$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/object_recognition_gui/msg/ObjectRecognitionGuiAction.msg */ 00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H 00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "object_recognition_gui/ObjectRecognitionGuiActionGoal.h" 00018 #include "object_recognition_gui/ObjectRecognitionGuiActionResult.h" 00019 #include "object_recognition_gui/ObjectRecognitionGuiActionFeedback.h" 00020 00021 namespace object_recognition_gui 00022 { 00023 template <class ContainerAllocator> 00024 struct ObjectRecognitionGuiAction_ { 00025 typedef ObjectRecognitionGuiAction_<ContainerAllocator> Type; 00026 00027 ObjectRecognitionGuiAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 ObjectRecognitionGuiAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> _action_result_type; 00045 ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_recognition_gui/ObjectRecognitionGuiAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "ceb5b2d8cb3006a85f5fabfab9056abe"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 ObjectRecognitionGuiActionGoal action_goal\n\ 00069 ObjectRecognitionGuiActionResult action_result\n\ 00070 ObjectRecognitionGuiActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: object_recognition_gui/ObjectRecognitionGuiActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 ObjectRecognitionGuiGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 \n\ 00115 #the original sensor data (depth/disparity image)\n\ 00116 sensor_msgs/Image image\n\ 00117 sensor_msgs/CameraInfo camera_info\n\ 00118 \n\ 00119 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00120 ModelHypothesisList[] model_hypotheses\n\ 00121 \n\ 00122 ================================================================================\n\ 00123 MSG: sensor_msgs/Image\n\ 00124 # This message contains an uncompressed image\n\ 00125 # (0, 0) is at top-left corner of image\n\ 00126 #\n\ 00127 \n\ 00128 Header header # Header timestamp should be acquisition time of image\n\ 00129 # Header frame_id should be optical frame of camera\n\ 00130 # origin of frame should be optical center of cameara\n\ 00131 # +x should point to the right in the image\n\ 00132 # +y should point down in the image\n\ 00133 # +z should point into to plane of the image\n\ 00134 # If the frame_id here and the frame_id of the CameraInfo\n\ 00135 # message associated with the image conflict\n\ 00136 # the behavior is undefined\n\ 00137 \n\ 00138 uint32 height # image height, that is, number of rows\n\ 00139 uint32 width # image width, that is, number of columns\n\ 00140 \n\ 00141 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00142 # If you want to standardize a new string format, join\n\ 00143 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00144 \n\ 00145 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00146 # taken from the list of strings in src/image_encodings.cpp\n\ 00147 \n\ 00148 uint8 is_bigendian # is this data bigendian?\n\ 00149 uint32 step # Full row length in bytes\n\ 00150 uint8[] data # actual matrix data, size is (step * rows)\n\ 00151 \n\ 00152 ================================================================================\n\ 00153 MSG: sensor_msgs/CameraInfo\n\ 00154 # This message defines meta information for a camera. It should be in a\n\ 00155 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00156 # image topics named:\n\ 00157 #\n\ 00158 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00159 # image - monochrome, distorted\n\ 00160 # image_color - color, distorted\n\ 00161 # image_rect - monochrome, rectified\n\ 00162 # image_rect_color - color, rectified\n\ 00163 #\n\ 00164 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00165 # for producing the four processed image topics from image_raw and\n\ 00166 # camera_info. The meaning of the camera parameters are described in\n\ 00167 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00168 #\n\ 00169 # The image_geometry package provides a user-friendly interface to\n\ 00170 # common operations using this meta information. If you want to, e.g.,\n\ 00171 # project a 3d point into image coordinates, we strongly recommend\n\ 00172 # using image_geometry.\n\ 00173 #\n\ 00174 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00175 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00176 # indicates an uncalibrated camera.\n\ 00177 \n\ 00178 #######################################################################\n\ 00179 # Image acquisition info #\n\ 00180 #######################################################################\n\ 00181 \n\ 00182 # Time of image acquisition, camera coordinate frame ID\n\ 00183 Header header # Header timestamp should be acquisition time of image\n\ 00184 # Header frame_id should be optical frame of camera\n\ 00185 # origin of frame should be optical center of camera\n\ 00186 # +x should point to the right in the image\n\ 00187 # +y should point down in the image\n\ 00188 # +z should point into the plane of the image\n\ 00189 \n\ 00190 \n\ 00191 #######################################################################\n\ 00192 # Calibration Parameters #\n\ 00193 #######################################################################\n\ 00194 # These are fixed during camera calibration. Their values will be the #\n\ 00195 # same in all messages until the camera is recalibrated. Note that #\n\ 00196 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00197 # #\n\ 00198 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00199 # to: #\n\ 00200 # 1. An undistorted image (requires D and K) #\n\ 00201 # 2. A rectified image (requires D, K, R) #\n\ 00202 # The projection matrix P projects 3D points into the rectified image.#\n\ 00203 #######################################################################\n\ 00204 \n\ 00205 # The image dimensions with which the camera was calibrated. Normally\n\ 00206 # this will be the full camera resolution in pixels.\n\ 00207 uint32 height\n\ 00208 uint32 width\n\ 00209 \n\ 00210 # The distortion model used. Supported models are listed in\n\ 00211 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00212 # simple model of radial and tangential distortion - is sufficent.\n\ 00213 string distortion_model\n\ 00214 \n\ 00215 # The distortion parameters, size depending on the distortion model.\n\ 00216 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00217 float64[] D\n\ 00218 \n\ 00219 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00220 # [fx 0 cx]\n\ 00221 # K = [ 0 fy cy]\n\ 00222 # [ 0 0 1]\n\ 00223 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00224 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00225 # (cx, cy).\n\ 00226 float64[9] K # 3x3 row-major matrix\n\ 00227 \n\ 00228 # Rectification matrix (stereo cameras only)\n\ 00229 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00230 # stereo image plane so that epipolar lines in both stereo images are\n\ 00231 # parallel.\n\ 00232 float64[9] R # 3x3 row-major matrix\n\ 00233 \n\ 00234 # Projection/camera matrix\n\ 00235 # [fx' 0 cx' Tx]\n\ 00236 # P = [ 0 fy' cy' Ty]\n\ 00237 # [ 0 0 1 0]\n\ 00238 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00239 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00240 # is the normal camera intrinsic matrix for the rectified image.\n\ 00241 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00242 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00243 # (cx', cy') - these may differ from the values in K.\n\ 00244 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00245 # also have R = the identity and P[1:3,1:3] = K.\n\ 00246 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00247 # position of the optical center of the second camera in the first\n\ 00248 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00249 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00250 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00251 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00252 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00253 # the rectified image is given by:\n\ 00254 # [u v w]' = P * [X Y Z 1]'\n\ 00255 # x = u / w\n\ 00256 # y = v / w\n\ 00257 # This holds for both images of a stereo pair.\n\ 00258 float64[12] P # 3x4 row-major matrix\n\ 00259 \n\ 00260 \n\ 00261 #######################################################################\n\ 00262 # Operational Parameters #\n\ 00263 #######################################################################\n\ 00264 # These define the image region actually captured by the camera #\n\ 00265 # driver. Although they affect the geometry of the output image, they #\n\ 00266 # may be changed freely without recalibrating the camera. #\n\ 00267 #######################################################################\n\ 00268 \n\ 00269 # Binning refers here to any camera setting which combines rectangular\n\ 00270 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00271 # resolution of the output image to\n\ 00272 # (width / binning_x) x (height / binning_y).\n\ 00273 # The default values binning_x = binning_y = 0 is considered the same\n\ 00274 # as binning_x = binning_y = 1 (no subsampling).\n\ 00275 uint32 binning_x\n\ 00276 uint32 binning_y\n\ 00277 \n\ 00278 # Region of interest (subwindow of full camera resolution), given in\n\ 00279 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00280 # always denotes the same window of pixels on the camera sensor,\n\ 00281 # regardless of binning settings.\n\ 00282 # The default setting of roi (all values 0) is considered the same as\n\ 00283 # full resolution (roi.width = width, roi.height = height).\n\ 00284 RegionOfInterest roi\n\ 00285 \n\ 00286 ================================================================================\n\ 00287 MSG: sensor_msgs/RegionOfInterest\n\ 00288 # This message is used to specify a region of interest within an image.\n\ 00289 #\n\ 00290 # When used to specify the ROI setting of the camera when the image was\n\ 00291 # taken, the height and width fields should either match the height and\n\ 00292 # width fields for the associated image; or height = width = 0\n\ 00293 # indicates that the full resolution image was captured.\n\ 00294 \n\ 00295 uint32 x_offset # Leftmost pixel of the ROI\n\ 00296 # (0 if the ROI includes the left edge of the image)\n\ 00297 uint32 y_offset # Topmost pixel of the ROI\n\ 00298 # (0 if the ROI includes the top edge of the image)\n\ 00299 uint32 height # Height of ROI\n\ 00300 uint32 width # Width of ROI\n\ 00301 \n\ 00302 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00303 # ROI in this message. Typically this should be False if the full image\n\ 00304 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00305 # used).\n\ 00306 bool do_rectify\n\ 00307 \n\ 00308 ================================================================================\n\ 00309 MSG: object_recognition_gui/ModelHypothesisList\n\ 00310 ModelHypothesis[] hypotheses\n\ 00311 \n\ 00312 #initial guess if this can be a correct recognition result at all\n\ 00313 bool accept\n\ 00314 ================================================================================\n\ 00315 MSG: object_recognition_gui/ModelHypothesis\n\ 00316 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00317 \n\ 00318 arm_navigation_msgs/Shape mesh\n\ 00319 geometry_msgs/PoseStamped pose\n\ 00320 \n\ 00321 ================================================================================\n\ 00322 MSG: arm_navigation_msgs/Shape\n\ 00323 byte SPHERE=0\n\ 00324 byte BOX=1\n\ 00325 byte CYLINDER=2\n\ 00326 byte MESH=3\n\ 00327 \n\ 00328 byte type\n\ 00329 \n\ 00330 \n\ 00331 #### define sphere, box, cylinder ####\n\ 00332 # the origin of each shape is considered at the shape's center\n\ 00333 \n\ 00334 # for sphere\n\ 00335 # radius := dimensions[0]\n\ 00336 \n\ 00337 # for cylinder\n\ 00338 # radius := dimensions[0]\n\ 00339 # length := dimensions[1]\n\ 00340 # the length is along the Z axis\n\ 00341 \n\ 00342 # for box\n\ 00343 # size_x := dimensions[0]\n\ 00344 # size_y := dimensions[1]\n\ 00345 # size_z := dimensions[2]\n\ 00346 float64[] dimensions\n\ 00347 \n\ 00348 \n\ 00349 #### define mesh ####\n\ 00350 \n\ 00351 # list of triangles; triangle k is defined by tre vertices located\n\ 00352 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00353 int32[] triangles\n\ 00354 geometry_msgs/Point[] vertices\n\ 00355 \n\ 00356 ================================================================================\n\ 00357 MSG: geometry_msgs/Point\n\ 00358 # This contains the position of a point in free space\n\ 00359 float64 x\n\ 00360 float64 y\n\ 00361 float64 z\n\ 00362 \n\ 00363 ================================================================================\n\ 00364 MSG: geometry_msgs/PoseStamped\n\ 00365 # A Pose with reference coordinate frame and timestamp\n\ 00366 Header header\n\ 00367 Pose pose\n\ 00368 \n\ 00369 ================================================================================\n\ 00370 MSG: geometry_msgs/Pose\n\ 00371 # A representation of pose in free space, composed of postion and orientation. \n\ 00372 Point position\n\ 00373 Quaternion orientation\n\ 00374 \n\ 00375 ================================================================================\n\ 00376 MSG: geometry_msgs/Quaternion\n\ 00377 # This represents an orientation in free space in quaternion form.\n\ 00378 \n\ 00379 float64 x\n\ 00380 float64 y\n\ 00381 float64 z\n\ 00382 float64 w\n\ 00383 \n\ 00384 ================================================================================\n\ 00385 MSG: object_recognition_gui/ObjectRecognitionGuiActionResult\n\ 00386 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00387 \n\ 00388 Header header\n\ 00389 actionlib_msgs/GoalStatus status\n\ 00390 ObjectRecognitionGuiResult result\n\ 00391 \n\ 00392 ================================================================================\n\ 00393 MSG: actionlib_msgs/GoalStatus\n\ 00394 GoalID goal_id\n\ 00395 uint8 status\n\ 00396 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00397 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00398 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00399 # and has since completed its execution (Terminal State)\n\ 00400 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00401 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00402 # to some failure (Terminal State)\n\ 00403 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00404 # because the goal was unattainable or invalid (Terminal State)\n\ 00405 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00406 # and has not yet completed execution\n\ 00407 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00408 # but the action server has not yet confirmed that the goal is canceled\n\ 00409 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00410 # and was successfully cancelled (Terminal State)\n\ 00411 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00412 # sent over the wire by an action server\n\ 00413 \n\ 00414 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00415 string text\n\ 00416 \n\ 00417 \n\ 00418 ================================================================================\n\ 00419 MSG: object_recognition_gui/ObjectRecognitionGuiResult\n\ 00420 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00421 \n\ 00422 #the index of the model hypothesis that the user has selected for each cluster\n\ 00423 #values below 0 mean 'reject all hypotheses'\n\ 00424 int32[] selected_hypothesis_indices\n\ 00425 \n\ 00426 ================================================================================\n\ 00427 MSG: object_recognition_gui/ObjectRecognitionGuiActionFeedback\n\ 00428 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00429 \n\ 00430 Header header\n\ 00431 actionlib_msgs/GoalStatus status\n\ 00432 ObjectRecognitionGuiFeedback feedback\n\ 00433 \n\ 00434 ================================================================================\n\ 00435 MSG: object_recognition_gui/ObjectRecognitionGuiFeedback\n\ 00436 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00437 \n\ 00438 \n\ 00439 "; } 00440 public: 00441 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00442 00443 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00444 00445 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00446 { 00447 ros::serialization::OStream stream(write_ptr, 1000000000); 00448 ros::serialization::serialize(stream, action_goal); 00449 ros::serialization::serialize(stream, action_result); 00450 ros::serialization::serialize(stream, action_feedback); 00451 return stream.getData(); 00452 } 00453 00454 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00455 { 00456 ros::serialization::IStream stream(read_ptr, 1000000000); 00457 ros::serialization::deserialize(stream, action_goal); 00458 ros::serialization::deserialize(stream, action_result); 00459 ros::serialization::deserialize(stream, action_feedback); 00460 return stream.getData(); 00461 } 00462 00463 ROS_DEPRECATED virtual uint32_t serializationLength() const 00464 { 00465 uint32_t size = 0; 00466 size += ros::serialization::serializationLength(action_goal); 00467 size += ros::serialization::serializationLength(action_result); 00468 size += ros::serialization::serializationLength(action_feedback); 00469 return size; 00470 } 00471 00472 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > Ptr; 00473 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> const> ConstPtr; 00474 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00475 }; // struct ObjectRecognitionGuiAction 00476 typedef ::object_recognition_gui::ObjectRecognitionGuiAction_<std::allocator<void> > ObjectRecognitionGuiAction; 00477 00478 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction> ObjectRecognitionGuiActionPtr; 00479 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiAction const> ObjectRecognitionGuiActionConstPtr; 00480 00481 00482 template<typename ContainerAllocator> 00483 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> & v) 00484 { 00485 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> >::stream(s, "", v); 00486 return s;} 00487 00488 } // namespace object_recognition_gui 00489 00490 namespace ros 00491 { 00492 namespace message_traits 00493 { 00494 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > : public TrueType {}; 00495 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> const> : public TrueType {}; 00496 template<class ContainerAllocator> 00497 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > { 00498 static const char* value() 00499 { 00500 return "ceb5b2d8cb3006a85f5fabfab9056abe"; 00501 } 00502 00503 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); } 00504 static const uint64_t static_value1 = 0xceb5b2d8cb3006a8ULL; 00505 static const uint64_t static_value2 = 0x5f5fabfab9056abeULL; 00506 }; 00507 00508 template<class ContainerAllocator> 00509 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > { 00510 static const char* value() 00511 { 00512 return "object_recognition_gui/ObjectRecognitionGuiAction"; 00513 } 00514 00515 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); } 00516 }; 00517 00518 template<class ContainerAllocator> 00519 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > { 00520 static const char* value() 00521 { 00522 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00523 \n\ 00524 ObjectRecognitionGuiActionGoal action_goal\n\ 00525 ObjectRecognitionGuiActionResult action_result\n\ 00526 ObjectRecognitionGuiActionFeedback action_feedback\n\ 00527 \n\ 00528 ================================================================================\n\ 00529 MSG: object_recognition_gui/ObjectRecognitionGuiActionGoal\n\ 00530 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00531 \n\ 00532 Header header\n\ 00533 actionlib_msgs/GoalID goal_id\n\ 00534 ObjectRecognitionGuiGoal goal\n\ 00535 \n\ 00536 ================================================================================\n\ 00537 MSG: std_msgs/Header\n\ 00538 # Standard metadata for higher-level stamped data types.\n\ 00539 # This is generally used to communicate timestamped data \n\ 00540 # in a particular coordinate frame.\n\ 00541 # \n\ 00542 # sequence ID: consecutively increasing ID \n\ 00543 uint32 seq\n\ 00544 #Two-integer timestamp that is expressed as:\n\ 00545 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00546 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00547 # time-handling sugar is provided by the client library\n\ 00548 time stamp\n\ 00549 #Frame this data is associated with\n\ 00550 # 0: no frame\n\ 00551 # 1: global frame\n\ 00552 string frame_id\n\ 00553 \n\ 00554 ================================================================================\n\ 00555 MSG: actionlib_msgs/GoalID\n\ 00556 # The stamp should store the time at which this goal was requested.\n\ 00557 # It is used by an action server when it tries to preempt all\n\ 00558 # goals that were requested before a certain time\n\ 00559 time stamp\n\ 00560 \n\ 00561 # The id provides a way to associate feedback and\n\ 00562 # result message with specific goal requests. The id\n\ 00563 # specified must be unique.\n\ 00564 string id\n\ 00565 \n\ 00566 \n\ 00567 ================================================================================\n\ 00568 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\ 00569 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00570 \n\ 00571 #the original sensor data (depth/disparity image)\n\ 00572 sensor_msgs/Image image\n\ 00573 sensor_msgs/CameraInfo camera_info\n\ 00574 \n\ 00575 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00576 ModelHypothesisList[] model_hypotheses\n\ 00577 \n\ 00578 ================================================================================\n\ 00579 MSG: sensor_msgs/Image\n\ 00580 # This message contains an uncompressed image\n\ 00581 # (0, 0) is at top-left corner of image\n\ 00582 #\n\ 00583 \n\ 00584 Header header # Header timestamp should be acquisition time of image\n\ 00585 # Header frame_id should be optical frame of camera\n\ 00586 # origin of frame should be optical center of cameara\n\ 00587 # +x should point to the right in the image\n\ 00588 # +y should point down in the image\n\ 00589 # +z should point into to plane of the image\n\ 00590 # If the frame_id here and the frame_id of the CameraInfo\n\ 00591 # message associated with the image conflict\n\ 00592 # the behavior is undefined\n\ 00593 \n\ 00594 uint32 height # image height, that is, number of rows\n\ 00595 uint32 width # image width, that is, number of columns\n\ 00596 \n\ 00597 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00598 # If you want to standardize a new string format, join\n\ 00599 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00600 \n\ 00601 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00602 # taken from the list of strings in src/image_encodings.cpp\n\ 00603 \n\ 00604 uint8 is_bigendian # is this data bigendian?\n\ 00605 uint32 step # Full row length in bytes\n\ 00606 uint8[] data # actual matrix data, size is (step * rows)\n\ 00607 \n\ 00608 ================================================================================\n\ 00609 MSG: sensor_msgs/CameraInfo\n\ 00610 # This message defines meta information for a camera. It should be in a\n\ 00611 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00612 # image topics named:\n\ 00613 #\n\ 00614 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00615 # image - monochrome, distorted\n\ 00616 # image_color - color, distorted\n\ 00617 # image_rect - monochrome, rectified\n\ 00618 # image_rect_color - color, rectified\n\ 00619 #\n\ 00620 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00621 # for producing the four processed image topics from image_raw and\n\ 00622 # camera_info. The meaning of the camera parameters are described in\n\ 00623 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00624 #\n\ 00625 # The image_geometry package provides a user-friendly interface to\n\ 00626 # common operations using this meta information. If you want to, e.g.,\n\ 00627 # project a 3d point into image coordinates, we strongly recommend\n\ 00628 # using image_geometry.\n\ 00629 #\n\ 00630 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00631 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00632 # indicates an uncalibrated camera.\n\ 00633 \n\ 00634 #######################################################################\n\ 00635 # Image acquisition info #\n\ 00636 #######################################################################\n\ 00637 \n\ 00638 # Time of image acquisition, camera coordinate frame ID\n\ 00639 Header header # Header timestamp should be acquisition time of image\n\ 00640 # Header frame_id should be optical frame of camera\n\ 00641 # origin of frame should be optical center of camera\n\ 00642 # +x should point to the right in the image\n\ 00643 # +y should point down in the image\n\ 00644 # +z should point into the plane of the image\n\ 00645 \n\ 00646 \n\ 00647 #######################################################################\n\ 00648 # Calibration Parameters #\n\ 00649 #######################################################################\n\ 00650 # These are fixed during camera calibration. Their values will be the #\n\ 00651 # same in all messages until the camera is recalibrated. Note that #\n\ 00652 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00653 # #\n\ 00654 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00655 # to: #\n\ 00656 # 1. An undistorted image (requires D and K) #\n\ 00657 # 2. A rectified image (requires D, K, R) #\n\ 00658 # The projection matrix P projects 3D points into the rectified image.#\n\ 00659 #######################################################################\n\ 00660 \n\ 00661 # The image dimensions with which the camera was calibrated. Normally\n\ 00662 # this will be the full camera resolution in pixels.\n\ 00663 uint32 height\n\ 00664 uint32 width\n\ 00665 \n\ 00666 # The distortion model used. Supported models are listed in\n\ 00667 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00668 # simple model of radial and tangential distortion - is sufficent.\n\ 00669 string distortion_model\n\ 00670 \n\ 00671 # The distortion parameters, size depending on the distortion model.\n\ 00672 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00673 float64[] D\n\ 00674 \n\ 00675 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00676 # [fx 0 cx]\n\ 00677 # K = [ 0 fy cy]\n\ 00678 # [ 0 0 1]\n\ 00679 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00680 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00681 # (cx, cy).\n\ 00682 float64[9] K # 3x3 row-major matrix\n\ 00683 \n\ 00684 # Rectification matrix (stereo cameras only)\n\ 00685 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00686 # stereo image plane so that epipolar lines in both stereo images are\n\ 00687 # parallel.\n\ 00688 float64[9] R # 3x3 row-major matrix\n\ 00689 \n\ 00690 # Projection/camera matrix\n\ 00691 # [fx' 0 cx' Tx]\n\ 00692 # P = [ 0 fy' cy' Ty]\n\ 00693 # [ 0 0 1 0]\n\ 00694 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00695 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00696 # is the normal camera intrinsic matrix for the rectified image.\n\ 00697 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00698 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00699 # (cx', cy') - these may differ from the values in K.\n\ 00700 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00701 # also have R = the identity and P[1:3,1:3] = K.\n\ 00702 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00703 # position of the optical center of the second camera in the first\n\ 00704 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00705 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00706 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00707 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00708 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00709 # the rectified image is given by:\n\ 00710 # [u v w]' = P * [X Y Z 1]'\n\ 00711 # x = u / w\n\ 00712 # y = v / w\n\ 00713 # This holds for both images of a stereo pair.\n\ 00714 float64[12] P # 3x4 row-major matrix\n\ 00715 \n\ 00716 \n\ 00717 #######################################################################\n\ 00718 # Operational Parameters #\n\ 00719 #######################################################################\n\ 00720 # These define the image region actually captured by the camera #\n\ 00721 # driver. Although they affect the geometry of the output image, they #\n\ 00722 # may be changed freely without recalibrating the camera. #\n\ 00723 #######################################################################\n\ 00724 \n\ 00725 # Binning refers here to any camera setting which combines rectangular\n\ 00726 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00727 # resolution of the output image to\n\ 00728 # (width / binning_x) x (height / binning_y).\n\ 00729 # The default values binning_x = binning_y = 0 is considered the same\n\ 00730 # as binning_x = binning_y = 1 (no subsampling).\n\ 00731 uint32 binning_x\n\ 00732 uint32 binning_y\n\ 00733 \n\ 00734 # Region of interest (subwindow of full camera resolution), given in\n\ 00735 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00736 # always denotes the same window of pixels on the camera sensor,\n\ 00737 # regardless of binning settings.\n\ 00738 # The default setting of roi (all values 0) is considered the same as\n\ 00739 # full resolution (roi.width = width, roi.height = height).\n\ 00740 RegionOfInterest roi\n\ 00741 \n\ 00742 ================================================================================\n\ 00743 MSG: sensor_msgs/RegionOfInterest\n\ 00744 # This message is used to specify a region of interest within an image.\n\ 00745 #\n\ 00746 # When used to specify the ROI setting of the camera when the image was\n\ 00747 # taken, the height and width fields should either match the height and\n\ 00748 # width fields for the associated image; or height = width = 0\n\ 00749 # indicates that the full resolution image was captured.\n\ 00750 \n\ 00751 uint32 x_offset # Leftmost pixel of the ROI\n\ 00752 # (0 if the ROI includes the left edge of the image)\n\ 00753 uint32 y_offset # Topmost pixel of the ROI\n\ 00754 # (0 if the ROI includes the top edge of the image)\n\ 00755 uint32 height # Height of ROI\n\ 00756 uint32 width # Width of ROI\n\ 00757 \n\ 00758 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00759 # ROI in this message. Typically this should be False if the full image\n\ 00760 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00761 # used).\n\ 00762 bool do_rectify\n\ 00763 \n\ 00764 ================================================================================\n\ 00765 MSG: object_recognition_gui/ModelHypothesisList\n\ 00766 ModelHypothesis[] hypotheses\n\ 00767 \n\ 00768 #initial guess if this can be a correct recognition result at all\n\ 00769 bool accept\n\ 00770 ================================================================================\n\ 00771 MSG: object_recognition_gui/ModelHypothesis\n\ 00772 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00773 \n\ 00774 arm_navigation_msgs/Shape mesh\n\ 00775 geometry_msgs/PoseStamped pose\n\ 00776 \n\ 00777 ================================================================================\n\ 00778 MSG: arm_navigation_msgs/Shape\n\ 00779 byte SPHERE=0\n\ 00780 byte BOX=1\n\ 00781 byte CYLINDER=2\n\ 00782 byte MESH=3\n\ 00783 \n\ 00784 byte type\n\ 00785 \n\ 00786 \n\ 00787 #### define sphere, box, cylinder ####\n\ 00788 # the origin of each shape is considered at the shape's center\n\ 00789 \n\ 00790 # for sphere\n\ 00791 # radius := dimensions[0]\n\ 00792 \n\ 00793 # for cylinder\n\ 00794 # radius := dimensions[0]\n\ 00795 # length := dimensions[1]\n\ 00796 # the length is along the Z axis\n\ 00797 \n\ 00798 # for box\n\ 00799 # size_x := dimensions[0]\n\ 00800 # size_y := dimensions[1]\n\ 00801 # size_z := dimensions[2]\n\ 00802 float64[] dimensions\n\ 00803 \n\ 00804 \n\ 00805 #### define mesh ####\n\ 00806 \n\ 00807 # list of triangles; triangle k is defined by tre vertices located\n\ 00808 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00809 int32[] triangles\n\ 00810 geometry_msgs/Point[] vertices\n\ 00811 \n\ 00812 ================================================================================\n\ 00813 MSG: geometry_msgs/Point\n\ 00814 # This contains the position of a point in free space\n\ 00815 float64 x\n\ 00816 float64 y\n\ 00817 float64 z\n\ 00818 \n\ 00819 ================================================================================\n\ 00820 MSG: geometry_msgs/PoseStamped\n\ 00821 # A Pose with reference coordinate frame and timestamp\n\ 00822 Header header\n\ 00823 Pose pose\n\ 00824 \n\ 00825 ================================================================================\n\ 00826 MSG: geometry_msgs/Pose\n\ 00827 # A representation of pose in free space, composed of postion and orientation. \n\ 00828 Point position\n\ 00829 Quaternion orientation\n\ 00830 \n\ 00831 ================================================================================\n\ 00832 MSG: geometry_msgs/Quaternion\n\ 00833 # This represents an orientation in free space in quaternion form.\n\ 00834 \n\ 00835 float64 x\n\ 00836 float64 y\n\ 00837 float64 z\n\ 00838 float64 w\n\ 00839 \n\ 00840 ================================================================================\n\ 00841 MSG: object_recognition_gui/ObjectRecognitionGuiActionResult\n\ 00842 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00843 \n\ 00844 Header header\n\ 00845 actionlib_msgs/GoalStatus status\n\ 00846 ObjectRecognitionGuiResult result\n\ 00847 \n\ 00848 ================================================================================\n\ 00849 MSG: actionlib_msgs/GoalStatus\n\ 00850 GoalID goal_id\n\ 00851 uint8 status\n\ 00852 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00853 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00854 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00855 # and has since completed its execution (Terminal State)\n\ 00856 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00857 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00858 # to some failure (Terminal State)\n\ 00859 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00860 # because the goal was unattainable or invalid (Terminal State)\n\ 00861 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00862 # and has not yet completed execution\n\ 00863 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00864 # but the action server has not yet confirmed that the goal is canceled\n\ 00865 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00866 # and was successfully cancelled (Terminal State)\n\ 00867 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00868 # sent over the wire by an action server\n\ 00869 \n\ 00870 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00871 string text\n\ 00872 \n\ 00873 \n\ 00874 ================================================================================\n\ 00875 MSG: object_recognition_gui/ObjectRecognitionGuiResult\n\ 00876 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00877 \n\ 00878 #the index of the model hypothesis that the user has selected for each cluster\n\ 00879 #values below 0 mean 'reject all hypotheses'\n\ 00880 int32[] selected_hypothesis_indices\n\ 00881 \n\ 00882 ================================================================================\n\ 00883 MSG: object_recognition_gui/ObjectRecognitionGuiActionFeedback\n\ 00884 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00885 \n\ 00886 Header header\n\ 00887 actionlib_msgs/GoalStatus status\n\ 00888 ObjectRecognitionGuiFeedback feedback\n\ 00889 \n\ 00890 ================================================================================\n\ 00891 MSG: object_recognition_gui/ObjectRecognitionGuiFeedback\n\ 00892 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00893 \n\ 00894 \n\ 00895 "; 00896 } 00897 00898 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> &) { return value(); } 00899 }; 00900 00901 } // namespace message_traits 00902 } // namespace ros 00903 00904 namespace ros 00905 { 00906 namespace serialization 00907 { 00908 00909 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > 00910 { 00911 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00912 { 00913 stream.next(m.action_goal); 00914 stream.next(m.action_result); 00915 stream.next(m.action_feedback); 00916 } 00917 00918 ROS_DECLARE_ALLINONE_SERIALIZER; 00919 }; // struct ObjectRecognitionGuiAction_ 00920 } // namespace serialization 00921 } // namespace ros 00922 00923 namespace ros 00924 { 00925 namespace message_operations 00926 { 00927 00928 template<class ContainerAllocator> 00929 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> > 00930 { 00931 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiAction_<ContainerAllocator> & v) 00932 { 00933 s << indent << "action_goal: "; 00934 s << std::endl; 00935 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 00936 s << indent << "action_result: "; 00937 s << std::endl; 00938 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 00939 s << indent << "action_feedback: "; 00940 s << std::endl; 00941 Printer< ::object_recognition_gui::ObjectRecognitionGuiActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 00942 } 00943 }; 00944 00945 00946 } // namespace message_operations 00947 } // namespace ros 00948 00949 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTION_H 00950