$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftActionGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "object_manipulation_msgs/ReactiveLiftGoal.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct ReactiveLiftActionGoal_ { 00025 typedef ReactiveLiftActionGoal_<ContainerAllocator> Type; 00026 00027 ReactiveLiftActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 ReactiveLiftActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> _goal_type; 00048 ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "a61549c00e5d14801c74498e3f7d5554"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 ReactiveLiftGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 \n\ 00107 # the name of the arm being used\n\ 00108 string arm_name\n\ 00109 \n\ 00110 # the object to be grasped\n\ 00111 GraspableObject target\n\ 00112 \n\ 00113 # How the object should be lifted \n\ 00114 GripperTranslation lift\n\ 00115 \n\ 00116 # the joint trajectory to use for the approach (if available)\n\ 00117 # this trajectory is expected to start at the current pose of the gripper\n\ 00118 # and end at the desired grasp pose\n\ 00119 trajectory_msgs/JointTrajectory trajectory\n\ 00120 \n\ 00121 # the name of the support surface in the collision environment, if any\n\ 00122 string collision_support_surface_name\n\ 00123 \n\ 00124 \n\ 00125 ================================================================================\n\ 00126 MSG: object_manipulation_msgs/GraspableObject\n\ 00127 # an object that the object_manipulator can work on\n\ 00128 \n\ 00129 # a graspable object can be represented in multiple ways. This message\n\ 00130 # can contain all of them. Which one is actually used is up to the receiver\n\ 00131 # of this message. When adding new representations, one must be careful that\n\ 00132 # they have reasonable lightweight defaults indicating that that particular\n\ 00133 # representation is not available.\n\ 00134 \n\ 00135 # the tf frame to be used as a reference frame when combining information from\n\ 00136 # the different representations below\n\ 00137 string reference_frame_id\n\ 00138 \n\ 00139 # potential recognition results from a database of models\n\ 00140 # all poses are relative to the object reference pose\n\ 00141 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00142 \n\ 00143 # the point cloud itself\n\ 00144 sensor_msgs/PointCloud cluster\n\ 00145 \n\ 00146 # a region of a PointCloud2 of interest\n\ 00147 object_manipulation_msgs/SceneRegion region\n\ 00148 \n\ 00149 # the name that this object has in the collision environment\n\ 00150 string collision_name\n\ 00151 ================================================================================\n\ 00152 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00153 # Informs that a specific model from the Model Database has been \n\ 00154 # identified at a certain location\n\ 00155 \n\ 00156 # the database id of the model\n\ 00157 int32 model_id\n\ 00158 \n\ 00159 # the pose that it can be found in\n\ 00160 geometry_msgs/PoseStamped pose\n\ 00161 \n\ 00162 # a measure of the confidence level in this detection result\n\ 00163 float32 confidence\n\ 00164 \n\ 00165 # the name of the object detector that generated this detection result\n\ 00166 string detector_name\n\ 00167 \n\ 00168 ================================================================================\n\ 00169 MSG: geometry_msgs/PoseStamped\n\ 00170 # A Pose with reference coordinate frame and timestamp\n\ 00171 Header header\n\ 00172 Pose pose\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: geometry_msgs/Pose\n\ 00176 # A representation of pose in free space, composed of postion and orientation. \n\ 00177 Point position\n\ 00178 Quaternion orientation\n\ 00179 \n\ 00180 ================================================================================\n\ 00181 MSG: geometry_msgs/Point\n\ 00182 # This contains the position of a point in free space\n\ 00183 float64 x\n\ 00184 float64 y\n\ 00185 float64 z\n\ 00186 \n\ 00187 ================================================================================\n\ 00188 MSG: geometry_msgs/Quaternion\n\ 00189 # This represents an orientation in free space in quaternion form.\n\ 00190 \n\ 00191 float64 x\n\ 00192 float64 y\n\ 00193 float64 z\n\ 00194 float64 w\n\ 00195 \n\ 00196 ================================================================================\n\ 00197 MSG: sensor_msgs/PointCloud\n\ 00198 # This message holds a collection of 3d points, plus optional additional\n\ 00199 # information about each point.\n\ 00200 \n\ 00201 # Time of sensor data acquisition, coordinate frame ID.\n\ 00202 Header header\n\ 00203 \n\ 00204 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00205 # in the frame given in the header.\n\ 00206 geometry_msgs/Point32[] points\n\ 00207 \n\ 00208 # Each channel should have the same number of elements as points array,\n\ 00209 # and the data in each channel should correspond 1:1 with each point.\n\ 00210 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00211 ChannelFloat32[] channels\n\ 00212 \n\ 00213 ================================================================================\n\ 00214 MSG: geometry_msgs/Point32\n\ 00215 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00216 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00217 # \n\ 00218 # This recommendation is to promote interoperability. \n\ 00219 #\n\ 00220 # This message is designed to take up less space when sending\n\ 00221 # lots of points at once, as in the case of a PointCloud. \n\ 00222 \n\ 00223 float32 x\n\ 00224 float32 y\n\ 00225 float32 z\n\ 00226 ================================================================================\n\ 00227 MSG: sensor_msgs/ChannelFloat32\n\ 00228 # This message is used by the PointCloud message to hold optional data\n\ 00229 # associated with each point in the cloud. The length of the values\n\ 00230 # array should be the same as the length of the points array in the\n\ 00231 # PointCloud, and each value should be associated with the corresponding\n\ 00232 # point.\n\ 00233 \n\ 00234 # Channel names in existing practice include:\n\ 00235 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00236 # This is opposite to usual conventions but remains for\n\ 00237 # historical reasons. The newer PointCloud2 message has no\n\ 00238 # such problem.\n\ 00239 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00240 # (R,G,B) values packed into the least significant 24 bits,\n\ 00241 # in order.\n\ 00242 # \"intensity\" - laser or pixel intensity.\n\ 00243 # \"distance\"\n\ 00244 \n\ 00245 # The channel name should give semantics of the channel (e.g.\n\ 00246 # \"intensity\" instead of \"value\").\n\ 00247 string name\n\ 00248 \n\ 00249 # The values array should be 1-1 with the elements of the associated\n\ 00250 # PointCloud.\n\ 00251 float32[] values\n\ 00252 \n\ 00253 ================================================================================\n\ 00254 MSG: object_manipulation_msgs/SceneRegion\n\ 00255 # Point cloud\n\ 00256 sensor_msgs/PointCloud2 cloud\n\ 00257 \n\ 00258 # Indices for the region of interest\n\ 00259 int32[] mask\n\ 00260 \n\ 00261 # One of the corresponding 2D images, if applicable\n\ 00262 sensor_msgs/Image image\n\ 00263 \n\ 00264 # The disparity image, if applicable\n\ 00265 sensor_msgs/Image disparity_image\n\ 00266 \n\ 00267 # Camera info for the camera that took the image\n\ 00268 sensor_msgs/CameraInfo cam_info\n\ 00269 \n\ 00270 # a 3D region of interest for grasp planning\n\ 00271 geometry_msgs/PoseStamped roi_box_pose\n\ 00272 geometry_msgs/Vector3 roi_box_dims\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: sensor_msgs/PointCloud2\n\ 00276 # This message holds a collection of N-dimensional points, which may\n\ 00277 # contain additional information such as normals, intensity, etc. The\n\ 00278 # point data is stored as a binary blob, its layout described by the\n\ 00279 # contents of the \"fields\" array.\n\ 00280 \n\ 00281 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00282 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00283 # camera depth sensors such as stereo or time-of-flight.\n\ 00284 \n\ 00285 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00286 # points).\n\ 00287 Header header\n\ 00288 \n\ 00289 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00290 # 1 and width is the length of the point cloud.\n\ 00291 uint32 height\n\ 00292 uint32 width\n\ 00293 \n\ 00294 # Describes the channels and their layout in the binary data blob.\n\ 00295 PointField[] fields\n\ 00296 \n\ 00297 bool is_bigendian # Is this data bigendian?\n\ 00298 uint32 point_step # Length of a point in bytes\n\ 00299 uint32 row_step # Length of a row in bytes\n\ 00300 uint8[] data # Actual point data, size is (row_step*height)\n\ 00301 \n\ 00302 bool is_dense # True if there are no invalid points\n\ 00303 \n\ 00304 ================================================================================\n\ 00305 MSG: sensor_msgs/PointField\n\ 00306 # This message holds the description of one point entry in the\n\ 00307 # PointCloud2 message format.\n\ 00308 uint8 INT8 = 1\n\ 00309 uint8 UINT8 = 2\n\ 00310 uint8 INT16 = 3\n\ 00311 uint8 UINT16 = 4\n\ 00312 uint8 INT32 = 5\n\ 00313 uint8 UINT32 = 6\n\ 00314 uint8 FLOAT32 = 7\n\ 00315 uint8 FLOAT64 = 8\n\ 00316 \n\ 00317 string name # Name of field\n\ 00318 uint32 offset # Offset from start of point struct\n\ 00319 uint8 datatype # Datatype enumeration, see above\n\ 00320 uint32 count # How many elements in the field\n\ 00321 \n\ 00322 ================================================================================\n\ 00323 MSG: sensor_msgs/Image\n\ 00324 # This message contains an uncompressed image\n\ 00325 # (0, 0) is at top-left corner of image\n\ 00326 #\n\ 00327 \n\ 00328 Header header # Header timestamp should be acquisition time of image\n\ 00329 # Header frame_id should be optical frame of camera\n\ 00330 # origin of frame should be optical center of cameara\n\ 00331 # +x should point to the right in the image\n\ 00332 # +y should point down in the image\n\ 00333 # +z should point into to plane of the image\n\ 00334 # If the frame_id here and the frame_id of the CameraInfo\n\ 00335 # message associated with the image conflict\n\ 00336 # the behavior is undefined\n\ 00337 \n\ 00338 uint32 height # image height, that is, number of rows\n\ 00339 uint32 width # image width, that is, number of columns\n\ 00340 \n\ 00341 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00342 # If you want to standardize a new string format, join\n\ 00343 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00344 \n\ 00345 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00346 # taken from the list of strings in src/image_encodings.cpp\n\ 00347 \n\ 00348 uint8 is_bigendian # is this data bigendian?\n\ 00349 uint32 step # Full row length in bytes\n\ 00350 uint8[] data # actual matrix data, size is (step * rows)\n\ 00351 \n\ 00352 ================================================================================\n\ 00353 MSG: sensor_msgs/CameraInfo\n\ 00354 # This message defines meta information for a camera. It should be in a\n\ 00355 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00356 # image topics named:\n\ 00357 #\n\ 00358 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00359 # image - monochrome, distorted\n\ 00360 # image_color - color, distorted\n\ 00361 # image_rect - monochrome, rectified\n\ 00362 # image_rect_color - color, rectified\n\ 00363 #\n\ 00364 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00365 # for producing the four processed image topics from image_raw and\n\ 00366 # camera_info. The meaning of the camera parameters are described in\n\ 00367 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00368 #\n\ 00369 # The image_geometry package provides a user-friendly interface to\n\ 00370 # common operations using this meta information. If you want to, e.g.,\n\ 00371 # project a 3d point into image coordinates, we strongly recommend\n\ 00372 # using image_geometry.\n\ 00373 #\n\ 00374 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00375 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00376 # indicates an uncalibrated camera.\n\ 00377 \n\ 00378 #######################################################################\n\ 00379 # Image acquisition info #\n\ 00380 #######################################################################\n\ 00381 \n\ 00382 # Time of image acquisition, camera coordinate frame ID\n\ 00383 Header header # Header timestamp should be acquisition time of image\n\ 00384 # Header frame_id should be optical frame of camera\n\ 00385 # origin of frame should be optical center of camera\n\ 00386 # +x should point to the right in the image\n\ 00387 # +y should point down in the image\n\ 00388 # +z should point into the plane of the image\n\ 00389 \n\ 00390 \n\ 00391 #######################################################################\n\ 00392 # Calibration Parameters #\n\ 00393 #######################################################################\n\ 00394 # These are fixed during camera calibration. Their values will be the #\n\ 00395 # same in all messages until the camera is recalibrated. Note that #\n\ 00396 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00397 # #\n\ 00398 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00399 # to: #\n\ 00400 # 1. An undistorted image (requires D and K) #\n\ 00401 # 2. A rectified image (requires D, K, R) #\n\ 00402 # The projection matrix P projects 3D points into the rectified image.#\n\ 00403 #######################################################################\n\ 00404 \n\ 00405 # The image dimensions with which the camera was calibrated. Normally\n\ 00406 # this will be the full camera resolution in pixels.\n\ 00407 uint32 height\n\ 00408 uint32 width\n\ 00409 \n\ 00410 # The distortion model used. Supported models are listed in\n\ 00411 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00412 # simple model of radial and tangential distortion - is sufficent.\n\ 00413 string distortion_model\n\ 00414 \n\ 00415 # The distortion parameters, size depending on the distortion model.\n\ 00416 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00417 float64[] D\n\ 00418 \n\ 00419 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00420 # [fx 0 cx]\n\ 00421 # K = [ 0 fy cy]\n\ 00422 # [ 0 0 1]\n\ 00423 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00424 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00425 # (cx, cy).\n\ 00426 float64[9] K # 3x3 row-major matrix\n\ 00427 \n\ 00428 # Rectification matrix (stereo cameras only)\n\ 00429 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00430 # stereo image plane so that epipolar lines in both stereo images are\n\ 00431 # parallel.\n\ 00432 float64[9] R # 3x3 row-major matrix\n\ 00433 \n\ 00434 # Projection/camera matrix\n\ 00435 # [fx' 0 cx' Tx]\n\ 00436 # P = [ 0 fy' cy' Ty]\n\ 00437 # [ 0 0 1 0]\n\ 00438 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00439 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00440 # is the normal camera intrinsic matrix for the rectified image.\n\ 00441 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00442 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00443 # (cx', cy') - these may differ from the values in K.\n\ 00444 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00445 # also have R = the identity and P[1:3,1:3] = K.\n\ 00446 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00447 # position of the optical center of the second camera in the first\n\ 00448 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00449 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00450 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00451 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00452 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00453 # the rectified image is given by:\n\ 00454 # [u v w]' = P * [X Y Z 1]'\n\ 00455 # x = u / w\n\ 00456 # y = v / w\n\ 00457 # This holds for both images of a stereo pair.\n\ 00458 float64[12] P # 3x4 row-major matrix\n\ 00459 \n\ 00460 \n\ 00461 #######################################################################\n\ 00462 # Operational Parameters #\n\ 00463 #######################################################################\n\ 00464 # These define the image region actually captured by the camera #\n\ 00465 # driver. Although they affect the geometry of the output image, they #\n\ 00466 # may be changed freely without recalibrating the camera. #\n\ 00467 #######################################################################\n\ 00468 \n\ 00469 # Binning refers here to any camera setting which combines rectangular\n\ 00470 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00471 # resolution of the output image to\n\ 00472 # (width / binning_x) x (height / binning_y).\n\ 00473 # The default values binning_x = binning_y = 0 is considered the same\n\ 00474 # as binning_x = binning_y = 1 (no subsampling).\n\ 00475 uint32 binning_x\n\ 00476 uint32 binning_y\n\ 00477 \n\ 00478 # Region of interest (subwindow of full camera resolution), given in\n\ 00479 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00480 # always denotes the same window of pixels on the camera sensor,\n\ 00481 # regardless of binning settings.\n\ 00482 # The default setting of roi (all values 0) is considered the same as\n\ 00483 # full resolution (roi.width = width, roi.height = height).\n\ 00484 RegionOfInterest roi\n\ 00485 \n\ 00486 ================================================================================\n\ 00487 MSG: sensor_msgs/RegionOfInterest\n\ 00488 # This message is used to specify a region of interest within an image.\n\ 00489 #\n\ 00490 # When used to specify the ROI setting of the camera when the image was\n\ 00491 # taken, the height and width fields should either match the height and\n\ 00492 # width fields for the associated image; or height = width = 0\n\ 00493 # indicates that the full resolution image was captured.\n\ 00494 \n\ 00495 uint32 x_offset # Leftmost pixel of the ROI\n\ 00496 # (0 if the ROI includes the left edge of the image)\n\ 00497 uint32 y_offset # Topmost pixel of the ROI\n\ 00498 # (0 if the ROI includes the top edge of the image)\n\ 00499 uint32 height # Height of ROI\n\ 00500 uint32 width # Width of ROI\n\ 00501 \n\ 00502 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00503 # ROI in this message. Typically this should be False if the full image\n\ 00504 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00505 # used).\n\ 00506 bool do_rectify\n\ 00507 \n\ 00508 ================================================================================\n\ 00509 MSG: geometry_msgs/Vector3\n\ 00510 # This represents a vector in free space. \n\ 00511 \n\ 00512 float64 x\n\ 00513 float64 y\n\ 00514 float64 z\n\ 00515 ================================================================================\n\ 00516 MSG: object_manipulation_msgs/GripperTranslation\n\ 00517 # defines a translation for the gripper, used in pickup or place tasks\n\ 00518 # for example for lifting an object off a table or approaching the table for placing\n\ 00519 \n\ 00520 # the direction of the translation\n\ 00521 geometry_msgs/Vector3Stamped direction\n\ 00522 \n\ 00523 # the desired translation distance\n\ 00524 float32 desired_distance\n\ 00525 \n\ 00526 # the min distance that must be considered feasible before the\n\ 00527 # grasp is even attempted\n\ 00528 float32 min_distance\n\ 00529 ================================================================================\n\ 00530 MSG: geometry_msgs/Vector3Stamped\n\ 00531 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 00532 Header header\n\ 00533 Vector3 vector\n\ 00534 \n\ 00535 ================================================================================\n\ 00536 MSG: trajectory_msgs/JointTrajectory\n\ 00537 Header header\n\ 00538 string[] joint_names\n\ 00539 JointTrajectoryPoint[] points\n\ 00540 ================================================================================\n\ 00541 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 00542 float64[] positions\n\ 00543 float64[] velocities\n\ 00544 float64[] accelerations\n\ 00545 duration time_from_start\n\ 00546 "; } 00547 public: 00548 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00549 00550 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00551 00552 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00553 { 00554 ros::serialization::OStream stream(write_ptr, 1000000000); 00555 ros::serialization::serialize(stream, header); 00556 ros::serialization::serialize(stream, goal_id); 00557 ros::serialization::serialize(stream, goal); 00558 return stream.getData(); 00559 } 00560 00561 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00562 { 00563 ros::serialization::IStream stream(read_ptr, 1000000000); 00564 ros::serialization::deserialize(stream, header); 00565 ros::serialization::deserialize(stream, goal_id); 00566 ros::serialization::deserialize(stream, goal); 00567 return stream.getData(); 00568 } 00569 00570 ROS_DEPRECATED virtual uint32_t serializationLength() const 00571 { 00572 uint32_t size = 0; 00573 size += ros::serialization::serializationLength(header); 00574 size += ros::serialization::serializationLength(goal_id); 00575 size += ros::serialization::serializationLength(goal); 00576 return size; 00577 } 00578 00579 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > Ptr; 00580 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> const> ConstPtr; 00581 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00582 }; // struct ReactiveLiftActionGoal 00583 typedef ::object_manipulation_msgs::ReactiveLiftActionGoal_<std::allocator<void> > ReactiveLiftActionGoal; 00584 00585 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal> ReactiveLiftActionGoalPtr; 00586 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal const> ReactiveLiftActionGoalConstPtr; 00587 00588 00589 template<typename ContainerAllocator> 00590 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v) 00591 { 00592 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, "", v); 00593 return s;} 00594 00595 } // namespace object_manipulation_msgs 00596 00597 namespace ros 00598 { 00599 namespace message_traits 00600 { 00601 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {}; 00602 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> const> : public TrueType {}; 00603 template<class ContainerAllocator> 00604 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > { 00605 static const char* value() 00606 { 00607 return "a61549c00e5d14801c74498e3f7d5554"; 00608 } 00609 00610 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 00611 static const uint64_t static_value1 = 0xa61549c00e5d1480ULL; 00612 static const uint64_t static_value2 = 0x1c74498e3f7d5554ULL; 00613 }; 00614 00615 template<class ContainerAllocator> 00616 struct DataType< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > { 00617 static const char* value() 00618 { 00619 return "object_manipulation_msgs/ReactiveLiftActionGoal"; 00620 } 00621 00622 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 00623 }; 00624 00625 template<class ContainerAllocator> 00626 struct Definition< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > { 00627 static const char* value() 00628 { 00629 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00630 \n\ 00631 Header header\n\ 00632 actionlib_msgs/GoalID goal_id\n\ 00633 ReactiveLiftGoal goal\n\ 00634 \n\ 00635 ================================================================================\n\ 00636 MSG: std_msgs/Header\n\ 00637 # Standard metadata for higher-level stamped data types.\n\ 00638 # This is generally used to communicate timestamped data \n\ 00639 # in a particular coordinate frame.\n\ 00640 # \n\ 00641 # sequence ID: consecutively increasing ID \n\ 00642 uint32 seq\n\ 00643 #Two-integer timestamp that is expressed as:\n\ 00644 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00645 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00646 # time-handling sugar is provided by the client library\n\ 00647 time stamp\n\ 00648 #Frame this data is associated with\n\ 00649 # 0: no frame\n\ 00650 # 1: global frame\n\ 00651 string frame_id\n\ 00652 \n\ 00653 ================================================================================\n\ 00654 MSG: actionlib_msgs/GoalID\n\ 00655 # The stamp should store the time at which this goal was requested.\n\ 00656 # It is used by an action server when it tries to preempt all\n\ 00657 # goals that were requested before a certain time\n\ 00658 time stamp\n\ 00659 \n\ 00660 # The id provides a way to associate feedback and\n\ 00661 # result message with specific goal requests. The id\n\ 00662 # specified must be unique.\n\ 00663 string id\n\ 00664 \n\ 00665 \n\ 00666 ================================================================================\n\ 00667 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\ 00668 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00669 \n\ 00670 # the name of the arm being used\n\ 00671 string arm_name\n\ 00672 \n\ 00673 # the object to be grasped\n\ 00674 GraspableObject target\n\ 00675 \n\ 00676 # How the object should be lifted \n\ 00677 GripperTranslation lift\n\ 00678 \n\ 00679 # the joint trajectory to use for the approach (if available)\n\ 00680 # this trajectory is expected to start at the current pose of the gripper\n\ 00681 # and end at the desired grasp pose\n\ 00682 trajectory_msgs/JointTrajectory trajectory\n\ 00683 \n\ 00684 # the name of the support surface in the collision environment, if any\n\ 00685 string collision_support_surface_name\n\ 00686 \n\ 00687 \n\ 00688 ================================================================================\n\ 00689 MSG: object_manipulation_msgs/GraspableObject\n\ 00690 # an object that the object_manipulator can work on\n\ 00691 \n\ 00692 # a graspable object can be represented in multiple ways. This message\n\ 00693 # can contain all of them. Which one is actually used is up to the receiver\n\ 00694 # of this message. When adding new representations, one must be careful that\n\ 00695 # they have reasonable lightweight defaults indicating that that particular\n\ 00696 # representation is not available.\n\ 00697 \n\ 00698 # the tf frame to be used as a reference frame when combining information from\n\ 00699 # the different representations below\n\ 00700 string reference_frame_id\n\ 00701 \n\ 00702 # potential recognition results from a database of models\n\ 00703 # all poses are relative to the object reference pose\n\ 00704 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00705 \n\ 00706 # the point cloud itself\n\ 00707 sensor_msgs/PointCloud cluster\n\ 00708 \n\ 00709 # a region of a PointCloud2 of interest\n\ 00710 object_manipulation_msgs/SceneRegion region\n\ 00711 \n\ 00712 # the name that this object has in the collision environment\n\ 00713 string collision_name\n\ 00714 ================================================================================\n\ 00715 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00716 # Informs that a specific model from the Model Database has been \n\ 00717 # identified at a certain location\n\ 00718 \n\ 00719 # the database id of the model\n\ 00720 int32 model_id\n\ 00721 \n\ 00722 # the pose that it can be found in\n\ 00723 geometry_msgs/PoseStamped pose\n\ 00724 \n\ 00725 # a measure of the confidence level in this detection result\n\ 00726 float32 confidence\n\ 00727 \n\ 00728 # the name of the object detector that generated this detection result\n\ 00729 string detector_name\n\ 00730 \n\ 00731 ================================================================================\n\ 00732 MSG: geometry_msgs/PoseStamped\n\ 00733 # A Pose with reference coordinate frame and timestamp\n\ 00734 Header header\n\ 00735 Pose pose\n\ 00736 \n\ 00737 ================================================================================\n\ 00738 MSG: geometry_msgs/Pose\n\ 00739 # A representation of pose in free space, composed of postion and orientation. \n\ 00740 Point position\n\ 00741 Quaternion orientation\n\ 00742 \n\ 00743 ================================================================================\n\ 00744 MSG: geometry_msgs/Point\n\ 00745 # This contains the position of a point in free space\n\ 00746 float64 x\n\ 00747 float64 y\n\ 00748 float64 z\n\ 00749 \n\ 00750 ================================================================================\n\ 00751 MSG: geometry_msgs/Quaternion\n\ 00752 # This represents an orientation in free space in quaternion form.\n\ 00753 \n\ 00754 float64 x\n\ 00755 float64 y\n\ 00756 float64 z\n\ 00757 float64 w\n\ 00758 \n\ 00759 ================================================================================\n\ 00760 MSG: sensor_msgs/PointCloud\n\ 00761 # This message holds a collection of 3d points, plus optional additional\n\ 00762 # information about each point.\n\ 00763 \n\ 00764 # Time of sensor data acquisition, coordinate frame ID.\n\ 00765 Header header\n\ 00766 \n\ 00767 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00768 # in the frame given in the header.\n\ 00769 geometry_msgs/Point32[] points\n\ 00770 \n\ 00771 # Each channel should have the same number of elements as points array,\n\ 00772 # and the data in each channel should correspond 1:1 with each point.\n\ 00773 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00774 ChannelFloat32[] channels\n\ 00775 \n\ 00776 ================================================================================\n\ 00777 MSG: geometry_msgs/Point32\n\ 00778 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00779 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00780 # \n\ 00781 # This recommendation is to promote interoperability. \n\ 00782 #\n\ 00783 # This message is designed to take up less space when sending\n\ 00784 # lots of points at once, as in the case of a PointCloud. \n\ 00785 \n\ 00786 float32 x\n\ 00787 float32 y\n\ 00788 float32 z\n\ 00789 ================================================================================\n\ 00790 MSG: sensor_msgs/ChannelFloat32\n\ 00791 # This message is used by the PointCloud message to hold optional data\n\ 00792 # associated with each point in the cloud. The length of the values\n\ 00793 # array should be the same as the length of the points array in the\n\ 00794 # PointCloud, and each value should be associated with the corresponding\n\ 00795 # point.\n\ 00796 \n\ 00797 # Channel names in existing practice include:\n\ 00798 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00799 # This is opposite to usual conventions but remains for\n\ 00800 # historical reasons. The newer PointCloud2 message has no\n\ 00801 # such problem.\n\ 00802 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00803 # (R,G,B) values packed into the least significant 24 bits,\n\ 00804 # in order.\n\ 00805 # \"intensity\" - laser or pixel intensity.\n\ 00806 # \"distance\"\n\ 00807 \n\ 00808 # The channel name should give semantics of the channel (e.g.\n\ 00809 # \"intensity\" instead of \"value\").\n\ 00810 string name\n\ 00811 \n\ 00812 # The values array should be 1-1 with the elements of the associated\n\ 00813 # PointCloud.\n\ 00814 float32[] values\n\ 00815 \n\ 00816 ================================================================================\n\ 00817 MSG: object_manipulation_msgs/SceneRegion\n\ 00818 # Point cloud\n\ 00819 sensor_msgs/PointCloud2 cloud\n\ 00820 \n\ 00821 # Indices for the region of interest\n\ 00822 int32[] mask\n\ 00823 \n\ 00824 # One of the corresponding 2D images, if applicable\n\ 00825 sensor_msgs/Image image\n\ 00826 \n\ 00827 # The disparity image, if applicable\n\ 00828 sensor_msgs/Image disparity_image\n\ 00829 \n\ 00830 # Camera info for the camera that took the image\n\ 00831 sensor_msgs/CameraInfo cam_info\n\ 00832 \n\ 00833 # a 3D region of interest for grasp planning\n\ 00834 geometry_msgs/PoseStamped roi_box_pose\n\ 00835 geometry_msgs/Vector3 roi_box_dims\n\ 00836 \n\ 00837 ================================================================================\n\ 00838 MSG: sensor_msgs/PointCloud2\n\ 00839 # This message holds a collection of N-dimensional points, which may\n\ 00840 # contain additional information such as normals, intensity, etc. The\n\ 00841 # point data is stored as a binary blob, its layout described by the\n\ 00842 # contents of the \"fields\" array.\n\ 00843 \n\ 00844 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00845 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00846 # camera depth sensors such as stereo or time-of-flight.\n\ 00847 \n\ 00848 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00849 # points).\n\ 00850 Header header\n\ 00851 \n\ 00852 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00853 # 1 and width is the length of the point cloud.\n\ 00854 uint32 height\n\ 00855 uint32 width\n\ 00856 \n\ 00857 # Describes the channels and their layout in the binary data blob.\n\ 00858 PointField[] fields\n\ 00859 \n\ 00860 bool is_bigendian # Is this data bigendian?\n\ 00861 uint32 point_step # Length of a point in bytes\n\ 00862 uint32 row_step # Length of a row in bytes\n\ 00863 uint8[] data # Actual point data, size is (row_step*height)\n\ 00864 \n\ 00865 bool is_dense # True if there are no invalid points\n\ 00866 \n\ 00867 ================================================================================\n\ 00868 MSG: sensor_msgs/PointField\n\ 00869 # This message holds the description of one point entry in the\n\ 00870 # PointCloud2 message format.\n\ 00871 uint8 INT8 = 1\n\ 00872 uint8 UINT8 = 2\n\ 00873 uint8 INT16 = 3\n\ 00874 uint8 UINT16 = 4\n\ 00875 uint8 INT32 = 5\n\ 00876 uint8 UINT32 = 6\n\ 00877 uint8 FLOAT32 = 7\n\ 00878 uint8 FLOAT64 = 8\n\ 00879 \n\ 00880 string name # Name of field\n\ 00881 uint32 offset # Offset from start of point struct\n\ 00882 uint8 datatype # Datatype enumeration, see above\n\ 00883 uint32 count # How many elements in the field\n\ 00884 \n\ 00885 ================================================================================\n\ 00886 MSG: sensor_msgs/Image\n\ 00887 # This message contains an uncompressed image\n\ 00888 # (0, 0) is at top-left corner of image\n\ 00889 #\n\ 00890 \n\ 00891 Header header # Header timestamp should be acquisition time of image\n\ 00892 # Header frame_id should be optical frame of camera\n\ 00893 # origin of frame should be optical center of cameara\n\ 00894 # +x should point to the right in the image\n\ 00895 # +y should point down in the image\n\ 00896 # +z should point into to plane of the image\n\ 00897 # If the frame_id here and the frame_id of the CameraInfo\n\ 00898 # message associated with the image conflict\n\ 00899 # the behavior is undefined\n\ 00900 \n\ 00901 uint32 height # image height, that is, number of rows\n\ 00902 uint32 width # image width, that is, number of columns\n\ 00903 \n\ 00904 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00905 # If you want to standardize a new string format, join\n\ 00906 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00907 \n\ 00908 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00909 # taken from the list of strings in src/image_encodings.cpp\n\ 00910 \n\ 00911 uint8 is_bigendian # is this data bigendian?\n\ 00912 uint32 step # Full row length in bytes\n\ 00913 uint8[] data # actual matrix data, size is (step * rows)\n\ 00914 \n\ 00915 ================================================================================\n\ 00916 MSG: sensor_msgs/CameraInfo\n\ 00917 # This message defines meta information for a camera. It should be in a\n\ 00918 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00919 # image topics named:\n\ 00920 #\n\ 00921 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00922 # image - monochrome, distorted\n\ 00923 # image_color - color, distorted\n\ 00924 # image_rect - monochrome, rectified\n\ 00925 # image_rect_color - color, rectified\n\ 00926 #\n\ 00927 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00928 # for producing the four processed image topics from image_raw and\n\ 00929 # camera_info. The meaning of the camera parameters are described in\n\ 00930 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00931 #\n\ 00932 # The image_geometry package provides a user-friendly interface to\n\ 00933 # common operations using this meta information. If you want to, e.g.,\n\ 00934 # project a 3d point into image coordinates, we strongly recommend\n\ 00935 # using image_geometry.\n\ 00936 #\n\ 00937 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00938 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00939 # indicates an uncalibrated camera.\n\ 00940 \n\ 00941 #######################################################################\n\ 00942 # Image acquisition info #\n\ 00943 #######################################################################\n\ 00944 \n\ 00945 # Time of image acquisition, camera coordinate frame ID\n\ 00946 Header header # Header timestamp should be acquisition time of image\n\ 00947 # Header frame_id should be optical frame of camera\n\ 00948 # origin of frame should be optical center of camera\n\ 00949 # +x should point to the right in the image\n\ 00950 # +y should point down in the image\n\ 00951 # +z should point into the plane of the image\n\ 00952 \n\ 00953 \n\ 00954 #######################################################################\n\ 00955 # Calibration Parameters #\n\ 00956 #######################################################################\n\ 00957 # These are fixed during camera calibration. Their values will be the #\n\ 00958 # same in all messages until the camera is recalibrated. Note that #\n\ 00959 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00960 # #\n\ 00961 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00962 # to: #\n\ 00963 # 1. An undistorted image (requires D and K) #\n\ 00964 # 2. A rectified image (requires D, K, R) #\n\ 00965 # The projection matrix P projects 3D points into the rectified image.#\n\ 00966 #######################################################################\n\ 00967 \n\ 00968 # The image dimensions with which the camera was calibrated. Normally\n\ 00969 # this will be the full camera resolution in pixels.\n\ 00970 uint32 height\n\ 00971 uint32 width\n\ 00972 \n\ 00973 # The distortion model used. Supported models are listed in\n\ 00974 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00975 # simple model of radial and tangential distortion - is sufficent.\n\ 00976 string distortion_model\n\ 00977 \n\ 00978 # The distortion parameters, size depending on the distortion model.\n\ 00979 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00980 float64[] D\n\ 00981 \n\ 00982 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00983 # [fx 0 cx]\n\ 00984 # K = [ 0 fy cy]\n\ 00985 # [ 0 0 1]\n\ 00986 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00987 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00988 # (cx, cy).\n\ 00989 float64[9] K # 3x3 row-major matrix\n\ 00990 \n\ 00991 # Rectification matrix (stereo cameras only)\n\ 00992 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00993 # stereo image plane so that epipolar lines in both stereo images are\n\ 00994 # parallel.\n\ 00995 float64[9] R # 3x3 row-major matrix\n\ 00996 \n\ 00997 # Projection/camera matrix\n\ 00998 # [fx' 0 cx' Tx]\n\ 00999 # P = [ 0 fy' cy' Ty]\n\ 01000 # [ 0 0 1 0]\n\ 01001 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01002 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01003 # is the normal camera intrinsic matrix for the rectified image.\n\ 01004 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01005 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01006 # (cx', cy') - these may differ from the values in K.\n\ 01007 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01008 # also have R = the identity and P[1:3,1:3] = K.\n\ 01009 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01010 # position of the optical center of the second camera in the first\n\ 01011 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01012 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01013 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01014 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01015 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01016 # the rectified image is given by:\n\ 01017 # [u v w]' = P * [X Y Z 1]'\n\ 01018 # x = u / w\n\ 01019 # y = v / w\n\ 01020 # This holds for both images of a stereo pair.\n\ 01021 float64[12] P # 3x4 row-major matrix\n\ 01022 \n\ 01023 \n\ 01024 #######################################################################\n\ 01025 # Operational Parameters #\n\ 01026 #######################################################################\n\ 01027 # These define the image region actually captured by the camera #\n\ 01028 # driver. Although they affect the geometry of the output image, they #\n\ 01029 # may be changed freely without recalibrating the camera. #\n\ 01030 #######################################################################\n\ 01031 \n\ 01032 # Binning refers here to any camera setting which combines rectangular\n\ 01033 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01034 # resolution of the output image to\n\ 01035 # (width / binning_x) x (height / binning_y).\n\ 01036 # The default values binning_x = binning_y = 0 is considered the same\n\ 01037 # as binning_x = binning_y = 1 (no subsampling).\n\ 01038 uint32 binning_x\n\ 01039 uint32 binning_y\n\ 01040 \n\ 01041 # Region of interest (subwindow of full camera resolution), given in\n\ 01042 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01043 # always denotes the same window of pixels on the camera sensor,\n\ 01044 # regardless of binning settings.\n\ 01045 # The default setting of roi (all values 0) is considered the same as\n\ 01046 # full resolution (roi.width = width, roi.height = height).\n\ 01047 RegionOfInterest roi\n\ 01048 \n\ 01049 ================================================================================\n\ 01050 MSG: sensor_msgs/RegionOfInterest\n\ 01051 # This message is used to specify a region of interest within an image.\n\ 01052 #\n\ 01053 # When used to specify the ROI setting of the camera when the image was\n\ 01054 # taken, the height and width fields should either match the height and\n\ 01055 # width fields for the associated image; or height = width = 0\n\ 01056 # indicates that the full resolution image was captured.\n\ 01057 \n\ 01058 uint32 x_offset # Leftmost pixel of the ROI\n\ 01059 # (0 if the ROI includes the left edge of the image)\n\ 01060 uint32 y_offset # Topmost pixel of the ROI\n\ 01061 # (0 if the ROI includes the top edge of the image)\n\ 01062 uint32 height # Height of ROI\n\ 01063 uint32 width # Width of ROI\n\ 01064 \n\ 01065 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01066 # ROI in this message. Typically this should be False if the full image\n\ 01067 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01068 # used).\n\ 01069 bool do_rectify\n\ 01070 \n\ 01071 ================================================================================\n\ 01072 MSG: geometry_msgs/Vector3\n\ 01073 # This represents a vector in free space. \n\ 01074 \n\ 01075 float64 x\n\ 01076 float64 y\n\ 01077 float64 z\n\ 01078 ================================================================================\n\ 01079 MSG: object_manipulation_msgs/GripperTranslation\n\ 01080 # defines a translation for the gripper, used in pickup or place tasks\n\ 01081 # for example for lifting an object off a table or approaching the table for placing\n\ 01082 \n\ 01083 # the direction of the translation\n\ 01084 geometry_msgs/Vector3Stamped direction\n\ 01085 \n\ 01086 # the desired translation distance\n\ 01087 float32 desired_distance\n\ 01088 \n\ 01089 # the min distance that must be considered feasible before the\n\ 01090 # grasp is even attempted\n\ 01091 float32 min_distance\n\ 01092 ================================================================================\n\ 01093 MSG: geometry_msgs/Vector3Stamped\n\ 01094 # This represents a Vector3 with reference coordinate frame and timestamp\n\ 01095 Header header\n\ 01096 Vector3 vector\n\ 01097 \n\ 01098 ================================================================================\n\ 01099 MSG: trajectory_msgs/JointTrajectory\n\ 01100 Header header\n\ 01101 string[] joint_names\n\ 01102 JointTrajectoryPoint[] points\n\ 01103 ================================================================================\n\ 01104 MSG: trajectory_msgs/JointTrajectoryPoint\n\ 01105 float64[] positions\n\ 01106 float64[] velocities\n\ 01107 float64[] accelerations\n\ 01108 duration time_from_start\n\ 01109 "; 01110 } 01111 01112 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 01113 }; 01114 01115 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {}; 01116 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {}; 01117 } // namespace message_traits 01118 } // namespace ros 01119 01120 namespace ros 01121 { 01122 namespace serialization 01123 { 01124 01125 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > 01126 { 01127 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01128 { 01129 stream.next(m.header); 01130 stream.next(m.goal_id); 01131 stream.next(m.goal); 01132 } 01133 01134 ROS_DECLARE_ALLINONE_SERIALIZER; 01135 }; // struct ReactiveLiftActionGoal_ 01136 } // namespace serialization 01137 } // namespace ros 01138 01139 namespace ros 01140 { 01141 namespace message_operations 01142 { 01143 01144 template<class ContainerAllocator> 01145 struct Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > 01146 { 01147 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v) 01148 { 01149 s << indent << "header: "; 01150 s << std::endl; 01151 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01152 s << indent << "goal_id: "; 01153 s << std::endl; 01154 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 01155 s << indent << "goal: "; 01156 s << std::endl; 01157 Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 01158 } 01159 }; 01160 01161 01162 } // namespace message_operations 01163 } // namespace ros 01164 01165 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H 01166