$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/object_recognition_gui/msg/ObjectRecognitionGuiActionGoal.msg */ 00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H 00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "object_recognition_gui/ObjectRecognitionGuiGoal.h" 00020 00021 namespace object_recognition_gui 00022 { 00023 template <class ContainerAllocator> 00024 struct ObjectRecognitionGuiActionGoal_ { 00025 typedef ObjectRecognitionGuiActionGoal_<ContainerAllocator> Type; 00026 00027 ObjectRecognitionGuiActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 ObjectRecognitionGuiActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> _goal_type; 00048 ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_recognition_gui/ObjectRecognitionGuiActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "e9351c4dd7bd646f1f371db4c7fd13af"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 ObjectRecognitionGuiGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 \n\ 00107 #the original sensor data (depth/disparity image)\n\ 00108 sensor_msgs/Image image\n\ 00109 sensor_msgs/CameraInfo camera_info\n\ 00110 \n\ 00111 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00112 ModelHypothesisList[] model_hypotheses\n\ 00113 \n\ 00114 ================================================================================\n\ 00115 MSG: sensor_msgs/Image\n\ 00116 # This message contains an uncompressed image\n\ 00117 # (0, 0) is at top-left corner of image\n\ 00118 #\n\ 00119 \n\ 00120 Header header # Header timestamp should be acquisition time of image\n\ 00121 # Header frame_id should be optical frame of camera\n\ 00122 # origin of frame should be optical center of cameara\n\ 00123 # +x should point to the right in the image\n\ 00124 # +y should point down in the image\n\ 00125 # +z should point into to plane of the image\n\ 00126 # If the frame_id here and the frame_id of the CameraInfo\n\ 00127 # message associated with the image conflict\n\ 00128 # the behavior is undefined\n\ 00129 \n\ 00130 uint32 height # image height, that is, number of rows\n\ 00131 uint32 width # image width, that is, number of columns\n\ 00132 \n\ 00133 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00134 # If you want to standardize a new string format, join\n\ 00135 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00136 \n\ 00137 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00138 # taken from the list of strings in src/image_encodings.cpp\n\ 00139 \n\ 00140 uint8 is_bigendian # is this data bigendian?\n\ 00141 uint32 step # Full row length in bytes\n\ 00142 uint8[] data # actual matrix data, size is (step * rows)\n\ 00143 \n\ 00144 ================================================================================\n\ 00145 MSG: sensor_msgs/CameraInfo\n\ 00146 # This message defines meta information for a camera. It should be in a\n\ 00147 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00148 # image topics named:\n\ 00149 #\n\ 00150 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00151 # image - monochrome, distorted\n\ 00152 # image_color - color, distorted\n\ 00153 # image_rect - monochrome, rectified\n\ 00154 # image_rect_color - color, rectified\n\ 00155 #\n\ 00156 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00157 # for producing the four processed image topics from image_raw and\n\ 00158 # camera_info. The meaning of the camera parameters are described in\n\ 00159 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00160 #\n\ 00161 # The image_geometry package provides a user-friendly interface to\n\ 00162 # common operations using this meta information. If you want to, e.g.,\n\ 00163 # project a 3d point into image coordinates, we strongly recommend\n\ 00164 # using image_geometry.\n\ 00165 #\n\ 00166 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00167 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00168 # indicates an uncalibrated camera.\n\ 00169 \n\ 00170 #######################################################################\n\ 00171 # Image acquisition info #\n\ 00172 #######################################################################\n\ 00173 \n\ 00174 # Time of image acquisition, camera coordinate frame ID\n\ 00175 Header header # Header timestamp should be acquisition time of image\n\ 00176 # Header frame_id should be optical frame of camera\n\ 00177 # origin of frame should be optical center of camera\n\ 00178 # +x should point to the right in the image\n\ 00179 # +y should point down in the image\n\ 00180 # +z should point into the plane of the image\n\ 00181 \n\ 00182 \n\ 00183 #######################################################################\n\ 00184 # Calibration Parameters #\n\ 00185 #######################################################################\n\ 00186 # These are fixed during camera calibration. Their values will be the #\n\ 00187 # same in all messages until the camera is recalibrated. Note that #\n\ 00188 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00189 # #\n\ 00190 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00191 # to: #\n\ 00192 # 1. An undistorted image (requires D and K) #\n\ 00193 # 2. A rectified image (requires D, K, R) #\n\ 00194 # The projection matrix P projects 3D points into the rectified image.#\n\ 00195 #######################################################################\n\ 00196 \n\ 00197 # The image dimensions with which the camera was calibrated. Normally\n\ 00198 # this will be the full camera resolution in pixels.\n\ 00199 uint32 height\n\ 00200 uint32 width\n\ 00201 \n\ 00202 # The distortion model used. Supported models are listed in\n\ 00203 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00204 # simple model of radial and tangential distortion - is sufficent.\n\ 00205 string distortion_model\n\ 00206 \n\ 00207 # The distortion parameters, size depending on the distortion model.\n\ 00208 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00209 float64[] D\n\ 00210 \n\ 00211 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00212 # [fx 0 cx]\n\ 00213 # K = [ 0 fy cy]\n\ 00214 # [ 0 0 1]\n\ 00215 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00216 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00217 # (cx, cy).\n\ 00218 float64[9] K # 3x3 row-major matrix\n\ 00219 \n\ 00220 # Rectification matrix (stereo cameras only)\n\ 00221 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00222 # stereo image plane so that epipolar lines in both stereo images are\n\ 00223 # parallel.\n\ 00224 float64[9] R # 3x3 row-major matrix\n\ 00225 \n\ 00226 # Projection/camera matrix\n\ 00227 # [fx' 0 cx' Tx]\n\ 00228 # P = [ 0 fy' cy' Ty]\n\ 00229 # [ 0 0 1 0]\n\ 00230 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00231 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00232 # is the normal camera intrinsic matrix for the rectified image.\n\ 00233 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00234 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00235 # (cx', cy') - these may differ from the values in K.\n\ 00236 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00237 # also have R = the identity and P[1:3,1:3] = K.\n\ 00238 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00239 # position of the optical center of the second camera in the first\n\ 00240 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00241 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00242 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00243 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00244 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00245 # the rectified image is given by:\n\ 00246 # [u v w]' = P * [X Y Z 1]'\n\ 00247 # x = u / w\n\ 00248 # y = v / w\n\ 00249 # This holds for both images of a stereo pair.\n\ 00250 float64[12] P # 3x4 row-major matrix\n\ 00251 \n\ 00252 \n\ 00253 #######################################################################\n\ 00254 # Operational Parameters #\n\ 00255 #######################################################################\n\ 00256 # These define the image region actually captured by the camera #\n\ 00257 # driver. Although they affect the geometry of the output image, they #\n\ 00258 # may be changed freely without recalibrating the camera. #\n\ 00259 #######################################################################\n\ 00260 \n\ 00261 # Binning refers here to any camera setting which combines rectangular\n\ 00262 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00263 # resolution of the output image to\n\ 00264 # (width / binning_x) x (height / binning_y).\n\ 00265 # The default values binning_x = binning_y = 0 is considered the same\n\ 00266 # as binning_x = binning_y = 1 (no subsampling).\n\ 00267 uint32 binning_x\n\ 00268 uint32 binning_y\n\ 00269 \n\ 00270 # Region of interest (subwindow of full camera resolution), given in\n\ 00271 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00272 # always denotes the same window of pixels on the camera sensor,\n\ 00273 # regardless of binning settings.\n\ 00274 # The default setting of roi (all values 0) is considered the same as\n\ 00275 # full resolution (roi.width = width, roi.height = height).\n\ 00276 RegionOfInterest roi\n\ 00277 \n\ 00278 ================================================================================\n\ 00279 MSG: sensor_msgs/RegionOfInterest\n\ 00280 # This message is used to specify a region of interest within an image.\n\ 00281 #\n\ 00282 # When used to specify the ROI setting of the camera when the image was\n\ 00283 # taken, the height and width fields should either match the height and\n\ 00284 # width fields for the associated image; or height = width = 0\n\ 00285 # indicates that the full resolution image was captured.\n\ 00286 \n\ 00287 uint32 x_offset # Leftmost pixel of the ROI\n\ 00288 # (0 if the ROI includes the left edge of the image)\n\ 00289 uint32 y_offset # Topmost pixel of the ROI\n\ 00290 # (0 if the ROI includes the top edge of the image)\n\ 00291 uint32 height # Height of ROI\n\ 00292 uint32 width # Width of ROI\n\ 00293 \n\ 00294 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00295 # ROI in this message. Typically this should be False if the full image\n\ 00296 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00297 # used).\n\ 00298 bool do_rectify\n\ 00299 \n\ 00300 ================================================================================\n\ 00301 MSG: object_recognition_gui/ModelHypothesisList\n\ 00302 ModelHypothesis[] hypotheses\n\ 00303 \n\ 00304 #initial guess if this can be a correct recognition result at all\n\ 00305 bool accept\n\ 00306 ================================================================================\n\ 00307 MSG: object_recognition_gui/ModelHypothesis\n\ 00308 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00309 \n\ 00310 arm_navigation_msgs/Shape mesh\n\ 00311 geometry_msgs/PoseStamped pose\n\ 00312 \n\ 00313 ================================================================================\n\ 00314 MSG: arm_navigation_msgs/Shape\n\ 00315 byte SPHERE=0\n\ 00316 byte BOX=1\n\ 00317 byte CYLINDER=2\n\ 00318 byte MESH=3\n\ 00319 \n\ 00320 byte type\n\ 00321 \n\ 00322 \n\ 00323 #### define sphere, box, cylinder ####\n\ 00324 # the origin of each shape is considered at the shape's center\n\ 00325 \n\ 00326 # for sphere\n\ 00327 # radius := dimensions[0]\n\ 00328 \n\ 00329 # for cylinder\n\ 00330 # radius := dimensions[0]\n\ 00331 # length := dimensions[1]\n\ 00332 # the length is along the Z axis\n\ 00333 \n\ 00334 # for box\n\ 00335 # size_x := dimensions[0]\n\ 00336 # size_y := dimensions[1]\n\ 00337 # size_z := dimensions[2]\n\ 00338 float64[] dimensions\n\ 00339 \n\ 00340 \n\ 00341 #### define mesh ####\n\ 00342 \n\ 00343 # list of triangles; triangle k is defined by tre vertices located\n\ 00344 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00345 int32[] triangles\n\ 00346 geometry_msgs/Point[] vertices\n\ 00347 \n\ 00348 ================================================================================\n\ 00349 MSG: geometry_msgs/Point\n\ 00350 # This contains the position of a point in free space\n\ 00351 float64 x\n\ 00352 float64 y\n\ 00353 float64 z\n\ 00354 \n\ 00355 ================================================================================\n\ 00356 MSG: geometry_msgs/PoseStamped\n\ 00357 # A Pose with reference coordinate frame and timestamp\n\ 00358 Header header\n\ 00359 Pose pose\n\ 00360 \n\ 00361 ================================================================================\n\ 00362 MSG: geometry_msgs/Pose\n\ 00363 # A representation of pose in free space, composed of postion and orientation. \n\ 00364 Point position\n\ 00365 Quaternion orientation\n\ 00366 \n\ 00367 ================================================================================\n\ 00368 MSG: geometry_msgs/Quaternion\n\ 00369 # This represents an orientation in free space in quaternion form.\n\ 00370 \n\ 00371 float64 x\n\ 00372 float64 y\n\ 00373 float64 z\n\ 00374 float64 w\n\ 00375 \n\ 00376 "; } 00377 public: 00378 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00379 00380 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00381 00382 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00383 { 00384 ros::serialization::OStream stream(write_ptr, 1000000000); 00385 ros::serialization::serialize(stream, header); 00386 ros::serialization::serialize(stream, goal_id); 00387 ros::serialization::serialize(stream, goal); 00388 return stream.getData(); 00389 } 00390 00391 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00392 { 00393 ros::serialization::IStream stream(read_ptr, 1000000000); 00394 ros::serialization::deserialize(stream, header); 00395 ros::serialization::deserialize(stream, goal_id); 00396 ros::serialization::deserialize(stream, goal); 00397 return stream.getData(); 00398 } 00399 00400 ROS_DEPRECATED virtual uint32_t serializationLength() const 00401 { 00402 uint32_t size = 0; 00403 size += ros::serialization::serializationLength(header); 00404 size += ros::serialization::serializationLength(goal_id); 00405 size += ros::serialization::serializationLength(goal); 00406 return size; 00407 } 00408 00409 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > Ptr; 00410 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> const> ConstPtr; 00411 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00412 }; // struct ObjectRecognitionGuiActionGoal 00413 typedef ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<std::allocator<void> > ObjectRecognitionGuiActionGoal; 00414 00415 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal> ObjectRecognitionGuiActionGoalPtr; 00416 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiActionGoal const> ObjectRecognitionGuiActionGoalConstPtr; 00417 00418 00419 template<typename ContainerAllocator> 00420 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> & v) 00421 { 00422 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> >::stream(s, "", v); 00423 return s;} 00424 00425 } // namespace object_recognition_gui 00426 00427 namespace ros 00428 { 00429 namespace message_traits 00430 { 00431 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00432 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> const> : public TrueType {}; 00433 template<class ContainerAllocator> 00434 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > { 00435 static const char* value() 00436 { 00437 return "e9351c4dd7bd646f1f371db4c7fd13af"; 00438 } 00439 00440 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); } 00441 static const uint64_t static_value1 = 0xe9351c4dd7bd646fULL; 00442 static const uint64_t static_value2 = 0x1f371db4c7fd13afULL; 00443 }; 00444 00445 template<class ContainerAllocator> 00446 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > { 00447 static const char* value() 00448 { 00449 return "object_recognition_gui/ObjectRecognitionGuiActionGoal"; 00450 } 00451 00452 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); } 00453 }; 00454 00455 template<class ContainerAllocator> 00456 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > { 00457 static const char* value() 00458 { 00459 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00460 \n\ 00461 Header header\n\ 00462 actionlib_msgs/GoalID goal_id\n\ 00463 ObjectRecognitionGuiGoal goal\n\ 00464 \n\ 00465 ================================================================================\n\ 00466 MSG: std_msgs/Header\n\ 00467 # Standard metadata for higher-level stamped data types.\n\ 00468 # This is generally used to communicate timestamped data \n\ 00469 # in a particular coordinate frame.\n\ 00470 # \n\ 00471 # sequence ID: consecutively increasing ID \n\ 00472 uint32 seq\n\ 00473 #Two-integer timestamp that is expressed as:\n\ 00474 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00475 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00476 # time-handling sugar is provided by the client library\n\ 00477 time stamp\n\ 00478 #Frame this data is associated with\n\ 00479 # 0: no frame\n\ 00480 # 1: global frame\n\ 00481 string frame_id\n\ 00482 \n\ 00483 ================================================================================\n\ 00484 MSG: actionlib_msgs/GoalID\n\ 00485 # The stamp should store the time at which this goal was requested.\n\ 00486 # It is used by an action server when it tries to preempt all\n\ 00487 # goals that were requested before a certain time\n\ 00488 time stamp\n\ 00489 \n\ 00490 # The id provides a way to associate feedback and\n\ 00491 # result message with specific goal requests. The id\n\ 00492 # specified must be unique.\n\ 00493 string id\n\ 00494 \n\ 00495 \n\ 00496 ================================================================================\n\ 00497 MSG: object_recognition_gui/ObjectRecognitionGuiGoal\n\ 00498 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00499 \n\ 00500 #the original sensor data (depth/disparity image)\n\ 00501 sensor_msgs/Image image\n\ 00502 sensor_msgs/CameraInfo camera_info\n\ 00503 \n\ 00504 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00505 ModelHypothesisList[] model_hypotheses\n\ 00506 \n\ 00507 ================================================================================\n\ 00508 MSG: sensor_msgs/Image\n\ 00509 # This message contains an uncompressed image\n\ 00510 # (0, 0) is at top-left corner of image\n\ 00511 #\n\ 00512 \n\ 00513 Header header # Header timestamp should be acquisition time of image\n\ 00514 # Header frame_id should be optical frame of camera\n\ 00515 # origin of frame should be optical center of cameara\n\ 00516 # +x should point to the right in the image\n\ 00517 # +y should point down in the image\n\ 00518 # +z should point into to plane of the image\n\ 00519 # If the frame_id here and the frame_id of the CameraInfo\n\ 00520 # message associated with the image conflict\n\ 00521 # the behavior is undefined\n\ 00522 \n\ 00523 uint32 height # image height, that is, number of rows\n\ 00524 uint32 width # image width, that is, number of columns\n\ 00525 \n\ 00526 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00527 # If you want to standardize a new string format, join\n\ 00528 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00529 \n\ 00530 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00531 # taken from the list of strings in src/image_encodings.cpp\n\ 00532 \n\ 00533 uint8 is_bigendian # is this data bigendian?\n\ 00534 uint32 step # Full row length in bytes\n\ 00535 uint8[] data # actual matrix data, size is (step * rows)\n\ 00536 \n\ 00537 ================================================================================\n\ 00538 MSG: sensor_msgs/CameraInfo\n\ 00539 # This message defines meta information for a camera. It should be in a\n\ 00540 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00541 # image topics named:\n\ 00542 #\n\ 00543 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00544 # image - monochrome, distorted\n\ 00545 # image_color - color, distorted\n\ 00546 # image_rect - monochrome, rectified\n\ 00547 # image_rect_color - color, rectified\n\ 00548 #\n\ 00549 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00550 # for producing the four processed image topics from image_raw and\n\ 00551 # camera_info. The meaning of the camera parameters are described in\n\ 00552 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00553 #\n\ 00554 # The image_geometry package provides a user-friendly interface to\n\ 00555 # common operations using this meta information. If you want to, e.g.,\n\ 00556 # project a 3d point into image coordinates, we strongly recommend\n\ 00557 # using image_geometry.\n\ 00558 #\n\ 00559 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00560 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00561 # indicates an uncalibrated camera.\n\ 00562 \n\ 00563 #######################################################################\n\ 00564 # Image acquisition info #\n\ 00565 #######################################################################\n\ 00566 \n\ 00567 # Time of image acquisition, camera coordinate frame ID\n\ 00568 Header header # Header timestamp should be acquisition time of image\n\ 00569 # Header frame_id should be optical frame of camera\n\ 00570 # origin of frame should be optical center of camera\n\ 00571 # +x should point to the right in the image\n\ 00572 # +y should point down in the image\n\ 00573 # +z should point into the plane of the image\n\ 00574 \n\ 00575 \n\ 00576 #######################################################################\n\ 00577 # Calibration Parameters #\n\ 00578 #######################################################################\n\ 00579 # These are fixed during camera calibration. Their values will be the #\n\ 00580 # same in all messages until the camera is recalibrated. Note that #\n\ 00581 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00582 # #\n\ 00583 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00584 # to: #\n\ 00585 # 1. An undistorted image (requires D and K) #\n\ 00586 # 2. A rectified image (requires D, K, R) #\n\ 00587 # The projection matrix P projects 3D points into the rectified image.#\n\ 00588 #######################################################################\n\ 00589 \n\ 00590 # The image dimensions with which the camera was calibrated. Normally\n\ 00591 # this will be the full camera resolution in pixels.\n\ 00592 uint32 height\n\ 00593 uint32 width\n\ 00594 \n\ 00595 # The distortion model used. Supported models are listed in\n\ 00596 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00597 # simple model of radial and tangential distortion - is sufficent.\n\ 00598 string distortion_model\n\ 00599 \n\ 00600 # The distortion parameters, size depending on the distortion model.\n\ 00601 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00602 float64[] D\n\ 00603 \n\ 00604 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00605 # [fx 0 cx]\n\ 00606 # K = [ 0 fy cy]\n\ 00607 # [ 0 0 1]\n\ 00608 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00609 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00610 # (cx, cy).\n\ 00611 float64[9] K # 3x3 row-major matrix\n\ 00612 \n\ 00613 # Rectification matrix (stereo cameras only)\n\ 00614 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00615 # stereo image plane so that epipolar lines in both stereo images are\n\ 00616 # parallel.\n\ 00617 float64[9] R # 3x3 row-major matrix\n\ 00618 \n\ 00619 # Projection/camera matrix\n\ 00620 # [fx' 0 cx' Tx]\n\ 00621 # P = [ 0 fy' cy' Ty]\n\ 00622 # [ 0 0 1 0]\n\ 00623 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00624 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00625 # is the normal camera intrinsic matrix for the rectified image.\n\ 00626 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00627 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00628 # (cx', cy') - these may differ from the values in K.\n\ 00629 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00630 # also have R = the identity and P[1:3,1:3] = K.\n\ 00631 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00632 # position of the optical center of the second camera in the first\n\ 00633 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00634 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00635 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00636 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00637 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00638 # the rectified image is given by:\n\ 00639 # [u v w]' = P * [X Y Z 1]'\n\ 00640 # x = u / w\n\ 00641 # y = v / w\n\ 00642 # This holds for both images of a stereo pair.\n\ 00643 float64[12] P # 3x4 row-major matrix\n\ 00644 \n\ 00645 \n\ 00646 #######################################################################\n\ 00647 # Operational Parameters #\n\ 00648 #######################################################################\n\ 00649 # These define the image region actually captured by the camera #\n\ 00650 # driver. Although they affect the geometry of the output image, they #\n\ 00651 # may be changed freely without recalibrating the camera. #\n\ 00652 #######################################################################\n\ 00653 \n\ 00654 # Binning refers here to any camera setting which combines rectangular\n\ 00655 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00656 # resolution of the output image to\n\ 00657 # (width / binning_x) x (height / binning_y).\n\ 00658 # The default values binning_x = binning_y = 0 is considered the same\n\ 00659 # as binning_x = binning_y = 1 (no subsampling).\n\ 00660 uint32 binning_x\n\ 00661 uint32 binning_y\n\ 00662 \n\ 00663 # Region of interest (subwindow of full camera resolution), given in\n\ 00664 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00665 # always denotes the same window of pixels on the camera sensor,\n\ 00666 # regardless of binning settings.\n\ 00667 # The default setting of roi (all values 0) is considered the same as\n\ 00668 # full resolution (roi.width = width, roi.height = height).\n\ 00669 RegionOfInterest roi\n\ 00670 \n\ 00671 ================================================================================\n\ 00672 MSG: sensor_msgs/RegionOfInterest\n\ 00673 # This message is used to specify a region of interest within an image.\n\ 00674 #\n\ 00675 # When used to specify the ROI setting of the camera when the image was\n\ 00676 # taken, the height and width fields should either match the height and\n\ 00677 # width fields for the associated image; or height = width = 0\n\ 00678 # indicates that the full resolution image was captured.\n\ 00679 \n\ 00680 uint32 x_offset # Leftmost pixel of the ROI\n\ 00681 # (0 if the ROI includes the left edge of the image)\n\ 00682 uint32 y_offset # Topmost pixel of the ROI\n\ 00683 # (0 if the ROI includes the top edge of the image)\n\ 00684 uint32 height # Height of ROI\n\ 00685 uint32 width # Width of ROI\n\ 00686 \n\ 00687 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00688 # ROI in this message. Typically this should be False if the full image\n\ 00689 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00690 # used).\n\ 00691 bool do_rectify\n\ 00692 \n\ 00693 ================================================================================\n\ 00694 MSG: object_recognition_gui/ModelHypothesisList\n\ 00695 ModelHypothesis[] hypotheses\n\ 00696 \n\ 00697 #initial guess if this can be a correct recognition result at all\n\ 00698 bool accept\n\ 00699 ================================================================================\n\ 00700 MSG: object_recognition_gui/ModelHypothesis\n\ 00701 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00702 \n\ 00703 arm_navigation_msgs/Shape mesh\n\ 00704 geometry_msgs/PoseStamped pose\n\ 00705 \n\ 00706 ================================================================================\n\ 00707 MSG: arm_navigation_msgs/Shape\n\ 00708 byte SPHERE=0\n\ 00709 byte BOX=1\n\ 00710 byte CYLINDER=2\n\ 00711 byte MESH=3\n\ 00712 \n\ 00713 byte type\n\ 00714 \n\ 00715 \n\ 00716 #### define sphere, box, cylinder ####\n\ 00717 # the origin of each shape is considered at the shape's center\n\ 00718 \n\ 00719 # for sphere\n\ 00720 # radius := dimensions[0]\n\ 00721 \n\ 00722 # for cylinder\n\ 00723 # radius := dimensions[0]\n\ 00724 # length := dimensions[1]\n\ 00725 # the length is along the Z axis\n\ 00726 \n\ 00727 # for box\n\ 00728 # size_x := dimensions[0]\n\ 00729 # size_y := dimensions[1]\n\ 00730 # size_z := dimensions[2]\n\ 00731 float64[] dimensions\n\ 00732 \n\ 00733 \n\ 00734 #### define mesh ####\n\ 00735 \n\ 00736 # list of triangles; triangle k is defined by tre vertices located\n\ 00737 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00738 int32[] triangles\n\ 00739 geometry_msgs/Point[] vertices\n\ 00740 \n\ 00741 ================================================================================\n\ 00742 MSG: geometry_msgs/Point\n\ 00743 # This contains the position of a point in free space\n\ 00744 float64 x\n\ 00745 float64 y\n\ 00746 float64 z\n\ 00747 \n\ 00748 ================================================================================\n\ 00749 MSG: geometry_msgs/PoseStamped\n\ 00750 # A Pose with reference coordinate frame and timestamp\n\ 00751 Header header\n\ 00752 Pose pose\n\ 00753 \n\ 00754 ================================================================================\n\ 00755 MSG: geometry_msgs/Pose\n\ 00756 # A representation of pose in free space, composed of postion and orientation. \n\ 00757 Point position\n\ 00758 Quaternion orientation\n\ 00759 \n\ 00760 ================================================================================\n\ 00761 MSG: geometry_msgs/Quaternion\n\ 00762 # This represents an orientation in free space in quaternion form.\n\ 00763 \n\ 00764 float64 x\n\ 00765 float64 y\n\ 00766 float64 z\n\ 00767 float64 w\n\ 00768 \n\ 00769 "; 00770 } 00771 00772 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> &) { return value(); } 00773 }; 00774 00775 template<class ContainerAllocator> struct HasHeader< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00776 template<class ContainerAllocator> struct HasHeader< const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > : public TrueType {}; 00777 } // namespace message_traits 00778 } // namespace ros 00779 00780 namespace ros 00781 { 00782 namespace serialization 00783 { 00784 00785 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > 00786 { 00787 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00788 { 00789 stream.next(m.header); 00790 stream.next(m.goal_id); 00791 stream.next(m.goal); 00792 } 00793 00794 ROS_DECLARE_ALLINONE_SERIALIZER; 00795 }; // struct ObjectRecognitionGuiActionGoal_ 00796 } // namespace serialization 00797 } // namespace ros 00798 00799 namespace ros 00800 { 00801 namespace message_operations 00802 { 00803 00804 template<class ContainerAllocator> 00805 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> > 00806 { 00807 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiActionGoal_<ContainerAllocator> & v) 00808 { 00809 s << indent << "header: "; 00810 s << std::endl; 00811 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 00812 s << indent << "goal_id: "; 00813 s << std::endl; 00814 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 00815 s << indent << "goal: "; 00816 s << std::endl; 00817 Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 00818 } 00819 }; 00820 00821 00822 } // namespace message_operations 00823 } // namespace ros 00824 00825 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIACTIONGOAL_H 00826