$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspHandPostureExecutionActionGoal.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalID.h" 00019 #include "object_manipulation_msgs/GraspHandPostureExecutionGoal.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspHandPostureExecutionActionGoal_ { 00025 typedef GraspHandPostureExecutionActionGoal_<ContainerAllocator> Type; 00026 00027 GraspHandPostureExecutionActionGoal_() 00028 : header() 00029 , goal_id() 00030 , goal() 00031 { 00032 } 00033 00034 GraspHandPostureExecutionActionGoal_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , goal_id(_alloc) 00037 , goal(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type; 00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id; 00046 00047 typedef ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> _goal_type; 00048 ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> goal; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspHandPostureExecutionActionGoal"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "37a3c654e517374e8dbb5861abf034f4"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalID goal_id\n\ 00070 GraspHandPostureExecutionGoal goal\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalID\n\ 00092 # The stamp should store the time at which this goal was requested.\n\ 00093 # It is used by an action server when it tries to preempt all\n\ 00094 # goals that were requested before a certain time\n\ 00095 time stamp\n\ 00096 \n\ 00097 # The id provides a way to associate feedback and\n\ 00098 # result message with specific goal requests. The id\n\ 00099 # specified must be unique.\n\ 00100 string id\n\ 00101 \n\ 00102 \n\ 00103 ================================================================================\n\ 00104 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\ 00105 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00106 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00107 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00108 # for each arm\n\ 00109 \n\ 00110 # the grasp to be executed\n\ 00111 Grasp grasp\n\ 00112 \n\ 00113 # the goal of this action\n\ 00114 # requests that the hand be set in the pre-grasp posture\n\ 00115 int32 PRE_GRASP=1\n\ 00116 # requests that the hand execute the actual grasp\n\ 00117 int32 GRASP=2\n\ 00118 # requests that the hand open to release the object\n\ 00119 int32 RELEASE=3\n\ 00120 int32 goal\n\ 00121 \n\ 00122 # the max contact force to use (<=0 if no desired max)\n\ 00123 float32 max_contact_force\n\ 00124 \n\ 00125 \n\ 00126 ================================================================================\n\ 00127 MSG: object_manipulation_msgs/Grasp\n\ 00128 \n\ 00129 # The internal posture of the hand for the pre-grasp\n\ 00130 # only positions are used\n\ 00131 sensor_msgs/JointState pre_grasp_posture\n\ 00132 \n\ 00133 # The internal posture of the hand for the grasp\n\ 00134 # positions and efforts are used\n\ 00135 sensor_msgs/JointState grasp_posture\n\ 00136 \n\ 00137 # The position of the end-effector for the grasp relative to a reference frame \n\ 00138 # (that is always specified elsewhere, not in this message)\n\ 00139 geometry_msgs/Pose grasp_pose\n\ 00140 \n\ 00141 # The estimated probability of success for this grasp\n\ 00142 float64 success_probability\n\ 00143 \n\ 00144 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00145 bool cluster_rep\n\ 00146 \n\ 00147 # how far the pre-grasp should ideally be away from the grasp\n\ 00148 float32 desired_approach_distance\n\ 00149 \n\ 00150 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00151 # for the grasp not to be rejected\n\ 00152 float32 min_approach_distance\n\ 00153 \n\ 00154 # an optional list of obstacles that we have semantic information about\n\ 00155 # and that we expect might move in the course of executing this grasp\n\ 00156 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00157 # execution, grasp executors will not check for collisions against these objects\n\ 00158 GraspableObject[] moved_obstacles\n\ 00159 \n\ 00160 ================================================================================\n\ 00161 MSG: sensor_msgs/JointState\n\ 00162 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00163 #\n\ 00164 # The state of each joint (revolute or prismatic) is defined by:\n\ 00165 # * the position of the joint (rad or m),\n\ 00166 # * the velocity of the joint (rad/s or m/s) and \n\ 00167 # * the effort that is applied in the joint (Nm or N).\n\ 00168 #\n\ 00169 # Each joint is uniquely identified by its name\n\ 00170 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00171 # in one message have to be recorded at the same time.\n\ 00172 #\n\ 00173 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00174 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00175 # effort associated with them, you can leave the effort array empty. \n\ 00176 #\n\ 00177 # All arrays in this message should have the same size, or be empty.\n\ 00178 # This is the only way to uniquely associate the joint name with the correct\n\ 00179 # states.\n\ 00180 \n\ 00181 \n\ 00182 Header header\n\ 00183 \n\ 00184 string[] name\n\ 00185 float64[] position\n\ 00186 float64[] velocity\n\ 00187 float64[] effort\n\ 00188 \n\ 00189 ================================================================================\n\ 00190 MSG: geometry_msgs/Pose\n\ 00191 # A representation of pose in free space, composed of postion and orientation. \n\ 00192 Point position\n\ 00193 Quaternion orientation\n\ 00194 \n\ 00195 ================================================================================\n\ 00196 MSG: geometry_msgs/Point\n\ 00197 # This contains the position of a point in free space\n\ 00198 float64 x\n\ 00199 float64 y\n\ 00200 float64 z\n\ 00201 \n\ 00202 ================================================================================\n\ 00203 MSG: geometry_msgs/Quaternion\n\ 00204 # This represents an orientation in free space in quaternion form.\n\ 00205 \n\ 00206 float64 x\n\ 00207 float64 y\n\ 00208 float64 z\n\ 00209 float64 w\n\ 00210 \n\ 00211 ================================================================================\n\ 00212 MSG: object_manipulation_msgs/GraspableObject\n\ 00213 # an object that the object_manipulator can work on\n\ 00214 \n\ 00215 # a graspable object can be represented in multiple ways. This message\n\ 00216 # can contain all of them. Which one is actually used is up to the receiver\n\ 00217 # of this message. When adding new representations, one must be careful that\n\ 00218 # they have reasonable lightweight defaults indicating that that particular\n\ 00219 # representation is not available.\n\ 00220 \n\ 00221 # the tf frame to be used as a reference frame when combining information from\n\ 00222 # the different representations below\n\ 00223 string reference_frame_id\n\ 00224 \n\ 00225 # potential recognition results from a database of models\n\ 00226 # all poses are relative to the object reference pose\n\ 00227 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00228 \n\ 00229 # the point cloud itself\n\ 00230 sensor_msgs/PointCloud cluster\n\ 00231 \n\ 00232 # a region of a PointCloud2 of interest\n\ 00233 object_manipulation_msgs/SceneRegion region\n\ 00234 \n\ 00235 # the name that this object has in the collision environment\n\ 00236 string collision_name\n\ 00237 ================================================================================\n\ 00238 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00239 # Informs that a specific model from the Model Database has been \n\ 00240 # identified at a certain location\n\ 00241 \n\ 00242 # the database id of the model\n\ 00243 int32 model_id\n\ 00244 \n\ 00245 # the pose that it can be found in\n\ 00246 geometry_msgs/PoseStamped pose\n\ 00247 \n\ 00248 # a measure of the confidence level in this detection result\n\ 00249 float32 confidence\n\ 00250 \n\ 00251 # the name of the object detector that generated this detection result\n\ 00252 string detector_name\n\ 00253 \n\ 00254 ================================================================================\n\ 00255 MSG: geometry_msgs/PoseStamped\n\ 00256 # A Pose with reference coordinate frame and timestamp\n\ 00257 Header header\n\ 00258 Pose pose\n\ 00259 \n\ 00260 ================================================================================\n\ 00261 MSG: sensor_msgs/PointCloud\n\ 00262 # This message holds a collection of 3d points, plus optional additional\n\ 00263 # information about each point.\n\ 00264 \n\ 00265 # Time of sensor data acquisition, coordinate frame ID.\n\ 00266 Header header\n\ 00267 \n\ 00268 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00269 # in the frame given in the header.\n\ 00270 geometry_msgs/Point32[] points\n\ 00271 \n\ 00272 # Each channel should have the same number of elements as points array,\n\ 00273 # and the data in each channel should correspond 1:1 with each point.\n\ 00274 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00275 ChannelFloat32[] channels\n\ 00276 \n\ 00277 ================================================================================\n\ 00278 MSG: geometry_msgs/Point32\n\ 00279 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00280 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00281 # \n\ 00282 # This recommendation is to promote interoperability. \n\ 00283 #\n\ 00284 # This message is designed to take up less space when sending\n\ 00285 # lots of points at once, as in the case of a PointCloud. \n\ 00286 \n\ 00287 float32 x\n\ 00288 float32 y\n\ 00289 float32 z\n\ 00290 ================================================================================\n\ 00291 MSG: sensor_msgs/ChannelFloat32\n\ 00292 # This message is used by the PointCloud message to hold optional data\n\ 00293 # associated with each point in the cloud. The length of the values\n\ 00294 # array should be the same as the length of the points array in the\n\ 00295 # PointCloud, and each value should be associated with the corresponding\n\ 00296 # point.\n\ 00297 \n\ 00298 # Channel names in existing practice include:\n\ 00299 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00300 # This is opposite to usual conventions but remains for\n\ 00301 # historical reasons. The newer PointCloud2 message has no\n\ 00302 # such problem.\n\ 00303 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00304 # (R,G,B) values packed into the least significant 24 bits,\n\ 00305 # in order.\n\ 00306 # \"intensity\" - laser or pixel intensity.\n\ 00307 # \"distance\"\n\ 00308 \n\ 00309 # The channel name should give semantics of the channel (e.g.\n\ 00310 # \"intensity\" instead of \"value\").\n\ 00311 string name\n\ 00312 \n\ 00313 # The values array should be 1-1 with the elements of the associated\n\ 00314 # PointCloud.\n\ 00315 float32[] values\n\ 00316 \n\ 00317 ================================================================================\n\ 00318 MSG: object_manipulation_msgs/SceneRegion\n\ 00319 # Point cloud\n\ 00320 sensor_msgs/PointCloud2 cloud\n\ 00321 \n\ 00322 # Indices for the region of interest\n\ 00323 int32[] mask\n\ 00324 \n\ 00325 # One of the corresponding 2D images, if applicable\n\ 00326 sensor_msgs/Image image\n\ 00327 \n\ 00328 # The disparity image, if applicable\n\ 00329 sensor_msgs/Image disparity_image\n\ 00330 \n\ 00331 # Camera info for the camera that took the image\n\ 00332 sensor_msgs/CameraInfo cam_info\n\ 00333 \n\ 00334 # a 3D region of interest for grasp planning\n\ 00335 geometry_msgs/PoseStamped roi_box_pose\n\ 00336 geometry_msgs/Vector3 roi_box_dims\n\ 00337 \n\ 00338 ================================================================================\n\ 00339 MSG: sensor_msgs/PointCloud2\n\ 00340 # This message holds a collection of N-dimensional points, which may\n\ 00341 # contain additional information such as normals, intensity, etc. The\n\ 00342 # point data is stored as a binary blob, its layout described by the\n\ 00343 # contents of the \"fields\" array.\n\ 00344 \n\ 00345 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00346 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00347 # camera depth sensors such as stereo or time-of-flight.\n\ 00348 \n\ 00349 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00350 # points).\n\ 00351 Header header\n\ 00352 \n\ 00353 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00354 # 1 and width is the length of the point cloud.\n\ 00355 uint32 height\n\ 00356 uint32 width\n\ 00357 \n\ 00358 # Describes the channels and their layout in the binary data blob.\n\ 00359 PointField[] fields\n\ 00360 \n\ 00361 bool is_bigendian # Is this data bigendian?\n\ 00362 uint32 point_step # Length of a point in bytes\n\ 00363 uint32 row_step # Length of a row in bytes\n\ 00364 uint8[] data # Actual point data, size is (row_step*height)\n\ 00365 \n\ 00366 bool is_dense # True if there are no invalid points\n\ 00367 \n\ 00368 ================================================================================\n\ 00369 MSG: sensor_msgs/PointField\n\ 00370 # This message holds the description of one point entry in the\n\ 00371 # PointCloud2 message format.\n\ 00372 uint8 INT8 = 1\n\ 00373 uint8 UINT8 = 2\n\ 00374 uint8 INT16 = 3\n\ 00375 uint8 UINT16 = 4\n\ 00376 uint8 INT32 = 5\n\ 00377 uint8 UINT32 = 6\n\ 00378 uint8 FLOAT32 = 7\n\ 00379 uint8 FLOAT64 = 8\n\ 00380 \n\ 00381 string name # Name of field\n\ 00382 uint32 offset # Offset from start of point struct\n\ 00383 uint8 datatype # Datatype enumeration, see above\n\ 00384 uint32 count # How many elements in the field\n\ 00385 \n\ 00386 ================================================================================\n\ 00387 MSG: sensor_msgs/Image\n\ 00388 # This message contains an uncompressed image\n\ 00389 # (0, 0) is at top-left corner of image\n\ 00390 #\n\ 00391 \n\ 00392 Header header # Header timestamp should be acquisition time of image\n\ 00393 # Header frame_id should be optical frame of camera\n\ 00394 # origin of frame should be optical center of cameara\n\ 00395 # +x should point to the right in the image\n\ 00396 # +y should point down in the image\n\ 00397 # +z should point into to plane of the image\n\ 00398 # If the frame_id here and the frame_id of the CameraInfo\n\ 00399 # message associated with the image conflict\n\ 00400 # the behavior is undefined\n\ 00401 \n\ 00402 uint32 height # image height, that is, number of rows\n\ 00403 uint32 width # image width, that is, number of columns\n\ 00404 \n\ 00405 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00406 # If you want to standardize a new string format, join\n\ 00407 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00408 \n\ 00409 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00410 # taken from the list of strings in src/image_encodings.cpp\n\ 00411 \n\ 00412 uint8 is_bigendian # is this data bigendian?\n\ 00413 uint32 step # Full row length in bytes\n\ 00414 uint8[] data # actual matrix data, size is (step * rows)\n\ 00415 \n\ 00416 ================================================================================\n\ 00417 MSG: sensor_msgs/CameraInfo\n\ 00418 # This message defines meta information for a camera. It should be in a\n\ 00419 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00420 # image topics named:\n\ 00421 #\n\ 00422 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00423 # image - monochrome, distorted\n\ 00424 # image_color - color, distorted\n\ 00425 # image_rect - monochrome, rectified\n\ 00426 # image_rect_color - color, rectified\n\ 00427 #\n\ 00428 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00429 # for producing the four processed image topics from image_raw and\n\ 00430 # camera_info. The meaning of the camera parameters are described in\n\ 00431 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00432 #\n\ 00433 # The image_geometry package provides a user-friendly interface to\n\ 00434 # common operations using this meta information. If you want to, e.g.,\n\ 00435 # project a 3d point into image coordinates, we strongly recommend\n\ 00436 # using image_geometry.\n\ 00437 #\n\ 00438 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00439 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00440 # indicates an uncalibrated camera.\n\ 00441 \n\ 00442 #######################################################################\n\ 00443 # Image acquisition info #\n\ 00444 #######################################################################\n\ 00445 \n\ 00446 # Time of image acquisition, camera coordinate frame ID\n\ 00447 Header header # Header timestamp should be acquisition time of image\n\ 00448 # Header frame_id should be optical frame of camera\n\ 00449 # origin of frame should be optical center of camera\n\ 00450 # +x should point to the right in the image\n\ 00451 # +y should point down in the image\n\ 00452 # +z should point into the plane of the image\n\ 00453 \n\ 00454 \n\ 00455 #######################################################################\n\ 00456 # Calibration Parameters #\n\ 00457 #######################################################################\n\ 00458 # These are fixed during camera calibration. Their values will be the #\n\ 00459 # same in all messages until the camera is recalibrated. Note that #\n\ 00460 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00461 # #\n\ 00462 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00463 # to: #\n\ 00464 # 1. An undistorted image (requires D and K) #\n\ 00465 # 2. A rectified image (requires D, K, R) #\n\ 00466 # The projection matrix P projects 3D points into the rectified image.#\n\ 00467 #######################################################################\n\ 00468 \n\ 00469 # The image dimensions with which the camera was calibrated. Normally\n\ 00470 # this will be the full camera resolution in pixels.\n\ 00471 uint32 height\n\ 00472 uint32 width\n\ 00473 \n\ 00474 # The distortion model used. Supported models are listed in\n\ 00475 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00476 # simple model of radial and tangential distortion - is sufficent.\n\ 00477 string distortion_model\n\ 00478 \n\ 00479 # The distortion parameters, size depending on the distortion model.\n\ 00480 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00481 float64[] D\n\ 00482 \n\ 00483 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00484 # [fx 0 cx]\n\ 00485 # K = [ 0 fy cy]\n\ 00486 # [ 0 0 1]\n\ 00487 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00488 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00489 # (cx, cy).\n\ 00490 float64[9] K # 3x3 row-major matrix\n\ 00491 \n\ 00492 # Rectification matrix (stereo cameras only)\n\ 00493 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00494 # stereo image plane so that epipolar lines in both stereo images are\n\ 00495 # parallel.\n\ 00496 float64[9] R # 3x3 row-major matrix\n\ 00497 \n\ 00498 # Projection/camera matrix\n\ 00499 # [fx' 0 cx' Tx]\n\ 00500 # P = [ 0 fy' cy' Ty]\n\ 00501 # [ 0 0 1 0]\n\ 00502 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00503 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00504 # is the normal camera intrinsic matrix for the rectified image.\n\ 00505 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00506 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00507 # (cx', cy') - these may differ from the values in K.\n\ 00508 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00509 # also have R = the identity and P[1:3,1:3] = K.\n\ 00510 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00511 # position of the optical center of the second camera in the first\n\ 00512 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00513 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00514 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00515 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00516 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00517 # the rectified image is given by:\n\ 00518 # [u v w]' = P * [X Y Z 1]'\n\ 00519 # x = u / w\n\ 00520 # y = v / w\n\ 00521 # This holds for both images of a stereo pair.\n\ 00522 float64[12] P # 3x4 row-major matrix\n\ 00523 \n\ 00524 \n\ 00525 #######################################################################\n\ 00526 # Operational Parameters #\n\ 00527 #######################################################################\n\ 00528 # These define the image region actually captured by the camera #\n\ 00529 # driver. Although they affect the geometry of the output image, they #\n\ 00530 # may be changed freely without recalibrating the camera. #\n\ 00531 #######################################################################\n\ 00532 \n\ 00533 # Binning refers here to any camera setting which combines rectangular\n\ 00534 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00535 # resolution of the output image to\n\ 00536 # (width / binning_x) x (height / binning_y).\n\ 00537 # The default values binning_x = binning_y = 0 is considered the same\n\ 00538 # as binning_x = binning_y = 1 (no subsampling).\n\ 00539 uint32 binning_x\n\ 00540 uint32 binning_y\n\ 00541 \n\ 00542 # Region of interest (subwindow of full camera resolution), given in\n\ 00543 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00544 # always denotes the same window of pixels on the camera sensor,\n\ 00545 # regardless of binning settings.\n\ 00546 # The default setting of roi (all values 0) is considered the same as\n\ 00547 # full resolution (roi.width = width, roi.height = height).\n\ 00548 RegionOfInterest roi\n\ 00549 \n\ 00550 ================================================================================\n\ 00551 MSG: sensor_msgs/RegionOfInterest\n\ 00552 # This message is used to specify a region of interest within an image.\n\ 00553 #\n\ 00554 # When used to specify the ROI setting of the camera when the image was\n\ 00555 # taken, the height and width fields should either match the height and\n\ 00556 # width fields for the associated image; or height = width = 0\n\ 00557 # indicates that the full resolution image was captured.\n\ 00558 \n\ 00559 uint32 x_offset # Leftmost pixel of the ROI\n\ 00560 # (0 if the ROI includes the left edge of the image)\n\ 00561 uint32 y_offset # Topmost pixel of the ROI\n\ 00562 # (0 if the ROI includes the top edge of the image)\n\ 00563 uint32 height # Height of ROI\n\ 00564 uint32 width # Width of ROI\n\ 00565 \n\ 00566 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00567 # ROI in this message. Typically this should be False if the full image\n\ 00568 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00569 # used).\n\ 00570 bool do_rectify\n\ 00571 \n\ 00572 ================================================================================\n\ 00573 MSG: geometry_msgs/Vector3\n\ 00574 # This represents a vector in free space. \n\ 00575 \n\ 00576 float64 x\n\ 00577 float64 y\n\ 00578 float64 z\n\ 00579 "; } 00580 public: 00581 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00582 00583 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00584 00585 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00586 { 00587 ros::serialization::OStream stream(write_ptr, 1000000000); 00588 ros::serialization::serialize(stream, header); 00589 ros::serialization::serialize(stream, goal_id); 00590 ros::serialization::serialize(stream, goal); 00591 return stream.getData(); 00592 } 00593 00594 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00595 { 00596 ros::serialization::IStream stream(read_ptr, 1000000000); 00597 ros::serialization::deserialize(stream, header); 00598 ros::serialization::deserialize(stream, goal_id); 00599 ros::serialization::deserialize(stream, goal); 00600 return stream.getData(); 00601 } 00602 00603 ROS_DEPRECATED virtual uint32_t serializationLength() const 00604 { 00605 uint32_t size = 0; 00606 size += ros::serialization::serializationLength(header); 00607 size += ros::serialization::serializationLength(goal_id); 00608 size += ros::serialization::serializationLength(goal); 00609 return size; 00610 } 00611 00612 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > Ptr; 00613 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> const> ConstPtr; 00614 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00615 }; // struct GraspHandPostureExecutionActionGoal 00616 typedef ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<std::allocator<void> > GraspHandPostureExecutionActionGoal; 00617 00618 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal> GraspHandPostureExecutionActionGoalPtr; 00619 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal const> GraspHandPostureExecutionActionGoalConstPtr; 00620 00621 00622 template<typename ContainerAllocator> 00623 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> & v) 00624 { 00625 ros::message_operations::Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> >::stream(s, "", v); 00626 return s;} 00627 00628 } // namespace object_manipulation_msgs 00629 00630 namespace ros 00631 { 00632 namespace message_traits 00633 { 00634 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {}; 00635 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> const> : public TrueType {}; 00636 template<class ContainerAllocator> 00637 struct MD5Sum< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > { 00638 static const char* value() 00639 { 00640 return "37a3c654e517374e8dbb5861abf034f4"; 00641 } 00642 00643 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); } 00644 static const uint64_t static_value1 = 0x37a3c654e517374eULL; 00645 static const uint64_t static_value2 = 0x8dbb5861abf034f4ULL; 00646 }; 00647 00648 template<class ContainerAllocator> 00649 struct DataType< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > { 00650 static const char* value() 00651 { 00652 return "object_manipulation_msgs/GraspHandPostureExecutionActionGoal"; 00653 } 00654 00655 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); } 00656 }; 00657 00658 template<class ContainerAllocator> 00659 struct Definition< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > { 00660 static const char* value() 00661 { 00662 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00663 \n\ 00664 Header header\n\ 00665 actionlib_msgs/GoalID goal_id\n\ 00666 GraspHandPostureExecutionGoal goal\n\ 00667 \n\ 00668 ================================================================================\n\ 00669 MSG: std_msgs/Header\n\ 00670 # Standard metadata for higher-level stamped data types.\n\ 00671 # This is generally used to communicate timestamped data \n\ 00672 # in a particular coordinate frame.\n\ 00673 # \n\ 00674 # sequence ID: consecutively increasing ID \n\ 00675 uint32 seq\n\ 00676 #Two-integer timestamp that is expressed as:\n\ 00677 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00678 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00679 # time-handling sugar is provided by the client library\n\ 00680 time stamp\n\ 00681 #Frame this data is associated with\n\ 00682 # 0: no frame\n\ 00683 # 1: global frame\n\ 00684 string frame_id\n\ 00685 \n\ 00686 ================================================================================\n\ 00687 MSG: actionlib_msgs/GoalID\n\ 00688 # The stamp should store the time at which this goal was requested.\n\ 00689 # It is used by an action server when it tries to preempt all\n\ 00690 # goals that were requested before a certain time\n\ 00691 time stamp\n\ 00692 \n\ 00693 # The id provides a way to associate feedback and\n\ 00694 # result message with specific goal requests. The id\n\ 00695 # specified must be unique.\n\ 00696 string id\n\ 00697 \n\ 00698 \n\ 00699 ================================================================================\n\ 00700 MSG: object_manipulation_msgs/GraspHandPostureExecutionGoal\n\ 00701 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00702 # an action for requesting the finger posture part of grasp be physically carried out by a hand\n\ 00703 # the name of the arm being used is not in here, as this will be sent to a specific action server\n\ 00704 # for each arm\n\ 00705 \n\ 00706 # the grasp to be executed\n\ 00707 Grasp grasp\n\ 00708 \n\ 00709 # the goal of this action\n\ 00710 # requests that the hand be set in the pre-grasp posture\n\ 00711 int32 PRE_GRASP=1\n\ 00712 # requests that the hand execute the actual grasp\n\ 00713 int32 GRASP=2\n\ 00714 # requests that the hand open to release the object\n\ 00715 int32 RELEASE=3\n\ 00716 int32 goal\n\ 00717 \n\ 00718 # the max contact force to use (<=0 if no desired max)\n\ 00719 float32 max_contact_force\n\ 00720 \n\ 00721 \n\ 00722 ================================================================================\n\ 00723 MSG: object_manipulation_msgs/Grasp\n\ 00724 \n\ 00725 # The internal posture of the hand for the pre-grasp\n\ 00726 # only positions are used\n\ 00727 sensor_msgs/JointState pre_grasp_posture\n\ 00728 \n\ 00729 # The internal posture of the hand for the grasp\n\ 00730 # positions and efforts are used\n\ 00731 sensor_msgs/JointState grasp_posture\n\ 00732 \n\ 00733 # The position of the end-effector for the grasp relative to a reference frame \n\ 00734 # (that is always specified elsewhere, not in this message)\n\ 00735 geometry_msgs/Pose grasp_pose\n\ 00736 \n\ 00737 # The estimated probability of success for this grasp\n\ 00738 float64 success_probability\n\ 00739 \n\ 00740 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00741 bool cluster_rep\n\ 00742 \n\ 00743 # how far the pre-grasp should ideally be away from the grasp\n\ 00744 float32 desired_approach_distance\n\ 00745 \n\ 00746 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00747 # for the grasp not to be rejected\n\ 00748 float32 min_approach_distance\n\ 00749 \n\ 00750 # an optional list of obstacles that we have semantic information about\n\ 00751 # and that we expect might move in the course of executing this grasp\n\ 00752 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00753 # execution, grasp executors will not check for collisions against these objects\n\ 00754 GraspableObject[] moved_obstacles\n\ 00755 \n\ 00756 ================================================================================\n\ 00757 MSG: sensor_msgs/JointState\n\ 00758 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00759 #\n\ 00760 # The state of each joint (revolute or prismatic) is defined by:\n\ 00761 # * the position of the joint (rad or m),\n\ 00762 # * the velocity of the joint (rad/s or m/s) and \n\ 00763 # * the effort that is applied in the joint (Nm or N).\n\ 00764 #\n\ 00765 # Each joint is uniquely identified by its name\n\ 00766 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00767 # in one message have to be recorded at the same time.\n\ 00768 #\n\ 00769 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00770 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00771 # effort associated with them, you can leave the effort array empty. \n\ 00772 #\n\ 00773 # All arrays in this message should have the same size, or be empty.\n\ 00774 # This is the only way to uniquely associate the joint name with the correct\n\ 00775 # states.\n\ 00776 \n\ 00777 \n\ 00778 Header header\n\ 00779 \n\ 00780 string[] name\n\ 00781 float64[] position\n\ 00782 float64[] velocity\n\ 00783 float64[] effort\n\ 00784 \n\ 00785 ================================================================================\n\ 00786 MSG: geometry_msgs/Pose\n\ 00787 # A representation of pose in free space, composed of postion and orientation. \n\ 00788 Point position\n\ 00789 Quaternion orientation\n\ 00790 \n\ 00791 ================================================================================\n\ 00792 MSG: geometry_msgs/Point\n\ 00793 # This contains the position of a point in free space\n\ 00794 float64 x\n\ 00795 float64 y\n\ 00796 float64 z\n\ 00797 \n\ 00798 ================================================================================\n\ 00799 MSG: geometry_msgs/Quaternion\n\ 00800 # This represents an orientation in free space in quaternion form.\n\ 00801 \n\ 00802 float64 x\n\ 00803 float64 y\n\ 00804 float64 z\n\ 00805 float64 w\n\ 00806 \n\ 00807 ================================================================================\n\ 00808 MSG: object_manipulation_msgs/GraspableObject\n\ 00809 # an object that the object_manipulator can work on\n\ 00810 \n\ 00811 # a graspable object can be represented in multiple ways. This message\n\ 00812 # can contain all of them. Which one is actually used is up to the receiver\n\ 00813 # of this message. When adding new representations, one must be careful that\n\ 00814 # they have reasonable lightweight defaults indicating that that particular\n\ 00815 # representation is not available.\n\ 00816 \n\ 00817 # the tf frame to be used as a reference frame when combining information from\n\ 00818 # the different representations below\n\ 00819 string reference_frame_id\n\ 00820 \n\ 00821 # potential recognition results from a database of models\n\ 00822 # all poses are relative to the object reference pose\n\ 00823 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00824 \n\ 00825 # the point cloud itself\n\ 00826 sensor_msgs/PointCloud cluster\n\ 00827 \n\ 00828 # a region of a PointCloud2 of interest\n\ 00829 object_manipulation_msgs/SceneRegion region\n\ 00830 \n\ 00831 # the name that this object has in the collision environment\n\ 00832 string collision_name\n\ 00833 ================================================================================\n\ 00834 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00835 # Informs that a specific model from the Model Database has been \n\ 00836 # identified at a certain location\n\ 00837 \n\ 00838 # the database id of the model\n\ 00839 int32 model_id\n\ 00840 \n\ 00841 # the pose that it can be found in\n\ 00842 geometry_msgs/PoseStamped pose\n\ 00843 \n\ 00844 # a measure of the confidence level in this detection result\n\ 00845 float32 confidence\n\ 00846 \n\ 00847 # the name of the object detector that generated this detection result\n\ 00848 string detector_name\n\ 00849 \n\ 00850 ================================================================================\n\ 00851 MSG: geometry_msgs/PoseStamped\n\ 00852 # A Pose with reference coordinate frame and timestamp\n\ 00853 Header header\n\ 00854 Pose pose\n\ 00855 \n\ 00856 ================================================================================\n\ 00857 MSG: sensor_msgs/PointCloud\n\ 00858 # This message holds a collection of 3d points, plus optional additional\n\ 00859 # information about each point.\n\ 00860 \n\ 00861 # Time of sensor data acquisition, coordinate frame ID.\n\ 00862 Header header\n\ 00863 \n\ 00864 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00865 # in the frame given in the header.\n\ 00866 geometry_msgs/Point32[] points\n\ 00867 \n\ 00868 # Each channel should have the same number of elements as points array,\n\ 00869 # and the data in each channel should correspond 1:1 with each point.\n\ 00870 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00871 ChannelFloat32[] channels\n\ 00872 \n\ 00873 ================================================================================\n\ 00874 MSG: geometry_msgs/Point32\n\ 00875 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00876 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00877 # \n\ 00878 # This recommendation is to promote interoperability. \n\ 00879 #\n\ 00880 # This message is designed to take up less space when sending\n\ 00881 # lots of points at once, as in the case of a PointCloud. \n\ 00882 \n\ 00883 float32 x\n\ 00884 float32 y\n\ 00885 float32 z\n\ 00886 ================================================================================\n\ 00887 MSG: sensor_msgs/ChannelFloat32\n\ 00888 # This message is used by the PointCloud message to hold optional data\n\ 00889 # associated with each point in the cloud. The length of the values\n\ 00890 # array should be the same as the length of the points array in the\n\ 00891 # PointCloud, and each value should be associated with the corresponding\n\ 00892 # point.\n\ 00893 \n\ 00894 # Channel names in existing practice include:\n\ 00895 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00896 # This is opposite to usual conventions but remains for\n\ 00897 # historical reasons. The newer PointCloud2 message has no\n\ 00898 # such problem.\n\ 00899 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00900 # (R,G,B) values packed into the least significant 24 bits,\n\ 00901 # in order.\n\ 00902 # \"intensity\" - laser or pixel intensity.\n\ 00903 # \"distance\"\n\ 00904 \n\ 00905 # The channel name should give semantics of the channel (e.g.\n\ 00906 # \"intensity\" instead of \"value\").\n\ 00907 string name\n\ 00908 \n\ 00909 # The values array should be 1-1 with the elements of the associated\n\ 00910 # PointCloud.\n\ 00911 float32[] values\n\ 00912 \n\ 00913 ================================================================================\n\ 00914 MSG: object_manipulation_msgs/SceneRegion\n\ 00915 # Point cloud\n\ 00916 sensor_msgs/PointCloud2 cloud\n\ 00917 \n\ 00918 # Indices for the region of interest\n\ 00919 int32[] mask\n\ 00920 \n\ 00921 # One of the corresponding 2D images, if applicable\n\ 00922 sensor_msgs/Image image\n\ 00923 \n\ 00924 # The disparity image, if applicable\n\ 00925 sensor_msgs/Image disparity_image\n\ 00926 \n\ 00927 # Camera info for the camera that took the image\n\ 00928 sensor_msgs/CameraInfo cam_info\n\ 00929 \n\ 00930 # a 3D region of interest for grasp planning\n\ 00931 geometry_msgs/PoseStamped roi_box_pose\n\ 00932 geometry_msgs/Vector3 roi_box_dims\n\ 00933 \n\ 00934 ================================================================================\n\ 00935 MSG: sensor_msgs/PointCloud2\n\ 00936 # This message holds a collection of N-dimensional points, which may\n\ 00937 # contain additional information such as normals, intensity, etc. The\n\ 00938 # point data is stored as a binary blob, its layout described by the\n\ 00939 # contents of the \"fields\" array.\n\ 00940 \n\ 00941 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00942 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00943 # camera depth sensors such as stereo or time-of-flight.\n\ 00944 \n\ 00945 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00946 # points).\n\ 00947 Header header\n\ 00948 \n\ 00949 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00950 # 1 and width is the length of the point cloud.\n\ 00951 uint32 height\n\ 00952 uint32 width\n\ 00953 \n\ 00954 # Describes the channels and their layout in the binary data blob.\n\ 00955 PointField[] fields\n\ 00956 \n\ 00957 bool is_bigendian # Is this data bigendian?\n\ 00958 uint32 point_step # Length of a point in bytes\n\ 00959 uint32 row_step # Length of a row in bytes\n\ 00960 uint8[] data # Actual point data, size is (row_step*height)\n\ 00961 \n\ 00962 bool is_dense # True if there are no invalid points\n\ 00963 \n\ 00964 ================================================================================\n\ 00965 MSG: sensor_msgs/PointField\n\ 00966 # This message holds the description of one point entry in the\n\ 00967 # PointCloud2 message format.\n\ 00968 uint8 INT8 = 1\n\ 00969 uint8 UINT8 = 2\n\ 00970 uint8 INT16 = 3\n\ 00971 uint8 UINT16 = 4\n\ 00972 uint8 INT32 = 5\n\ 00973 uint8 UINT32 = 6\n\ 00974 uint8 FLOAT32 = 7\n\ 00975 uint8 FLOAT64 = 8\n\ 00976 \n\ 00977 string name # Name of field\n\ 00978 uint32 offset # Offset from start of point struct\n\ 00979 uint8 datatype # Datatype enumeration, see above\n\ 00980 uint32 count # How many elements in the field\n\ 00981 \n\ 00982 ================================================================================\n\ 00983 MSG: sensor_msgs/Image\n\ 00984 # This message contains an uncompressed image\n\ 00985 # (0, 0) is at top-left corner of image\n\ 00986 #\n\ 00987 \n\ 00988 Header header # Header timestamp should be acquisition time of image\n\ 00989 # Header frame_id should be optical frame of camera\n\ 00990 # origin of frame should be optical center of cameara\n\ 00991 # +x should point to the right in the image\n\ 00992 # +y should point down in the image\n\ 00993 # +z should point into to plane of the image\n\ 00994 # If the frame_id here and the frame_id of the CameraInfo\n\ 00995 # message associated with the image conflict\n\ 00996 # the behavior is undefined\n\ 00997 \n\ 00998 uint32 height # image height, that is, number of rows\n\ 00999 uint32 width # image width, that is, number of columns\n\ 01000 \n\ 01001 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01002 # If you want to standardize a new string format, join\n\ 01003 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01004 \n\ 01005 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01006 # taken from the list of strings in src/image_encodings.cpp\n\ 01007 \n\ 01008 uint8 is_bigendian # is this data bigendian?\n\ 01009 uint32 step # Full row length in bytes\n\ 01010 uint8[] data # actual matrix data, size is (step * rows)\n\ 01011 \n\ 01012 ================================================================================\n\ 01013 MSG: sensor_msgs/CameraInfo\n\ 01014 # This message defines meta information for a camera. It should be in a\n\ 01015 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01016 # image topics named:\n\ 01017 #\n\ 01018 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01019 # image - monochrome, distorted\n\ 01020 # image_color - color, distorted\n\ 01021 # image_rect - monochrome, rectified\n\ 01022 # image_rect_color - color, rectified\n\ 01023 #\n\ 01024 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01025 # for producing the four processed image topics from image_raw and\n\ 01026 # camera_info. The meaning of the camera parameters are described in\n\ 01027 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01028 #\n\ 01029 # The image_geometry package provides a user-friendly interface to\n\ 01030 # common operations using this meta information. If you want to, e.g.,\n\ 01031 # project a 3d point into image coordinates, we strongly recommend\n\ 01032 # using image_geometry.\n\ 01033 #\n\ 01034 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01035 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01036 # indicates an uncalibrated camera.\n\ 01037 \n\ 01038 #######################################################################\n\ 01039 # Image acquisition info #\n\ 01040 #######################################################################\n\ 01041 \n\ 01042 # Time of image acquisition, camera coordinate frame ID\n\ 01043 Header header # Header timestamp should be acquisition time of image\n\ 01044 # Header frame_id should be optical frame of camera\n\ 01045 # origin of frame should be optical center of camera\n\ 01046 # +x should point to the right in the image\n\ 01047 # +y should point down in the image\n\ 01048 # +z should point into the plane of the image\n\ 01049 \n\ 01050 \n\ 01051 #######################################################################\n\ 01052 # Calibration Parameters #\n\ 01053 #######################################################################\n\ 01054 # These are fixed during camera calibration. Their values will be the #\n\ 01055 # same in all messages until the camera is recalibrated. Note that #\n\ 01056 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01057 # #\n\ 01058 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01059 # to: #\n\ 01060 # 1. An undistorted image (requires D and K) #\n\ 01061 # 2. A rectified image (requires D, K, R) #\n\ 01062 # The projection matrix P projects 3D points into the rectified image.#\n\ 01063 #######################################################################\n\ 01064 \n\ 01065 # The image dimensions with which the camera was calibrated. Normally\n\ 01066 # this will be the full camera resolution in pixels.\n\ 01067 uint32 height\n\ 01068 uint32 width\n\ 01069 \n\ 01070 # The distortion model used. Supported models are listed in\n\ 01071 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01072 # simple model of radial and tangential distortion - is sufficent.\n\ 01073 string distortion_model\n\ 01074 \n\ 01075 # The distortion parameters, size depending on the distortion model.\n\ 01076 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01077 float64[] D\n\ 01078 \n\ 01079 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01080 # [fx 0 cx]\n\ 01081 # K = [ 0 fy cy]\n\ 01082 # [ 0 0 1]\n\ 01083 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01084 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01085 # (cx, cy).\n\ 01086 float64[9] K # 3x3 row-major matrix\n\ 01087 \n\ 01088 # Rectification matrix (stereo cameras only)\n\ 01089 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01090 # stereo image plane so that epipolar lines in both stereo images are\n\ 01091 # parallel.\n\ 01092 float64[9] R # 3x3 row-major matrix\n\ 01093 \n\ 01094 # Projection/camera matrix\n\ 01095 # [fx' 0 cx' Tx]\n\ 01096 # P = [ 0 fy' cy' Ty]\n\ 01097 # [ 0 0 1 0]\n\ 01098 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01099 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01100 # is the normal camera intrinsic matrix for the rectified image.\n\ 01101 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01102 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01103 # (cx', cy') - these may differ from the values in K.\n\ 01104 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01105 # also have R = the identity and P[1:3,1:3] = K.\n\ 01106 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01107 # position of the optical center of the second camera in the first\n\ 01108 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01109 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01110 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01111 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01112 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01113 # the rectified image is given by:\n\ 01114 # [u v w]' = P * [X Y Z 1]'\n\ 01115 # x = u / w\n\ 01116 # y = v / w\n\ 01117 # This holds for both images of a stereo pair.\n\ 01118 float64[12] P # 3x4 row-major matrix\n\ 01119 \n\ 01120 \n\ 01121 #######################################################################\n\ 01122 # Operational Parameters #\n\ 01123 #######################################################################\n\ 01124 # These define the image region actually captured by the camera #\n\ 01125 # driver. Although they affect the geometry of the output image, they #\n\ 01126 # may be changed freely without recalibrating the camera. #\n\ 01127 #######################################################################\n\ 01128 \n\ 01129 # Binning refers here to any camera setting which combines rectangular\n\ 01130 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01131 # resolution of the output image to\n\ 01132 # (width / binning_x) x (height / binning_y).\n\ 01133 # The default values binning_x = binning_y = 0 is considered the same\n\ 01134 # as binning_x = binning_y = 1 (no subsampling).\n\ 01135 uint32 binning_x\n\ 01136 uint32 binning_y\n\ 01137 \n\ 01138 # Region of interest (subwindow of full camera resolution), given in\n\ 01139 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01140 # always denotes the same window of pixels on the camera sensor,\n\ 01141 # regardless of binning settings.\n\ 01142 # The default setting of roi (all values 0) is considered the same as\n\ 01143 # full resolution (roi.width = width, roi.height = height).\n\ 01144 RegionOfInterest roi\n\ 01145 \n\ 01146 ================================================================================\n\ 01147 MSG: sensor_msgs/RegionOfInterest\n\ 01148 # This message is used to specify a region of interest within an image.\n\ 01149 #\n\ 01150 # When used to specify the ROI setting of the camera when the image was\n\ 01151 # taken, the height and width fields should either match the height and\n\ 01152 # width fields for the associated image; or height = width = 0\n\ 01153 # indicates that the full resolution image was captured.\n\ 01154 \n\ 01155 uint32 x_offset # Leftmost pixel of the ROI\n\ 01156 # (0 if the ROI includes the left edge of the image)\n\ 01157 uint32 y_offset # Topmost pixel of the ROI\n\ 01158 # (0 if the ROI includes the top edge of the image)\n\ 01159 uint32 height # Height of ROI\n\ 01160 uint32 width # Width of ROI\n\ 01161 \n\ 01162 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01163 # ROI in this message. Typically this should be False if the full image\n\ 01164 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01165 # used).\n\ 01166 bool do_rectify\n\ 01167 \n\ 01168 ================================================================================\n\ 01169 MSG: geometry_msgs/Vector3\n\ 01170 # This represents a vector in free space. \n\ 01171 \n\ 01172 float64 x\n\ 01173 float64 y\n\ 01174 float64 z\n\ 01175 "; 01176 } 01177 01178 static const char* value(const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> &) { return value(); } 01179 }; 01180 01181 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {}; 01182 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > : public TrueType {}; 01183 } // namespace message_traits 01184 } // namespace ros 01185 01186 namespace ros 01187 { 01188 namespace serialization 01189 { 01190 01191 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > 01192 { 01193 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01194 { 01195 stream.next(m.header); 01196 stream.next(m.goal_id); 01197 stream.next(m.goal); 01198 } 01199 01200 ROS_DECLARE_ALLINONE_SERIALIZER; 01201 }; // struct GraspHandPostureExecutionActionGoal_ 01202 } // namespace serialization 01203 } // namespace ros 01204 01205 namespace ros 01206 { 01207 namespace message_operations 01208 { 01209 01210 template<class ContainerAllocator> 01211 struct Printer< ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> > 01212 { 01213 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspHandPostureExecutionActionGoal_<ContainerAllocator> & v) 01214 { 01215 s << indent << "header: "; 01216 s << std::endl; 01217 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01218 s << indent << "goal_id: "; 01219 s << std::endl; 01220 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id); 01221 s << indent << "goal: "; 01222 s << std::endl; 01223 Printer< ::object_manipulation_msgs::GraspHandPostureExecutionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal); 01224 } 01225 }; 01226 01227 01228 } // namespace message_operations 01229 } // namespace ros 01230 01231 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPHANDPOSTUREEXECUTIONACTIONGOAL_H 01232