$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/manipulation/pr2_object_manipulation_msgs/msg/GetGripperPoseActionGoal.msg */ 00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H 00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "pr2_object_manipulation_msgs/GetGripperPoseGoal.h" 00020 00021 namespace pr2_object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GetGripperPoseActionGoal_ { 00025 typedef GetGripperPoseActionGoal_<ContainerAllocator> Type; 00026 00027 GetGripperPoseActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 GetGripperPoseActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> _goal_type; 00048 ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/GetGripperPoseActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "1967a7e9bdf026bfaa86707548b502d9"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 GetGripperPoseGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: pr2_object_manipulation_msgs/GetGripperPoseGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 \n\ 00107 # for which arm are we requesting a pose\n\ 00108 # useful for knowing which arm to initialize from when seed is empty\n\ 00109 string arm_name\n\ 00110 \n\ 00111 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\ 00112 # the ghosted gripper will be initialized at the current position of the gripper\n\ 00113 geometry_msgs/PoseStamped gripper_pose\n\ 00114 float32 gripper_opening\n\ 00115 \n\ 00116 # An object that the gripper is holding. May be empty.\n\ 00117 object_manipulation_msgs/GraspableObject object\n\ 00118 \n\ 00119 # how we are holding the object, if any.\n\ 00120 object_manipulation_msgs/Grasp grasp\n\ 00121 \n\ 00122 \n\ 00123 ================================================================================\n\ 00124 MSG: geometry_msgs/PoseStamped\n\ 00125 # A Pose with reference coordinate frame and timestamp\n\ 00126 Header header\n\ 00127 Pose pose\n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: geometry_msgs/Pose\n\ 00131 # A representation of pose in free space, composed of postion and orientation. \n\ 00132 Point position\n\ 00133 Quaternion orientation\n\ 00134 \n\ 00135 ================================================================================\n\ 00136 MSG: geometry_msgs/Point\n\ 00137 # This contains the position of a point in free space\n\ 00138 float64 x\n\ 00139 float64 y\n\ 00140 float64 z\n\ 00141 \n\ 00142 ================================================================================\n\ 00143 MSG: geometry_msgs/Quaternion\n\ 00144 # This represents an orientation in free space in quaternion form.\n\ 00145 \n\ 00146 float64 x\n\ 00147 float64 y\n\ 00148 float64 z\n\ 00149 float64 w\n\ 00150 \n\ 00151 ================================================================================\n\ 00152 MSG: object_manipulation_msgs/GraspableObject\n\ 00153 # an object that the object_manipulator can work on\n\ 00154 \n\ 00155 # a graspable object can be represented in multiple ways. This message\n\ 00156 # can contain all of them. Which one is actually used is up to the receiver\n\ 00157 # of this message. When adding new representations, one must be careful that\n\ 00158 # they have reasonable lightweight defaults indicating that that particular\n\ 00159 # representation is not available.\n\ 00160 \n\ 00161 # the tf frame to be used as a reference frame when combining information from\n\ 00162 # the different representations below\n\ 00163 string reference_frame_id\n\ 00164 \n\ 00165 # potential recognition results from a database of models\n\ 00166 # all poses are relative to the object reference pose\n\ 00167 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00168 \n\ 00169 # the point cloud itself\n\ 00170 sensor_msgs/PointCloud cluster\n\ 00171 \n\ 00172 # a region of a PointCloud2 of interest\n\ 00173 object_manipulation_msgs/SceneRegion region\n\ 00174 \n\ 00175 # the name that this object has in the collision environment\n\ 00176 string collision_name\n\ 00177 ================================================================================\n\ 00178 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00179 # Informs that a specific model from the Model Database has been \n\ 00180 # identified at a certain location\n\ 00181 \n\ 00182 # the database id of the model\n\ 00183 int32 model_id\n\ 00184 \n\ 00185 # the pose that it can be found in\n\ 00186 geometry_msgs/PoseStamped pose\n\ 00187 \n\ 00188 # a measure of the confidence level in this detection result\n\ 00189 float32 confidence\n\ 00190 \n\ 00191 # the name of the object detector that generated this detection result\n\ 00192 string detector_name\n\ 00193 \n\ 00194 ================================================================================\n\ 00195 MSG: sensor_msgs/PointCloud\n\ 00196 # This message holds a collection of 3d points, plus optional additional\n\ 00197 # information about each point.\n\ 00198 \n\ 00199 # Time of sensor data acquisition, coordinate frame ID.\n\ 00200 Header header\n\ 00201 \n\ 00202 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00203 # in the frame given in the header.\n\ 00204 geometry_msgs/Point32[] points\n\ 00205 \n\ 00206 # Each channel should have the same number of elements as points array,\n\ 00207 # and the data in each channel should correspond 1:1 with each point.\n\ 00208 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00209 ChannelFloat32[] channels\n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: geometry_msgs/Point32\n\ 00213 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00214 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00215 # \n\ 00216 # This recommendation is to promote interoperability. \n\ 00217 #\n\ 00218 # This message is designed to take up less space when sending\n\ 00219 # lots of points at once, as in the case of a PointCloud. \n\ 00220 \n\ 00221 float32 x\n\ 00222 float32 y\n\ 00223 float32 z\n\ 00224 ================================================================================\n\ 00225 MSG: sensor_msgs/ChannelFloat32\n\ 00226 # This message is used by the PointCloud message to hold optional data\n\ 00227 # associated with each point in the cloud. The length of the values\n\ 00228 # array should be the same as the length of the points array in the\n\ 00229 # PointCloud, and each value should be associated with the corresponding\n\ 00230 # point.\n\ 00231 \n\ 00232 # Channel names in existing practice include:\n\ 00233 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00234 # This is opposite to usual conventions but remains for\n\ 00235 # historical reasons. The newer PointCloud2 message has no\n\ 00236 # such problem.\n\ 00237 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00238 # (R,G,B) values packed into the least significant 24 bits,\n\ 00239 # in order.\n\ 00240 # \"intensity\" - laser or pixel intensity.\n\ 00241 # \"distance\"\n\ 00242 \n\ 00243 # The channel name should give semantics of the channel (e.g.\n\ 00244 # \"intensity\" instead of \"value\").\n\ 00245 string name\n\ 00246 \n\ 00247 # The values array should be 1-1 with the elements of the associated\n\ 00248 # PointCloud.\n\ 00249 float32[] values\n\ 00250 \n\ 00251 ================================================================================\n\ 00252 MSG: object_manipulation_msgs/SceneRegion\n\ 00253 # Point cloud\n\ 00254 sensor_msgs/PointCloud2 cloud\n\ 00255 \n\ 00256 # Indices for the region of interest\n\ 00257 int32[] mask\n\ 00258 \n\ 00259 # One of the corresponding 2D images, if applicable\n\ 00260 sensor_msgs/Image image\n\ 00261 \n\ 00262 # The disparity image, if applicable\n\ 00263 sensor_msgs/Image disparity_image\n\ 00264 \n\ 00265 # Camera info for the camera that took the image\n\ 00266 sensor_msgs/CameraInfo cam_info\n\ 00267 \n\ 00268 # a 3D region of interest for grasp planning\n\ 00269 geometry_msgs/PoseStamped roi_box_pose\n\ 00270 geometry_msgs/Vector3 roi_box_dims\n\ 00271 \n\ 00272 ================================================================================\n\ 00273 MSG: sensor_msgs/PointCloud2\n\ 00274 # This message holds a collection of N-dimensional points, which may\n\ 00275 # contain additional information such as normals, intensity, etc. The\n\ 00276 # point data is stored as a binary blob, its layout described by the\n\ 00277 # contents of the \"fields\" array.\n\ 00278 \n\ 00279 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00280 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00281 # camera depth sensors such as stereo or time-of-flight.\n\ 00282 \n\ 00283 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00284 # points).\n\ 00285 Header header\n\ 00286 \n\ 00287 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00288 # 1 and width is the length of the point cloud.\n\ 00289 uint32 height\n\ 00290 uint32 width\n\ 00291 \n\ 00292 # Describes the channels and their layout in the binary data blob.\n\ 00293 PointField[] fields\n\ 00294 \n\ 00295 bool is_bigendian # Is this data bigendian?\n\ 00296 uint32 point_step # Length of a point in bytes\n\ 00297 uint32 row_step # Length of a row in bytes\n\ 00298 uint8[] data # Actual point data, size is (row_step*height)\n\ 00299 \n\ 00300 bool is_dense # True if there are no invalid points\n\ 00301 \n\ 00302 ================================================================================\n\ 00303 MSG: sensor_msgs/PointField\n\ 00304 # This message holds the description of one point entry in the\n\ 00305 # PointCloud2 message format.\n\ 00306 uint8 INT8 = 1\n\ 00307 uint8 UINT8 = 2\n\ 00308 uint8 INT16 = 3\n\ 00309 uint8 UINT16 = 4\n\ 00310 uint8 INT32 = 5\n\ 00311 uint8 UINT32 = 6\n\ 00312 uint8 FLOAT32 = 7\n\ 00313 uint8 FLOAT64 = 8\n\ 00314 \n\ 00315 string name # Name of field\n\ 00316 uint32 offset # Offset from start of point struct\n\ 00317 uint8 datatype # Datatype enumeration, see above\n\ 00318 uint32 count # How many elements in the field\n\ 00319 \n\ 00320 ================================================================================\n\ 00321 MSG: sensor_msgs/Image\n\ 00322 # This message contains an uncompressed image\n\ 00323 # (0, 0) is at top-left corner of image\n\ 00324 #\n\ 00325 \n\ 00326 Header header # Header timestamp should be acquisition time of image\n\ 00327 # Header frame_id should be optical frame of camera\n\ 00328 # origin of frame should be optical center of cameara\n\ 00329 # +x should point to the right in the image\n\ 00330 # +y should point down in the image\n\ 00331 # +z should point into to plane of the image\n\ 00332 # If the frame_id here and the frame_id of the CameraInfo\n\ 00333 # message associated with the image conflict\n\ 00334 # the behavior is undefined\n\ 00335 \n\ 00336 uint32 height # image height, that is, number of rows\n\ 00337 uint32 width # image width, that is, number of columns\n\ 00338 \n\ 00339 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00340 # If you want to standardize a new string format, join\n\ 00341 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00342 \n\ 00343 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00344 # taken from the list of strings in src/image_encodings.cpp\n\ 00345 \n\ 00346 uint8 is_bigendian # is this data bigendian?\n\ 00347 uint32 step # Full row length in bytes\n\ 00348 uint8[] data # actual matrix data, size is (step * rows)\n\ 00349 \n\ 00350 ================================================================================\n\ 00351 MSG: sensor_msgs/CameraInfo\n\ 00352 # This message defines meta information for a camera. It should be in a\n\ 00353 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00354 # image topics named:\n\ 00355 #\n\ 00356 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00357 # image - monochrome, distorted\n\ 00358 # image_color - color, distorted\n\ 00359 # image_rect - monochrome, rectified\n\ 00360 # image_rect_color - color, rectified\n\ 00361 #\n\ 00362 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00363 # for producing the four processed image topics from image_raw and\n\ 00364 # camera_info. The meaning of the camera parameters are described in\n\ 00365 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00366 #\n\ 00367 # The image_geometry package provides a user-friendly interface to\n\ 00368 # common operations using this meta information. If you want to, e.g.,\n\ 00369 # project a 3d point into image coordinates, we strongly recommend\n\ 00370 # using image_geometry.\n\ 00371 #\n\ 00372 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00373 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00374 # indicates an uncalibrated camera.\n\ 00375 \n\ 00376 #######################################################################\n\ 00377 # Image acquisition info #\n\ 00378 #######################################################################\n\ 00379 \n\ 00380 # Time of image acquisition, camera coordinate frame ID\n\ 00381 Header header # Header timestamp should be acquisition time of image\n\ 00382 # Header frame_id should be optical frame of camera\n\ 00383 # origin of frame should be optical center of camera\n\ 00384 # +x should point to the right in the image\n\ 00385 # +y should point down in the image\n\ 00386 # +z should point into the plane of the image\n\ 00387 \n\ 00388 \n\ 00389 #######################################################################\n\ 00390 # Calibration Parameters #\n\ 00391 #######################################################################\n\ 00392 # These are fixed during camera calibration. Their values will be the #\n\ 00393 # same in all messages until the camera is recalibrated. Note that #\n\ 00394 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00395 # #\n\ 00396 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00397 # to: #\n\ 00398 # 1. An undistorted image (requires D and K) #\n\ 00399 # 2. A rectified image (requires D, K, R) #\n\ 00400 # The projection matrix P projects 3D points into the rectified image.#\n\ 00401 #######################################################################\n\ 00402 \n\ 00403 # The image dimensions with which the camera was calibrated. Normally\n\ 00404 # this will be the full camera resolution in pixels.\n\ 00405 uint32 height\n\ 00406 uint32 width\n\ 00407 \n\ 00408 # The distortion model used. Supported models are listed in\n\ 00409 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00410 # simple model of radial and tangential distortion - is sufficent.\n\ 00411 string distortion_model\n\ 00412 \n\ 00413 # The distortion parameters, size depending on the distortion model.\n\ 00414 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00415 float64[] D\n\ 00416 \n\ 00417 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00418 # [fx 0 cx]\n\ 00419 # K = [ 0 fy cy]\n\ 00420 # [ 0 0 1]\n\ 00421 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00422 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00423 # (cx, cy).\n\ 00424 float64[9] K # 3x3 row-major matrix\n\ 00425 \n\ 00426 # Rectification matrix (stereo cameras only)\n\ 00427 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00428 # stereo image plane so that epipolar lines in both stereo images are\n\ 00429 # parallel.\n\ 00430 float64[9] R # 3x3 row-major matrix\n\ 00431 \n\ 00432 # Projection/camera matrix\n\ 00433 # [fx' 0 cx' Tx]\n\ 00434 # P = [ 0 fy' cy' Ty]\n\ 00435 # [ 0 0 1 0]\n\ 00436 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00437 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00438 # is the normal camera intrinsic matrix for the rectified image.\n\ 00439 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00440 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00441 # (cx', cy') - these may differ from the values in K.\n\ 00442 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00443 # also have R = the identity and P[1:3,1:3] = K.\n\ 00444 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00445 # position of the optical center of the second camera in the first\n\ 00446 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00447 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00448 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00449 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00450 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00451 # the rectified image is given by:\n\ 00452 # [u v w]' = P * [X Y Z 1]'\n\ 00453 # x = u / w\n\ 00454 # y = v / w\n\ 00455 # This holds for both images of a stereo pair.\n\ 00456 float64[12] P # 3x4 row-major matrix\n\ 00457 \n\ 00458 \n\ 00459 #######################################################################\n\ 00460 # Operational Parameters #\n\ 00461 #######################################################################\n\ 00462 # These define the image region actually captured by the camera #\n\ 00463 # driver. Although they affect the geometry of the output image, they #\n\ 00464 # may be changed freely without recalibrating the camera. #\n\ 00465 #######################################################################\n\ 00466 \n\ 00467 # Binning refers here to any camera setting which combines rectangular\n\ 00468 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00469 # resolution of the output image to\n\ 00470 # (width / binning_x) x (height / binning_y).\n\ 00471 # The default values binning_x = binning_y = 0 is considered the same\n\ 00472 # as binning_x = binning_y = 1 (no subsampling).\n\ 00473 uint32 binning_x\n\ 00474 uint32 binning_y\n\ 00475 \n\ 00476 # Region of interest (subwindow of full camera resolution), given in\n\ 00477 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00478 # always denotes the same window of pixels on the camera sensor,\n\ 00479 # regardless of binning settings.\n\ 00480 # The default setting of roi (all values 0) is considered the same as\n\ 00481 # full resolution (roi.width = width, roi.height = height).\n\ 00482 RegionOfInterest roi\n\ 00483 \n\ 00484 ================================================================================\n\ 00485 MSG: sensor_msgs/RegionOfInterest\n\ 00486 # This message is used to specify a region of interest within an image.\n\ 00487 #\n\ 00488 # When used to specify the ROI setting of the camera when the image was\n\ 00489 # taken, the height and width fields should either match the height and\n\ 00490 # width fields for the associated image; or height = width = 0\n\ 00491 # indicates that the full resolution image was captured.\n\ 00492 \n\ 00493 uint32 x_offset # Leftmost pixel of the ROI\n\ 00494 # (0 if the ROI includes the left edge of the image)\n\ 00495 uint32 y_offset # Topmost pixel of the ROI\n\ 00496 # (0 if the ROI includes the top edge of the image)\n\ 00497 uint32 height # Height of ROI\n\ 00498 uint32 width # Width of ROI\n\ 00499 \n\ 00500 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00501 # ROI in this message. Typically this should be False if the full image\n\ 00502 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00503 # used).\n\ 00504 bool do_rectify\n\ 00505 \n\ 00506 ================================================================================\n\ 00507 MSG: geometry_msgs/Vector3\n\ 00508 # This represents a vector in free space. \n\ 00509 \n\ 00510 float64 x\n\ 00511 float64 y\n\ 00512 float64 z\n\ 00513 ================================================================================\n\ 00514 MSG: object_manipulation_msgs/Grasp\n\ 00515 \n\ 00516 # The internal posture of the hand for the pre-grasp\n\ 00517 # only positions are used\n\ 00518 sensor_msgs/JointState pre_grasp_posture\n\ 00519 \n\ 00520 # The internal posture of the hand for the grasp\n\ 00521 # positions and efforts are used\n\ 00522 sensor_msgs/JointState grasp_posture\n\ 00523 \n\ 00524 # The position of the end-effector for the grasp relative to a reference frame \n\ 00525 # (that is always specified elsewhere, not in this message)\n\ 00526 geometry_msgs/Pose grasp_pose\n\ 00527 \n\ 00528 # The estimated probability of success for this grasp\n\ 00529 float64 success_probability\n\ 00530 \n\ 00531 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00532 bool cluster_rep\n\ 00533 \n\ 00534 # how far the pre-grasp should ideally be away from the grasp\n\ 00535 float32 desired_approach_distance\n\ 00536 \n\ 00537 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00538 # for the grasp not to be rejected\n\ 00539 float32 min_approach_distance\n\ 00540 \n\ 00541 # an optional list of obstacles that we have semantic information about\n\ 00542 # and that we expect might move in the course of executing this grasp\n\ 00543 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00544 # execution, grasp executors will not check for collisions against these objects\n\ 00545 GraspableObject[] moved_obstacles\n\ 00546 \n\ 00547 ================================================================================\n\ 00548 MSG: sensor_msgs/JointState\n\ 00549 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00550 #\n\ 00551 # The state of each joint (revolute or prismatic) is defined by:\n\ 00552 # * the position of the joint (rad or m),\n\ 00553 # * the velocity of the joint (rad/s or m/s) and \n\ 00554 # * the effort that is applied in the joint (Nm or N).\n\ 00555 #\n\ 00556 # Each joint is uniquely identified by its name\n\ 00557 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00558 # in one message have to be recorded at the same time.\n\ 00559 #\n\ 00560 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00561 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00562 # effort associated with them, you can leave the effort array empty. \n\ 00563 #\n\ 00564 # All arrays in this message should have the same size, or be empty.\n\ 00565 # This is the only way to uniquely associate the joint name with the correct\n\ 00566 # states.\n\ 00567 \n\ 00568 \n\ 00569 Header header\n\ 00570 \n\ 00571 string[] name\n\ 00572 float64[] position\n\ 00573 float64[] velocity\n\ 00574 float64[] effort\n\ 00575 \n\ 00576 "; } 00577 public: 00578 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00579 00580 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00581 00582 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00583 { 00584 ros::serialization::OStream stream(write_ptr, 1000000000); 00585 ros::serialization::serialize(stream, header); 00586 ros::serialization::serialize(stream, goal_id); 00587 ros::serialization::serialize(stream, goal); 00588 return stream.getData(); 00589 } 00590 00591 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00592 { 00593 ros::serialization::IStream stream(read_ptr, 1000000000); 00594 ros::serialization::deserialize(stream, header); 00595 ros::serialization::deserialize(stream, goal_id); 00596 ros::serialization::deserialize(stream, goal); 00597 return stream.getData(); 00598 } 00599 00600 ROS_DEPRECATED virtual uint32_t serializationLength() const 00601 { 00602 uint32_t size = 0; 00603 size += ros::serialization::serializationLength(header); 00604 size += ros::serialization::serializationLength(goal_id); 00605 size += ros::serialization::serializationLength(goal); 00606 return size; 00607 } 00608 00609 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > Ptr; 00610 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> const> ConstPtr; 00611 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00612 }; // struct GetGripperPoseActionGoal 00613 typedef ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<std::allocator<void> > GetGripperPoseActionGoal; 00614 00615 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal> GetGripperPoseActionGoalPtr; 00616 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal const> GetGripperPoseActionGoalConstPtr; 00617 00618 00619 template<typename ContainerAllocator> 00620 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> & v) 00621 { 00622 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> >::stream(s, "", v); 00623 return s;} 00624 00625 } // namespace pr2_object_manipulation_msgs 00626 00627 namespace ros 00628 { 00629 namespace message_traits 00630 { 00631 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {}; 00632 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> const> : public TrueType {}; 00633 template<class ContainerAllocator> 00634 struct MD5Sum< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > { 00635 static const char* value() 00636 { 00637 return "1967a7e9bdf026bfaa86707548b502d9"; 00638 } 00639 00640 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 00641 static const uint64_t static_value1 = 0x1967a7e9bdf026bfULL; 00642 static const uint64_t static_value2 = 0xaa86707548b502d9ULL; 00643 }; 00644 00645 template<class ContainerAllocator> 00646 struct DataType< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > { 00647 static const char* value() 00648 { 00649 return "pr2_object_manipulation_msgs/GetGripperPoseActionGoal"; 00650 } 00651 00652 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 00653 }; 00654 00655 template<class ContainerAllocator> 00656 struct Definition< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > { 00657 static const char* value() 00658 { 00659 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00660 \n\ 00661 Header header\n\ 00662 actionlib_msgs/GoalID goal_id\n\ 00663 GetGripperPoseGoal goal\n\ 00664 \n\ 00665 ================================================================================\n\ 00666 MSG: std_msgs/Header\n\ 00667 # Standard metadata for higher-level stamped data types.\n\ 00668 # This is generally used to communicate timestamped data \n\ 00669 # in a particular coordinate frame.\n\ 00670 # \n\ 00671 # sequence ID: consecutively increasing ID \n\ 00672 uint32 seq\n\ 00673 #Two-integer timestamp that is expressed as:\n\ 00674 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00675 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00676 # time-handling sugar is provided by the client library\n\ 00677 time stamp\n\ 00678 #Frame this data is associated with\n\ 00679 # 0: no frame\n\ 00680 # 1: global frame\n\ 00681 string frame_id\n\ 00682 \n\ 00683 ================================================================================\n\ 00684 MSG: actionlib_msgs/GoalID\n\ 00685 # The stamp should store the time at which this goal was requested.\n\ 00686 # It is used by an action server when it tries to preempt all\n\ 00687 # goals that were requested before a certain time\n\ 00688 time stamp\n\ 00689 \n\ 00690 # The id provides a way to associate feedback and\n\ 00691 # result message with specific goal requests. The id\n\ 00692 # specified must be unique.\n\ 00693 string id\n\ 00694 \n\ 00695 \n\ 00696 ================================================================================\n\ 00697 MSG: pr2_object_manipulation_msgs/GetGripperPoseGoal\n\ 00698 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00699 \n\ 00700 # for which arm are we requesting a pose\n\ 00701 # useful for knowing which arm to initialize from when seed is empty\n\ 00702 string arm_name\n\ 00703 \n\ 00704 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\ 00705 # the ghosted gripper will be initialized at the current position of the gripper\n\ 00706 geometry_msgs/PoseStamped gripper_pose\n\ 00707 float32 gripper_opening\n\ 00708 \n\ 00709 # An object that the gripper is holding. May be empty.\n\ 00710 object_manipulation_msgs/GraspableObject object\n\ 00711 \n\ 00712 # how we are holding the object, if any.\n\ 00713 object_manipulation_msgs/Grasp grasp\n\ 00714 \n\ 00715 \n\ 00716 ================================================================================\n\ 00717 MSG: geometry_msgs/PoseStamped\n\ 00718 # A Pose with reference coordinate frame and timestamp\n\ 00719 Header header\n\ 00720 Pose pose\n\ 00721 \n\ 00722 ================================================================================\n\ 00723 MSG: geometry_msgs/Pose\n\ 00724 # A representation of pose in free space, composed of postion and orientation. \n\ 00725 Point position\n\ 00726 Quaternion orientation\n\ 00727 \n\ 00728 ================================================================================\n\ 00729 MSG: geometry_msgs/Point\n\ 00730 # This contains the position of a point in free space\n\ 00731 float64 x\n\ 00732 float64 y\n\ 00733 float64 z\n\ 00734 \n\ 00735 ================================================================================\n\ 00736 MSG: geometry_msgs/Quaternion\n\ 00737 # This represents an orientation in free space in quaternion form.\n\ 00738 \n\ 00739 float64 x\n\ 00740 float64 y\n\ 00741 float64 z\n\ 00742 float64 w\n\ 00743 \n\ 00744 ================================================================================\n\ 00745 MSG: object_manipulation_msgs/GraspableObject\n\ 00746 # an object that the object_manipulator can work on\n\ 00747 \n\ 00748 # a graspable object can be represented in multiple ways. This message\n\ 00749 # can contain all of them. Which one is actually used is up to the receiver\n\ 00750 # of this message. When adding new representations, one must be careful that\n\ 00751 # they have reasonable lightweight defaults indicating that that particular\n\ 00752 # representation is not available.\n\ 00753 \n\ 00754 # the tf frame to be used as a reference frame when combining information from\n\ 00755 # the different representations below\n\ 00756 string reference_frame_id\n\ 00757 \n\ 00758 # potential recognition results from a database of models\n\ 00759 # all poses are relative to the object reference pose\n\ 00760 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00761 \n\ 00762 # the point cloud itself\n\ 00763 sensor_msgs/PointCloud cluster\n\ 00764 \n\ 00765 # a region of a PointCloud2 of interest\n\ 00766 object_manipulation_msgs/SceneRegion region\n\ 00767 \n\ 00768 # the name that this object has in the collision environment\n\ 00769 string collision_name\n\ 00770 ================================================================================\n\ 00771 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00772 # Informs that a specific model from the Model Database has been \n\ 00773 # identified at a certain location\n\ 00774 \n\ 00775 # the database id of the model\n\ 00776 int32 model_id\n\ 00777 \n\ 00778 # the pose that it can be found in\n\ 00779 geometry_msgs/PoseStamped pose\n\ 00780 \n\ 00781 # a measure of the confidence level in this detection result\n\ 00782 float32 confidence\n\ 00783 \n\ 00784 # the name of the object detector that generated this detection result\n\ 00785 string detector_name\n\ 00786 \n\ 00787 ================================================================================\n\ 00788 MSG: sensor_msgs/PointCloud\n\ 00789 # This message holds a collection of 3d points, plus optional additional\n\ 00790 # information about each point.\n\ 00791 \n\ 00792 # Time of sensor data acquisition, coordinate frame ID.\n\ 00793 Header header\n\ 00794 \n\ 00795 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00796 # in the frame given in the header.\n\ 00797 geometry_msgs/Point32[] points\n\ 00798 \n\ 00799 # Each channel should have the same number of elements as points array,\n\ 00800 # and the data in each channel should correspond 1:1 with each point.\n\ 00801 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00802 ChannelFloat32[] channels\n\ 00803 \n\ 00804 ================================================================================\n\ 00805 MSG: geometry_msgs/Point32\n\ 00806 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00807 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00808 # \n\ 00809 # This recommendation is to promote interoperability. \n\ 00810 #\n\ 00811 # This message is designed to take up less space when sending\n\ 00812 # lots of points at once, as in the case of a PointCloud. \n\ 00813 \n\ 00814 float32 x\n\ 00815 float32 y\n\ 00816 float32 z\n\ 00817 ================================================================================\n\ 00818 MSG: sensor_msgs/ChannelFloat32\n\ 00819 # This message is used by the PointCloud message to hold optional data\n\ 00820 # associated with each point in the cloud. The length of the values\n\ 00821 # array should be the same as the length of the points array in the\n\ 00822 # PointCloud, and each value should be associated with the corresponding\n\ 00823 # point.\n\ 00824 \n\ 00825 # Channel names in existing practice include:\n\ 00826 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00827 # This is opposite to usual conventions but remains for\n\ 00828 # historical reasons. The newer PointCloud2 message has no\n\ 00829 # such problem.\n\ 00830 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00831 # (R,G,B) values packed into the least significant 24 bits,\n\ 00832 # in order.\n\ 00833 # \"intensity\" - laser or pixel intensity.\n\ 00834 # \"distance\"\n\ 00835 \n\ 00836 # The channel name should give semantics of the channel (e.g.\n\ 00837 # \"intensity\" instead of \"value\").\n\ 00838 string name\n\ 00839 \n\ 00840 # The values array should be 1-1 with the elements of the associated\n\ 00841 # PointCloud.\n\ 00842 float32[] values\n\ 00843 \n\ 00844 ================================================================================\n\ 00845 MSG: object_manipulation_msgs/SceneRegion\n\ 00846 # Point cloud\n\ 00847 sensor_msgs/PointCloud2 cloud\n\ 00848 \n\ 00849 # Indices for the region of interest\n\ 00850 int32[] mask\n\ 00851 \n\ 00852 # One of the corresponding 2D images, if applicable\n\ 00853 sensor_msgs/Image image\n\ 00854 \n\ 00855 # The disparity image, if applicable\n\ 00856 sensor_msgs/Image disparity_image\n\ 00857 \n\ 00858 # Camera info for the camera that took the image\n\ 00859 sensor_msgs/CameraInfo cam_info\n\ 00860 \n\ 00861 # a 3D region of interest for grasp planning\n\ 00862 geometry_msgs/PoseStamped roi_box_pose\n\ 00863 geometry_msgs/Vector3 roi_box_dims\n\ 00864 \n\ 00865 ================================================================================\n\ 00866 MSG: sensor_msgs/PointCloud2\n\ 00867 # This message holds a collection of N-dimensional points, which may\n\ 00868 # contain additional information such as normals, intensity, etc. The\n\ 00869 # point data is stored as a binary blob, its layout described by the\n\ 00870 # contents of the \"fields\" array.\n\ 00871 \n\ 00872 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00873 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00874 # camera depth sensors such as stereo or time-of-flight.\n\ 00875 \n\ 00876 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00877 # points).\n\ 00878 Header header\n\ 00879 \n\ 00880 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00881 # 1 and width is the length of the point cloud.\n\ 00882 uint32 height\n\ 00883 uint32 width\n\ 00884 \n\ 00885 # Describes the channels and their layout in the binary data blob.\n\ 00886 PointField[] fields\n\ 00887 \n\ 00888 bool is_bigendian # Is this data bigendian?\n\ 00889 uint32 point_step # Length of a point in bytes\n\ 00890 uint32 row_step # Length of a row in bytes\n\ 00891 uint8[] data # Actual point data, size is (row_step*height)\n\ 00892 \n\ 00893 bool is_dense # True if there are no invalid points\n\ 00894 \n\ 00895 ================================================================================\n\ 00896 MSG: sensor_msgs/PointField\n\ 00897 # This message holds the description of one point entry in the\n\ 00898 # PointCloud2 message format.\n\ 00899 uint8 INT8 = 1\n\ 00900 uint8 UINT8 = 2\n\ 00901 uint8 INT16 = 3\n\ 00902 uint8 UINT16 = 4\n\ 00903 uint8 INT32 = 5\n\ 00904 uint8 UINT32 = 6\n\ 00905 uint8 FLOAT32 = 7\n\ 00906 uint8 FLOAT64 = 8\n\ 00907 \n\ 00908 string name # Name of field\n\ 00909 uint32 offset # Offset from start of point struct\n\ 00910 uint8 datatype # Datatype enumeration, see above\n\ 00911 uint32 count # How many elements in the field\n\ 00912 \n\ 00913 ================================================================================\n\ 00914 MSG: sensor_msgs/Image\n\ 00915 # This message contains an uncompressed image\n\ 00916 # (0, 0) is at top-left corner of image\n\ 00917 #\n\ 00918 \n\ 00919 Header header # Header timestamp should be acquisition time of image\n\ 00920 # Header frame_id should be optical frame of camera\n\ 00921 # origin of frame should be optical center of cameara\n\ 00922 # +x should point to the right in the image\n\ 00923 # +y should point down in the image\n\ 00924 # +z should point into to plane of the image\n\ 00925 # If the frame_id here and the frame_id of the CameraInfo\n\ 00926 # message associated with the image conflict\n\ 00927 # the behavior is undefined\n\ 00928 \n\ 00929 uint32 height # image height, that is, number of rows\n\ 00930 uint32 width # image width, that is, number of columns\n\ 00931 \n\ 00932 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00933 # If you want to standardize a new string format, join\n\ 00934 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00935 \n\ 00936 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00937 # taken from the list of strings in src/image_encodings.cpp\n\ 00938 \n\ 00939 uint8 is_bigendian # is this data bigendian?\n\ 00940 uint32 step # Full row length in bytes\n\ 00941 uint8[] data # actual matrix data, size is (step * rows)\n\ 00942 \n\ 00943 ================================================================================\n\ 00944 MSG: sensor_msgs/CameraInfo\n\ 00945 # This message defines meta information for a camera. It should be in a\n\ 00946 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00947 # image topics named:\n\ 00948 #\n\ 00949 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00950 # image - monochrome, distorted\n\ 00951 # image_color - color, distorted\n\ 00952 # image_rect - monochrome, rectified\n\ 00953 # image_rect_color - color, rectified\n\ 00954 #\n\ 00955 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00956 # for producing the four processed image topics from image_raw and\n\ 00957 # camera_info. The meaning of the camera parameters are described in\n\ 00958 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00959 #\n\ 00960 # The image_geometry package provides a user-friendly interface to\n\ 00961 # common operations using this meta information. If you want to, e.g.,\n\ 00962 # project a 3d point into image coordinates, we strongly recommend\n\ 00963 # using image_geometry.\n\ 00964 #\n\ 00965 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00966 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00967 # indicates an uncalibrated camera.\n\ 00968 \n\ 00969 #######################################################################\n\ 00970 # Image acquisition info #\n\ 00971 #######################################################################\n\ 00972 \n\ 00973 # Time of image acquisition, camera coordinate frame ID\n\ 00974 Header header # Header timestamp should be acquisition time of image\n\ 00975 # Header frame_id should be optical frame of camera\n\ 00976 # origin of frame should be optical center of camera\n\ 00977 # +x should point to the right in the image\n\ 00978 # +y should point down in the image\n\ 00979 # +z should point into the plane of the image\n\ 00980 \n\ 00981 \n\ 00982 #######################################################################\n\ 00983 # Calibration Parameters #\n\ 00984 #######################################################################\n\ 00985 # These are fixed during camera calibration. Their values will be the #\n\ 00986 # same in all messages until the camera is recalibrated. Note that #\n\ 00987 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00988 # #\n\ 00989 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00990 # to: #\n\ 00991 # 1. An undistorted image (requires D and K) #\n\ 00992 # 2. A rectified image (requires D, K, R) #\n\ 00993 # The projection matrix P projects 3D points into the rectified image.#\n\ 00994 #######################################################################\n\ 00995 \n\ 00996 # The image dimensions with which the camera was calibrated. Normally\n\ 00997 # this will be the full camera resolution in pixels.\n\ 00998 uint32 height\n\ 00999 uint32 width\n\ 01000 \n\ 01001 # The distortion model used. Supported models are listed in\n\ 01002 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01003 # simple model of radial and tangential distortion - is sufficent.\n\ 01004 string distortion_model\n\ 01005 \n\ 01006 # The distortion parameters, size depending on the distortion model.\n\ 01007 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01008 float64[] D\n\ 01009 \n\ 01010 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01011 # [fx 0 cx]\n\ 01012 # K = [ 0 fy cy]\n\ 01013 # [ 0 0 1]\n\ 01014 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01015 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01016 # (cx, cy).\n\ 01017 float64[9] K # 3x3 row-major matrix\n\ 01018 \n\ 01019 # Rectification matrix (stereo cameras only)\n\ 01020 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01021 # stereo image plane so that epipolar lines in both stereo images are\n\ 01022 # parallel.\n\ 01023 float64[9] R # 3x3 row-major matrix\n\ 01024 \n\ 01025 # Projection/camera matrix\n\ 01026 # [fx' 0 cx' Tx]\n\ 01027 # P = [ 0 fy' cy' Ty]\n\ 01028 # [ 0 0 1 0]\n\ 01029 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01030 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01031 # is the normal camera intrinsic matrix for the rectified image.\n\ 01032 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01033 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01034 # (cx', cy') - these may differ from the values in K.\n\ 01035 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01036 # also have R = the identity and P[1:3,1:3] = K.\n\ 01037 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01038 # position of the optical center of the second camera in the first\n\ 01039 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01040 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01041 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01042 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01043 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01044 # the rectified image is given by:\n\ 01045 # [u v w]' = P * [X Y Z 1]'\n\ 01046 # x = u / w\n\ 01047 # y = v / w\n\ 01048 # This holds for both images of a stereo pair.\n\ 01049 float64[12] P # 3x4 row-major matrix\n\ 01050 \n\ 01051 \n\ 01052 #######################################################################\n\ 01053 # Operational Parameters #\n\ 01054 #######################################################################\n\ 01055 # These define the image region actually captured by the camera #\n\ 01056 # driver. Although they affect the geometry of the output image, they #\n\ 01057 # may be changed freely without recalibrating the camera. #\n\ 01058 #######################################################################\n\ 01059 \n\ 01060 # Binning refers here to any camera setting which combines rectangular\n\ 01061 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01062 # resolution of the output image to\n\ 01063 # (width / binning_x) x (height / binning_y).\n\ 01064 # The default values binning_x = binning_y = 0 is considered the same\n\ 01065 # as binning_x = binning_y = 1 (no subsampling).\n\ 01066 uint32 binning_x\n\ 01067 uint32 binning_y\n\ 01068 \n\ 01069 # Region of interest (subwindow of full camera resolution), given in\n\ 01070 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01071 # always denotes the same window of pixels on the camera sensor,\n\ 01072 # regardless of binning settings.\n\ 01073 # The default setting of roi (all values 0) is considered the same as\n\ 01074 # full resolution (roi.width = width, roi.height = height).\n\ 01075 RegionOfInterest roi\n\ 01076 \n\ 01077 ================================================================================\n\ 01078 MSG: sensor_msgs/RegionOfInterest\n\ 01079 # This message is used to specify a region of interest within an image.\n\ 01080 #\n\ 01081 # When used to specify the ROI setting of the camera when the image was\n\ 01082 # taken, the height and width fields should either match the height and\n\ 01083 # width fields for the associated image; or height = width = 0\n\ 01084 # indicates that the full resolution image was captured.\n\ 01085 \n\ 01086 uint32 x_offset # Leftmost pixel of the ROI\n\ 01087 # (0 if the ROI includes the left edge of the image)\n\ 01088 uint32 y_offset # Topmost pixel of the ROI\n\ 01089 # (0 if the ROI includes the top edge of the image)\n\ 01090 uint32 height # Height of ROI\n\ 01091 uint32 width # Width of ROI\n\ 01092 \n\ 01093 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01094 # ROI in this message. Typically this should be False if the full image\n\ 01095 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01096 # used).\n\ 01097 bool do_rectify\n\ 01098 \n\ 01099 ================================================================================\n\ 01100 MSG: geometry_msgs/Vector3\n\ 01101 # This represents a vector in free space. \n\ 01102 \n\ 01103 float64 x\n\ 01104 float64 y\n\ 01105 float64 z\n\ 01106 ================================================================================\n\ 01107 MSG: object_manipulation_msgs/Grasp\n\ 01108 \n\ 01109 # The internal posture of the hand for the pre-grasp\n\ 01110 # only positions are used\n\ 01111 sensor_msgs/JointState pre_grasp_posture\n\ 01112 \n\ 01113 # The internal posture of the hand for the grasp\n\ 01114 # positions and efforts are used\n\ 01115 sensor_msgs/JointState grasp_posture\n\ 01116 \n\ 01117 # The position of the end-effector for the grasp relative to a reference frame \n\ 01118 # (that is always specified elsewhere, not in this message)\n\ 01119 geometry_msgs/Pose grasp_pose\n\ 01120 \n\ 01121 # The estimated probability of success for this grasp\n\ 01122 float64 success_probability\n\ 01123 \n\ 01124 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 01125 bool cluster_rep\n\ 01126 \n\ 01127 # how far the pre-grasp should ideally be away from the grasp\n\ 01128 float32 desired_approach_distance\n\ 01129 \n\ 01130 # how much distance between pre-grasp and grasp must actually be feasible \n\ 01131 # for the grasp not to be rejected\n\ 01132 float32 min_approach_distance\n\ 01133 \n\ 01134 # an optional list of obstacles that we have semantic information about\n\ 01135 # and that we expect might move in the course of executing this grasp\n\ 01136 # the grasp planner is expected to make sure they move in an OK way; during\n\ 01137 # execution, grasp executors will not check for collisions against these objects\n\ 01138 GraspableObject[] moved_obstacles\n\ 01139 \n\ 01140 ================================================================================\n\ 01141 MSG: sensor_msgs/JointState\n\ 01142 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 01143 #\n\ 01144 # The state of each joint (revolute or prismatic) is defined by:\n\ 01145 # * the position of the joint (rad or m),\n\ 01146 # * the velocity of the joint (rad/s or m/s) and \n\ 01147 # * the effort that is applied in the joint (Nm or N).\n\ 01148 #\n\ 01149 # Each joint is uniquely identified by its name\n\ 01150 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 01151 # in one message have to be recorded at the same time.\n\ 01152 #\n\ 01153 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 01154 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 01155 # effort associated with them, you can leave the effort array empty. \n\ 01156 #\n\ 01157 # All arrays in this message should have the same size, or be empty.\n\ 01158 # This is the only way to uniquely associate the joint name with the correct\n\ 01159 # states.\n\ 01160 \n\ 01161 \n\ 01162 Header header\n\ 01163 \n\ 01164 string[] name\n\ 01165 float64[] position\n\ 01166 float64[] velocity\n\ 01167 float64[] effort\n\ 01168 \n\ 01169 "; 01170 } 01171 01172 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> &) { return value(); } 01173 }; 01174 01175 template<class ContainerAllocator> struct HasHeader< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {}; 01176 template<class ContainerAllocator> struct HasHeader< const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > : public TrueType {}; 01177 } // namespace message_traits 01178 } // namespace ros 01179 01180 namespace ros 01181 { 01182 namespace serialization 01183 { 01184 01185 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > 01186 { 01187 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01188 { 01189 stream.next(m.header); 01190 stream.next(m.goal_id); 01191 stream.next(m.goal); 01192 } 01193 01194 ROS_DECLARE_ALLINONE_SERIALIZER; 01195 }; // struct GetGripperPoseActionGoal_ 01196 } // namespace serialization 01197 } // namespace ros 01198 01199 namespace ros 01200 { 01201 namespace message_operations 01202 { 01203 01204 template<class ContainerAllocator> 01205 struct Printer< ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> > 01206 { 01207 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::GetGripperPoseActionGoal_<ContainerAllocator> & v) 01208 { 01209 s << indent << "header: "; 01210 s << std::endl; 01211 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01212 s << indent << "goal_id: "; 01213 s << std::endl; 01214 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 01215 s << indent << "goal: "; 01216 s << std::endl; 01217 Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 01218 } 01219 }; 01220 01221 01222 } // namespace message_operations 01223 } // namespace ros 01224 01225 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEACTIONGOAL_H 01226