$search
00001 /********************************************************************* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2009, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the Willow Garage nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 *********************************************************************/ 00034 00037 #include <gtest/gtest.h> 00038 #include <spline_smoother/spline_smoother_utils.h> 00039 #include <stdlib.h> 00040 00041 static double getRandomNumber(double min, double max) 00042 { 00043 return ((double)rand() / RAND_MAX)*(max-min) + min; 00044 } 00045 00046 TEST(TestUtils, testTridiagonalSolver) 00047 { 00048 // seed the random number generator: 00049 srand(2); 00050 00051 // generate a random tridiagonal matrix: 00052 int n=10; 00053 00054 std::vector<double> a(n); 00055 std::vector<double> b(n); 00056 std::vector<double> c(n); 00057 std::vector<double> d(n); 00058 std::vector<double> x(n); 00059 std::vector<double> solved_x(n); 00060 00061 for (int i=0; i<n; i++) 00062 { 00063 a[i] = getRandomNumber(10.0, 20.0); 00064 b[i] = getRandomNumber(1.0, 4.0); 00065 c[i] = getRandomNumber(1.0, 4.0); 00066 x[i] = getRandomNumber(-1.0, 1.0); 00067 } 00068 a[0] = 0.0; 00069 c[n-1] = 0.0; 00070 00071 // multiply to get values for d: 00072 for (int i=1; i<n-1; i++) 00073 { 00074 d[i] = a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1]; 00075 } 00076 d[0] = b[0]*x[0] + c[0]*x[1]; 00077 d[n-1] = a[n-1]*x[n-2] + b[n-1]*x[n-1]; 00078 00079 // solve it: 00080 spline_smoother::tridiagonalSolve(a, b, c, d, solved_x); 00081 00082 double tolerance = 1e-8; 00083 00084 // check it: 00085 for (int i=0; i<n; i++) 00086 { 00087 EXPECT_NEAR(x[i], solved_x[i], tolerance); 00088 } 00089 } 00090 00091 TEST(TestUtils, testTridiagonalSolver2) 00092 { 00093 // seed the random number generator: 00094 srand(2); 00095 00096 // generate a tridiagonal matrix for cubic splines 00097 int n=10; 00098 00099 std::vector<double> a(n); 00100 std::vector<double> b(n); 00101 std::vector<double> c(n); 00102 std::vector<double> d(n); 00103 std::vector<double> x(n); 00104 std::vector<double> solved_x(n); 00105 00106 for (int i=0; i<n; i++) 00107 { 00108 a[i] = 4.0; 00109 b[i] = 1.0; 00110 c[i] = 1.0; 00111 x[i] = getRandomNumber(-1.0, 1.0); 00112 } 00113 a[0] = 0.0; 00114 c[n-1] = 0.0; 00115 b[0] = 2.0; 00116 b[n-1] = 2.0; 00117 00118 // multiply to get values for d: 00119 for (int i=1; i<n-1; i++) 00120 { 00121 d[i] = a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1]; 00122 } 00123 d[0] = b[0]*x[0] + c[0]*x[1]; 00124 d[n-1] = a[n-1]*x[n-2] + b[n-1]*x[n-1]; 00125 00126 // solve it: 00127 spline_smoother::tridiagonalSolve(a, b, c, d, solved_x); 00128 00129 double tolerance = 1e-8; 00130 00131 // check it: 00132 for (int i=0; i<n; i++) 00133 { 00134 EXPECT_NEAR(x[i], solved_x[i], tolerance); 00135 } 00136 }