ from the values in K.\n\
00495 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00496 # also have R = the identity and P[1:3,1:3] = K.\n\
00497 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00498 # position of the optical center of the second camera in the first\n\
00499 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00500 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00501 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00502 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00503 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00504 # the rectified image is given by:\n\
00505 # [u v w]' = P * [X Y Z 1]'\n\
00506 # x = u / w\n\
00507 # y = v / w\n\
00508 # This holds for both images of a stereo pair.\n\
00509 float64[12] P # 3x4 row-major matrix\n\
00510 \n\
00511 \n\
00512 #######################################################################\n\
00513 # Operational Parameters #\n\
00514 #######################################################################\n\
00515 # These define the image region actually captured by the camera #\n\
00516 # driver. Although they affect the geometry of the output image, they #\n\
00517 # may be changed freely without recalibrating the camera. #\n\
00518 #######################################################################\n\
00519 \n\
00520 # Binning refers here to any camera setting which combines rectangular\n\
00521 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00522 # resolution of the output image to\n\
00523 # (width / binning_x) x (height / binning_y).\n\
00524 # The default values binning_x = binning_y = 0 is considered the same\n\
00525 # as binning_x = binning_y = 1 (no subsampling).\n\
00526 uint32 binning_x\n\
00527 uint32 binning_y\n\
00528 \n\
00529 # Region of interest (subwindow of full camera resolution), given in\n\
00530 # full resolution (unbinned) image coordinates. A particular ROI\n\
00531 # always denotes the same window of pixels on the camera sensor,\n\
00532 # regardless of binning settings.\n\
00533 # The default setting of roi (all values 0) is considered the same as\n\
00534 # full resolution (roi.width = width, roi.height = height).\n\
00535 RegionOfInterest roi\n\
00536 \n\
00537 ================================================================================\n\
00538 MSG: sensor_msgs/RegionOfInterest\n\
00539 # This message is used to specify a region of interest within an image.\n\
00540 #\n\
00541 # When used to specify the ROI setting of the camera when the image was\n\
00542 # taken, the height and width fields should either match the height and\n\
00543 # width fields for the associated image; or height = width = 0\n\
00544 # indicates that the full resolution image was captured.\n\
00545 \n\
00546 uint32 x_offset # Leftmost pixel of the ROI\n\
00547 # (0 if the ROI includes the left edge of the image)\n\
00548 uint32 y_offset # Topmost pixel of the ROI\n\
00549 # (0 if the ROI includes the top edge of the image)\n\
00550 uint32 height # Height of ROI\n\
00551 uint32 width # Width of ROI\n\
00552 \n\
00553 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00554 # ROI in this message. Typically this should be False if the full image\n\
00555 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00556 # used).\n\
00557 bool do_rectify\n\
00558 \n\
00559 ";
00560 }
00561
00562 static const char* value(const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00563 };
00564
00565 template<class ContainerAllocator> struct HasHeader< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00566 template<class ContainerAllocator> struct HasHeader< const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00567 }
00568 }
00569
00570 namespace ros
00571 {
00572 namespace serialization
00573 {
00574
00575 template<class ContainerAllocator> struct Serializer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >
00576 {
00577 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00578 {
00579 stream.next(m.header);
00580 stream.next(m.camera_id);
00581 stream.next(m.features);
00582 stream.next(m.cam_info);
00583 }
00584
00585 ROS_DECLARE_ALLINONE_SERIALIZER;
00586 };
00587 }
00588 }
00589
00590 namespace ros
00591 {
00592 namespace message_operations
00593 {
00594
00595 template<class ContainerAllocator>
00596 struct Printer< ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> >
00597 {
00598 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::camera_pose_calibration::CameraMeasurement_<ContainerAllocator> & v)
00599 {
00600 s << indent << "header: ";
00601 s << std::endl;
00602 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00603 s << indent << "camera_id: ";
00604 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.camera_id);
00605 s << indent << "features: ";
00606 s << std::endl;
00607 Printer< ::calibration_msgs::CalibrationPattern_<ContainerAllocator> >::stream(s, indent + " ", v.features);
00608 s << indent << "cam_info: ";
00609 s << std::endl;
00610 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info);
00611 }
00612 };
00613
00614
00615 }
00616 }
00617
00618 #endif // CAMERA_POSE_CALIBRATION_MESSAGE_CAMERAMEASUREMENT_H
00619