$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-srs_public/doc_stacks/2013-03-05_12-22-34.333426/srs_public/srs_env_model/msg/OctomapUpdates.msg */ 00002 #ifndef SRS_ENV_MODEL_MESSAGE_OCTOMAPUPDATES_H 00003 #define SRS_ENV_MODEL_MESSAGE_OCTOMAPUPDATES_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "sensor_msgs/CameraInfo.h" 00019 #include "sensor_msgs/PointCloud2.h" 00020 00021 namespace srs_env_model 00022 { 00023 template <class ContainerAllocator> 00024 struct OctomapUpdates_ { 00025 typedef OctomapUpdates_<ContainerAllocator> Type; 00026 00027 OctomapUpdates_() 00028 : header() 00029 , isPartial(0) 00030 , camera_info() 00031 , pointcloud2() 00032 { 00033 } 00034 00035 OctomapUpdates_(const ContainerAllocator& _alloc) 00036 : header(_alloc) 00037 , isPartial(0) 00038 , camera_info(_alloc) 00039 , pointcloud2(_alloc) 00040 { 00041 } 00042 00043 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00044 ::std_msgs::Header_<ContainerAllocator> header; 00045 00046 typedef uint8_t _isPartial_type; 00047 uint8_t isPartial; 00048 00049 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00050 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00051 00052 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _pointcloud2_type; 00053 ::sensor_msgs::PointCloud2_<ContainerAllocator> pointcloud2; 00054 00055 00056 private: 00057 static const char* __s_getDataType_() { return "srs_env_model/OctomapUpdates"; } 00058 public: 00059 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00060 00061 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00062 00063 private: 00064 static const char* __s_getMD5Sum_() { return "8c9761f3bd1464ae2a09fd40fcb8c4cd"; } 00065 public: 00066 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00067 00068 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00069 00070 private: 00071 static const char* __s_getMessageDefinition_() { return "# Header\n\ 00072 Header header\n\ 00073 # Is it complete (0) or partial update (!=0)\n\ 00074 uint8 isPartial\n\ 00075 # Camera information\n\ 00076 sensor_msgs/CameraInfo camera_info\n\ 00077 # Pointcloud\n\ 00078 sensor_msgs/PointCloud2 pointcloud2\n\ 00079 ================================================================================\n\ 00080 MSG: std_msgs/Header\n\ 00081 # Standard metadata for higher-level stamped data types.\n\ 00082 # This is generally used to communicate timestamped data \n\ 00083 # in a particular coordinate frame.\n\ 00084 # \n\ 00085 # sequence ID: consecutively increasing ID \n\ 00086 uint32 seq\n\ 00087 #Two-integer timestamp that is expressed as:\n\ 00088 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00089 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00090 # time-handling sugar is provided by the client library\n\ 00091 time stamp\n\ 00092 #Frame this data is associated with\n\ 00093 # 0: no frame\n\ 00094 # 1: global frame\n\ 00095 string frame_id\n\ 00096 \n\ 00097 ================================================================================\n\ 00098 MSG: sensor_msgs/CameraInfo\n\ 00099 # This message defines meta information for a camera. It should be in a\n\ 00100 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00101 # image topics named:\n\ 00102 #\n\ 00103 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00104 # image - monochrome, distorted\n\ 00105 # image_color - color, distorted\n\ 00106 # image_rect - monochrome, rectified\n\ 00107 # image_rect_color - color, rectified\n\ 00108 #\n\ 00109 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00110 # for producing the four processed image topics from image_raw and\n\ 00111 # camera_info. The meaning of the camera parameters are described in\n\ 00112 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00113 #\n\ 00114 # The image_geometry package provides a user-friendly interface to\n\ 00115 # common operations using this meta information. If you want to, e.g.,\n\ 00116 # project a 3d point into image coordinates, we strongly recommend\n\ 00117 # using image_geometry.\n\ 00118 #\n\ 00119 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00120 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00121 # indicates an uncalibrated camera.\n\ 00122 \n\ 00123 #######################################################################\n\ 00124 # Image acquisition info #\n\ 00125 #######################################################################\n\ 00126 \n\ 00127 # Time of image acquisition, camera coordinate frame ID\n\ 00128 Header header # Header timestamp should be acquisition time of image\n\ 00129 # Header frame_id should be optical frame of camera\n\ 00130 # origin of frame should be optical center of camera\n\ 00131 # +x should point to the right in the image\n\ 00132 # +y should point down in the image\n\ 00133 # +z should point into the plane of the image\n\ 00134 \n\ 00135 \n\ 00136 #######################################################################\n\ 00137 # Calibration Parameters #\n\ 00138 #######################################################################\n\ 00139 # These are fixed during camera calibration. Their values will be the #\n\ 00140 # same in all messages until the camera is recalibrated. Note that #\n\ 00141 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00142 # #\n\ 00143 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00144 # to: #\n\ 00145 # 1. An undistorted image (requires D and K) #\n\ 00146 # 2. A rectified image (requires D, K, R) #\n\ 00147 # The projection matrix P projects 3D points into the rectified image.#\n\ 00148 #######################################################################\n\ 00149 \n\ 00150 # The image dimensions with which the camera was calibrated. Normally\n\ 00151 # this will be the full camera resolution in pixels.\n\ 00152 uint32 height\n\ 00153 uint32 width\n\ 00154 \n\ 00155 # The distortion model used. Supported models are listed in\n\ 00156 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00157 # simple model of radial and tangential distortion - is sufficent.\n\ 00158 string distortion_model\n\ 00159 \n\ 00160 # The distortion parameters, size depending on the distortion model.\n\ 00161 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00162 float64[] D\n\ 00163 \n\ 00164 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00165 # [fx 0 cx]\n\ 00166 # K = [ 0 fy cy]\n\ 00167 # [ 0 0 1]\n\ 00168 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00169 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00170 # (cx, cy).\n\ 00171 float64[9] K # 3x3 row-major matrix\n\ 00172 \n\ 00173 # Rectification matrix (stereo cameras only)\n\ 00174 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00175 # stereo image plane so that epipolar lines in both stereo images are\n\ 00176 # parallel.\n\ 00177 float64[9] R # 3x3 row-major matrix\n\ 00178 \n\ 00179 # Projection/camera matrix\n\ 00180 # [fx' 0 cx' Tx]\n\ 00181 # P = [ 0 fy' cy' Ty]\n\ 00182 # [ 0 0 1 0]\n\ 00183 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00184 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00185 # is the normal camera intrinsic matrix for the rectified image.\n\ 00186 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00187 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00188 # (cx', cy') - these may differ from the values in K.\n\ 00189 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00190 # also have R = the identity and P[1:3,1:3] = K.\n\ 00191 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00192 # position of the optical center of the second camera in the first\n\ 00193 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00194 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00195 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00196 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00197 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00198 # the rectified image is given by:\n\ 00199 # [u v w]' = P * [X Y Z 1]'\n\ 00200 # x = u / w\n\ 00201 # y = v / w\n\ 00202 # This holds for both images of a stereo pair.\n\ 00203 float64[12] P # 3x4 row-major matrix\n\ 00204 \n\ 00205 \n\ 00206 #######################################################################\n\ 00207 # Operational Parameters #\n\ 00208 #######################################################################\n\ 00209 # These define the image region actually captured by the camera #\n\ 00210 # driver. Although they affect the geometry of the output image, they #\n\ 00211 # may be changed freely without recalibrating the camera. #\n\ 00212 #######################################################################\n\ 00213 \n\ 00214 # Binning refers here to any camera setting which combines rectangular\n\ 00215 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00216 # resolution of the output image to\n\ 00217 # (width / binning_x) x (height / binning_y).\n\ 00218 # The default values binning_x = binning_y = 0 is considered the same\n\ 00219 # as binning_x = binning_y = 1 (no subsampling).\n\ 00220 uint32 binning_x\n\ 00221 uint32 binning_y\n\ 00222 \n\ 00223 # Region of interest (subwindow of full camera resolution), given in\n\ 00224 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00225 # always denotes the same window of pixels on the camera sensor,\n\ 00226 # regardless of binning settings.\n\ 00227 # The default setting of roi (all values 0) is considered the same as\n\ 00228 # full resolution (roi.width = width, roi.height = height).\n\ 00229 RegionOfInterest roi\n\ 00230 \n\ 00231 ================================================================================\n\ 00232 MSG: sensor_msgs/RegionOfInterest\n\ 00233 # This message is used to specify a region of interest within an image.\n\ 00234 #\n\ 00235 # When used to specify the ROI setting of the camera when the image was\n\ 00236 # taken, the height and width fields should either match the height and\n\ 00237 # width fields for the associated image; or height = width = 0\n\ 00238 # indicates that the full resolution image was captured.\n\ 00239 \n\ 00240 uint32 x_offset # Leftmost pixel of the ROI\n\ 00241 # (0 if the ROI includes the left edge of the image)\n\ 00242 uint32 y_offset # Topmost pixel of the ROI\n\ 00243 # (0 if the ROI includes the top edge of the image)\n\ 00244 uint32 height # Height of ROI\n\ 00245 uint32 width # Width of ROI\n\ 00246 \n\ 00247 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00248 # ROI in this message. Typically this should be False if the full image\n\ 00249 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00250 # used).\n\ 00251 bool do_rectify\n\ 00252 \n\ 00253 ================================================================================\n\ 00254 MSG: sensor_msgs/PointCloud2\n\ 00255 # This message holds a collection of N-dimensional points, which may\n\ 00256 # contain additional information such as normals, intensity, etc. The\n\ 00257 # point data is stored as a binary blob, its layout described by the\n\ 00258 # contents of the \"fields\" array.\n\ 00259 \n\ 00260 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00261 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00262 # camera depth sensors such as stereo or time-of-flight.\n\ 00263 \n\ 00264 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00265 # points).\n\ 00266 Header header\n\ 00267 \n\ 00268 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00269 # 1 and width is the length of the point cloud.\n\ 00270 uint32 height\n\ 00271 uint32 width\n\ 00272 \n\ 00273 # Describes the channels and their layout in the binary data blob.\n\ 00274 PointField[] fields\n\ 00275 \n\ 00276 bool is_bigendian # Is this data bigendian?\n\ 00277 uint32 point_step # Length of a point in bytes\n\ 00278 uint32 row_step # Length of a row in bytes\n\ 00279 uint8[] data # Actual point data, size is (row_step*height)\n\ 00280 \n\ 00281 bool is_dense # True if there are no invalid points\n\ 00282 \n\ 00283 ================================================================================\n\ 00284 MSG: sensor_msgs/PointField\n\ 00285 # This message holds the description of one point entry in the\n\ 00286 # PointCloud2 message format.\n\ 00287 uint8 INT8 = 1\n\ 00288 uint8 UINT8 = 2\n\ 00289 uint8 INT16 = 3\n\ 00290 uint8 UINT16 = 4\n\ 00291 uint8 INT32 = 5\n\ 00292 uint8 UINT32 = 6\n\ 00293 uint8 FLOAT32 = 7\n\ 00294 uint8 FLOAT64 = 8\n\ 00295 \n\ 00296 string name # Name of field\n\ 00297 uint32 offset # Offset from start of point struct\n\ 00298 uint8 datatype # Datatype enumeration, see above\n\ 00299 uint32 count # How many elements in the field\n\ 00300 \n\ 00301 "; } 00302 public: 00303 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00304 00305 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00306 00307 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00308 { 00309 ros::serialization::OStream stream(write_ptr, 1000000000); 00310 ros::serialization::serialize(stream, header); 00311 ros::serialization::serialize(stream, isPartial); 00312 ros::serialization::serialize(stream, camera_info); 00313 ros::serialization::serialize(stream, pointcloud2); 00314 return stream.getData(); 00315 } 00316 00317 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00318 { 00319 ros::serialization::IStream stream(read_ptr, 1000000000); 00320 ros::serialization::deserialize(stream, header); 00321 ros::serialization::deserialize(stream, isPartial); 00322 ros::serialization::deserialize(stream, camera_info); 00323 ros::serialization::deserialize(stream, pointcloud2); 00324 return stream.getData(); 00325 } 00326 00327 ROS_DEPRECATED virtual uint32_t serializationLength() const 00328 { 00329 uint32_t size = 0; 00330 size += ros::serialization::serializationLength(header); 00331 size += ros::serialization::serializationLength(isPartial); 00332 size += ros::serialization::serializationLength(camera_info); 00333 size += ros::serialization::serializationLength(pointcloud2); 00334 return size; 00335 } 00336 00337 typedef boost::shared_ptr< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > Ptr; 00338 typedef boost::shared_ptr< ::srs_env_model::OctomapUpdates_<ContainerAllocator> const> ConstPtr; 00339 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00340 }; // struct OctomapUpdates 00341 typedef ::srs_env_model::OctomapUpdates_<std::allocator<void> > OctomapUpdates; 00342 00343 typedef boost::shared_ptr< ::srs_env_model::OctomapUpdates> OctomapUpdatesPtr; 00344 typedef boost::shared_ptr< ::srs_env_model::OctomapUpdates const> OctomapUpdatesConstPtr; 00345 00346 00347 template<typename ContainerAllocator> 00348 std::ostream& operator<<(std::ostream& s, const ::srs_env_model::OctomapUpdates_<ContainerAllocator> & v) 00349 { 00350 ros::message_operations::Printer< ::srs_env_model::OctomapUpdates_<ContainerAllocator> >::stream(s, "", v); 00351 return s;} 00352 00353 } // namespace srs_env_model 00354 00355 namespace ros 00356 { 00357 namespace message_traits 00358 { 00359 template<class ContainerAllocator> struct IsMessage< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > : public TrueType {}; 00360 template<class ContainerAllocator> struct IsMessage< ::srs_env_model::OctomapUpdates_<ContainerAllocator> const> : public TrueType {}; 00361 template<class ContainerAllocator> 00362 struct MD5Sum< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > { 00363 static const char* value() 00364 { 00365 return "8c9761f3bd1464ae2a09fd40fcb8c4cd"; 00366 } 00367 00368 static const char* value(const ::srs_env_model::OctomapUpdates_<ContainerAllocator> &) { return value(); } 00369 static const uint64_t static_value1 = 0x8c9761f3bd1464aeULL; 00370 static const uint64_t static_value2 = 0x2a09fd40fcb8c4cdULL; 00371 }; 00372 00373 template<class ContainerAllocator> 00374 struct DataType< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > { 00375 static const char* value() 00376 { 00377 return "srs_env_model/OctomapUpdates"; 00378 } 00379 00380 static const char* value(const ::srs_env_model::OctomapUpdates_<ContainerAllocator> &) { return value(); } 00381 }; 00382 00383 template<class ContainerAllocator> 00384 struct Definition< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > { 00385 static const char* value() 00386 { 00387 return "# Header\n\ 00388 Header header\n\ 00389 # Is it complete (0) or partial update (!=0)\n\ 00390 uint8 isPartial\n\ 00391 # Camera information\n\ 00392 sensor_msgs/CameraInfo camera_info\n\ 00393 # Pointcloud\n\ 00394 sensor_msgs/PointCloud2 pointcloud2\n\ 00395 ================================================================================\n\ 00396 MSG: std_msgs/Header\n\ 00397 # Standard metadata for higher-level stamped data types.\n\ 00398 # This is generally used to communicate timestamped data \n\ 00399 # in a particular coordinate frame.\n\ 00400 # \n\ 00401 # sequence ID: consecutively increasing ID \n\ 00402 uint32 seq\n\ 00403 #Two-integer timestamp that is expressed as:\n\ 00404 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00405 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00406 # time-handling sugar is provided by the client library\n\ 00407 time stamp\n\ 00408 #Frame this data is associated with\n\ 00409 # 0: no frame\n\ 00410 # 1: global frame\n\ 00411 string frame_id\n\ 00412 \n\ 00413 ================================================================================\n\ 00414 MSG: sensor_msgs/CameraInfo\n\ 00415 # This message defines meta information for a camera. It should be in a\n\ 00416 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00417 # image topics named:\n\ 00418 #\n\ 00419 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00420 # image - monochrome, distorted\n\ 00421 # image_color - color, distorted\n\ 00422 # image_rect - monochrome, rectified\n\ 00423 # image_rect_color - color, rectified\n\ 00424 #\n\ 00425 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00426 # for producing the four processed image topics from image_raw and\n\ 00427 # camera_info. The meaning of the camera parameters are described in\n\ 00428 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00429 #\n\ 00430 # The image_geometry package provides a user-friendly interface to\n\ 00431 # common operations using this meta information. If you want to, e.g.,\n\ 00432 # project a 3d point into image coordinates, we strongly recommend\n\ 00433 # using image_geometry.\n\ 00434 #\n\ 00435 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00436 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00437 # indicates an uncalibrated camera.\n\ 00438 \n\ 00439 #######################################################################\n\ 00440 # Image acquisition info #\n\ 00441 #######################################################################\n\ 00442 \n\ 00443 # Time of image acquisition, camera coordinate frame ID\n\ 00444 Header header # Header timestamp should be acquisition time of image\n\ 00445 # Header frame_id should be optical frame of camera\n\ 00446 # origin of frame should be optical center of camera\n\ 00447 # +x should point to the right in the image\n\ 00448 # +y should point down in the image\n\ 00449 # +z should point into the plane of the image\n\ 00450 \n\ 00451 \n\ 00452 #######################################################################\n\ 00453 # Calibration Parameters #\n\ 00454 #######################################################################\n\ 00455 # These are fixed during camera calibration. Their values will be the #\n\ 00456 # same in all messages until the camera is recalibrated. Note that #\n\ 00457 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00458 # #\n\ 00459 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00460 # to: #\n\ 00461 # 1. An undistorted image (requires D and K) #\n\ 00462 # 2. A rectified image (requires D, K, R) #\n\ 00463 # The projection matrix P projects 3D points into the rectified image.#\n\ 00464 #######################################################################\n\ 00465 \n\ 00466 # The image dimensions with which the camera was calibrated. Normally\n\ 00467 # this will be the full camera resolution in pixels.\n\ 00468 uint32 height\n\ 00469 uint32 width\n\ 00470 \n\ 00471 # The distortion model used. Supported models are listed in\n\ 00472 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00473 # simple model of radial and tangential distortion - is sufficent.\n\ 00474 string distortion_model\n\ 00475 \n\ 00476 # The distortion parameters, size depending on the distortion model.\n\ 00477 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00478 float64[] D\n\ 00479 \n\ 00480 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00481 # [fx 0 cx]\n\ 00482 # K = [ 0 fy cy]\n\ 00483 # [ 0 0 1]\n\ 00484 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00485 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00486 # (cx, cy).\n\ 00487 float64[9] K # 3x3 row-major matrix\n\ 00488 \n\ 00489 # Rectification matrix (stereo cameras only)\n\ 00490 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00491 # stereo image plane so that epipolar lines in both stereo images are\n\ 00492 # parallel.\n\ 00493 float64[9] R # 3x3 row-major matrix\n\ 00494 \n\ 00495 # Projection/camera matrix\n\ 00496 # [fx' 0 cx' Tx]\n\ 00497 # P = [ 0 fy' cy' Ty]\n\ 00498 # [ 0 0 1 0]\n\ 00499 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00500 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00501 # is the normal camera intrinsic matrix for the rectified image.\n\ 00502 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00503 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00504 # (cx', cy') - these may differ from the values in K.\n\ 00505 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00506 # also have R = the identity and P[1:3,1:3] = K.\n\ 00507 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00508 # position of the optical center of the second camera in the first\n\ 00509 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00510 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00511 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00512 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00513 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00514 # the rectified image is given by:\n\ 00515 # [u v w]' = P * [X Y Z 1]'\n\ 00516 # x = u / w\n\ 00517 # y = v / w\n\ 00518 # This holds for both images of a stereo pair.\n\ 00519 float64[12] P # 3x4 row-major matrix\n\ 00520 \n\ 00521 \n\ 00522 #######################################################################\n\ 00523 # Operational Parameters #\n\ 00524 #######################################################################\n\ 00525 # These define the image region actually captured by the camera #\n\ 00526 # driver. Although they affect the geometry of the output image, they #\n\ 00527 # may be changed freely without recalibrating the camera. #\n\ 00528 #######################################################################\n\ 00529 \n\ 00530 # Binning refers here to any camera setting which combines rectangular\n\ 00531 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00532 # resolution of the output image to\n\ 00533 # (width / binning_x) x (height / binning_y).\n\ 00534 # The default values binning_x = binning_y = 0 is considered the same\n\ 00535 # as binning_x = binning_y = 1 (no subsampling).\n\ 00536 uint32 binning_x\n\ 00537 uint32 binning_y\n\ 00538 \n\ 00539 # Region of interest (subwindow of full camera resolution), given in\n\ 00540 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00541 # always denotes the same window of pixels on the camera sensor,\n\ 00542 # regardless of binning settings.\n\ 00543 # The default setting of roi (all values 0) is considered the same as\n\ 00544 # full resolution (roi.width = width, roi.height = height).\n\ 00545 RegionOfInterest roi\n\ 00546 \n\ 00547 ================================================================================\n\ 00548 MSG: sensor_msgs/RegionOfInterest\n\ 00549 # This message is used to specify a region of interest within an image.\n\ 00550 #\n\ 00551 # When used to specify the ROI setting of the camera when the image was\n\ 00552 # taken, the height and width fields should either match the height and\n\ 00553 # width fields for the associated image; or height = width = 0\n\ 00554 # indicates that the full resolution image was captured.\n\ 00555 \n\ 00556 uint32 x_offset # Leftmost pixel of the ROI\n\ 00557 # (0 if the ROI includes the left edge of the image)\n\ 00558 uint32 y_offset # Topmost pixel of the ROI\n\ 00559 # (0 if the ROI includes the top edge of the image)\n\ 00560 uint32 height # Height of ROI\n\ 00561 uint32 width # Width of ROI\n\ 00562 \n\ 00563 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00564 # ROI in this message. Typically this should be False if the full image\n\ 00565 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00566 # used).\n\ 00567 bool do_rectify\n\ 00568 \n\ 00569 ================================================================================\n\ 00570 MSG: sensor_msgs/PointCloud2\n\ 00571 # This message holds a collection of N-dimensional points, which may\n\ 00572 # contain additional information such as normals, intensity, etc. The\n\ 00573 # point data is stored as a binary blob, its layout described by the\n\ 00574 # contents of the \"fields\" array.\n\ 00575 \n\ 00576 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00577 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00578 # camera depth sensors such as stereo or time-of-flight.\n\ 00579 \n\ 00580 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00581 # points).\n\ 00582 Header header\n\ 00583 \n\ 00584 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00585 # 1 and width is the length of the point cloud.\n\ 00586 uint32 height\n\ 00587 uint32 width\n\ 00588 \n\ 00589 # Describes the channels and their layout in the binary data blob.\n\ 00590 PointField[] fields\n\ 00591 \n\ 00592 bool is_bigendian # Is this data bigendian?\n\ 00593 uint32 point_step # Length of a point in bytes\n\ 00594 uint32 row_step # Length of a row in bytes\n\ 00595 uint8[] data # Actual point data, size is (row_step*height)\n\ 00596 \n\ 00597 bool is_dense # True if there are no invalid points\n\ 00598 \n\ 00599 ================================================================================\n\ 00600 MSG: sensor_msgs/PointField\n\ 00601 # This message holds the description of one point entry in the\n\ 00602 # PointCloud2 message format.\n\ 00603 uint8 INT8 = 1\n\ 00604 uint8 UINT8 = 2\n\ 00605 uint8 INT16 = 3\n\ 00606 uint8 UINT16 = 4\n\ 00607 uint8 INT32 = 5\n\ 00608 uint8 UINT32 = 6\n\ 00609 uint8 FLOAT32 = 7\n\ 00610 uint8 FLOAT64 = 8\n\ 00611 \n\ 00612 string name # Name of field\n\ 00613 uint32 offset # Offset from start of point struct\n\ 00614 uint8 datatype # Datatype enumeration, see above\n\ 00615 uint32 count # How many elements in the field\n\ 00616 \n\ 00617 "; 00618 } 00619 00620 static const char* value(const ::srs_env_model::OctomapUpdates_<ContainerAllocator> &) { return value(); } 00621 }; 00622 00623 template<class ContainerAllocator> struct HasHeader< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > : public TrueType {}; 00624 template<class ContainerAllocator> struct HasHeader< const ::srs_env_model::OctomapUpdates_<ContainerAllocator> > : public TrueType {}; 00625 } // namespace message_traits 00626 } // namespace ros 00627 00628 namespace ros 00629 { 00630 namespace serialization 00631 { 00632 00633 template<class ContainerAllocator> struct Serializer< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > 00634 { 00635 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00636 { 00637 stream.next(m.header); 00638 stream.next(m.isPartial); 00639 stream.next(m.camera_info); 00640 stream.next(m.pointcloud2); 00641 } 00642 00643 ROS_DECLARE_ALLINONE_SERIALIZER; 00644 }; // struct OctomapUpdates_ 00645 } // namespace serialization 00646 } // namespace ros 00647 00648 namespace ros 00649 { 00650 namespace message_operations 00651 { 00652 00653 template<class ContainerAllocator> 00654 struct Printer< ::srs_env_model::OctomapUpdates_<ContainerAllocator> > 00655 { 00656 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::srs_env_model::OctomapUpdates_<ContainerAllocator> & v) 00657 { 00658 s << indent << "header: "; 00659 s << std::endl; 00660 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00661 s << indent << "isPartial: "; 00662 Printer<uint8_t>::stream(s, indent + " ", v.isPartial); 00663 s << indent << "camera_info: "; 00664 s << std::endl; 00665 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); 00666 s << indent << "pointcloud2: "; 00667 s << std::endl; 00668 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.pointcloud2); 00669 } 00670 }; 00671 00672 00673 } // namespace message_operations 00674 } // namespace ros 00675 00676 #endif // SRS_ENV_MODEL_MESSAGE_OCTOMAPUPDATES_H 00677